
Proving Copyless Message Passing ∗

Jules Villard
LSV, ENS Cachan, CNRS

Asynchronous message passing often suffers from two
drawbacks: contents of messages have to be copied, and
deadlocks can be tricky to avoid. However, if messages
to-be live in the same address space, the first issue can be
resolved by sending a mere pointer to the memory region
where the message is stored instead of issuing a copy. This
implementation is sound provided that the emitting thread
loses ownership over the message, i.e. does not access it for
reading or writing after emission.

The Singularity operating system [4] is a prominent ap-
plication of these ideas. It can safely run processes sharing
a unique address space without memory protection. Exe-
cutable processes are written in the Sing# programming
language, which supports (copyless) message passing prim-
itives. Ownership violations are detected at compile-time
using static analysis techniques. Moreover, communica-
tions are ruled by contracts, a form of session types [8], and
this feature seems to be essential for the static analysis.

The goal of this abstract is to formalize these ideas and
give a proof system that validates ownership transfers and
contract obedience for an idealized programming language.
The latter allows memory manipulation and asynchronous
communications ruled by contracts, following the ideas of
Sing#. Moreover, we chose to be able to detect memory
leaks, whereas Sing# is equipped with a garbage collector,
and we support complete mobility of channels, similar to
the π-calculus, whereas Sing# provides internal mobility
only. Our proof system is based on separation logic [7],
which has already been used to specify and prove various
ownership-based paradigms [5, 2].

Programming Language

In the following code snippet, lines 1-2 send the cell
pointed to by x over some pre-existing endpoint e of a chan-
nel (e, f) using message cell , which is received on the other
end of the channel (f) on lines 4-5. The two blocks are ex-
ecuted in parallel; if we know that the first one will not ac-
cess the content of x anymore, then we can guarantee that
the disposal of line 5 will not create a memory fault.

∗This is a short and informal version of an article presented at the
APLAS’09 conference [9].

{ x = new();
/* allocate a new cell on the heap */

send(e,cell,x);
/* send a message "cell" containing this cell */
} || { /* parallel composition */
y = receive(f,cell);
/* receive a message "cell" containing a cell */
dispose(y); }
/* frees the memory used by the cell */

A more elaborate example, which we will use throughout
this abstract, is the sending of a linked list (that uses a field
tl to access the next element), followed by the closure of
the channel: program putter sends a list located at x over
endpoint e, and then sends e over itself. After each send, it
waits for an ack message. getter sends this ack after each
cell is received, and then proceeds to processing that cell;
it eventually receives the endpoint e through its endpoint f ,
which allows it to close the channel (e, f).1

putter(e,x) {
local t;
while(x != NULL) {

t = x->tl;
send(cell,e,x);
x = t;
receive(ack,e); }

send(close_me,e,e); }

getter(f) {
local x, e’ = NULL;
while(e’ == NULL) {

switch receive {
x = receive(cell,f): {

send(ack,e);
/* process the cell... */
dispose(x); }

e’ = receive(close_me,f): {}
}}
close(e’,f); }

The two programs assume that a channel has been cre-
ated for communication. In our setting, channels are bidi-
rectional FIFO and always consist of exactly two endpoints,
here e and f . Communications are asynchronous. Sending
never fails, and receiving may block until the right message
has arrived. The switch receive statement indicates that
several messages may be received at a given program point.

1We have chosen a syntax where both ends of a channel are closed
together.

1

Let us give the program that, given a linked list starting
at x, opens a channel and launches putter and getter in
parallel.

send_list(x) {
local e,f;
(e,f) = open();
putter(e,x) || getter(f);}

Had we omitted the acknowledgment mechanism of our
example (by suppressing lines 7 and 15), the contents of the
channel would be unbounded, as putter might do arbitrar-
ily many sends before getter starts receiving. This could
be seen as a caveat in a context where memory is scarce,
e.g. if such code is found in an operating system and is ex-
ecuted in an out-of-memory situation. The ack messages
force each send to be processed one by one, thus bounding
the channel’s size to one.

Contracts. We are interested in checking two properties
regarding communications2:

Bounded
The sizes of all channels’ queues are bounded.

NoLeak
No messages are pending when a channel is closed.

To be able to check that these properties hold in a
tractable way using our proof system, we associate a con-
tract to each channel. Contracts are finite state machines
that describe the protocol the channel should follow, i.e.
which sequences of sends and receives are admissible on the
channel. A contract C is written from one of the endpoints’
point-of-view, the other one following the dual contract C̄,
where sends ! and receives ? have been swapped. Contracts
distinguish an initial state and a set of possible final states.
When both endpoints of a channel are in the same final state,
the channel may be closed. A possible contract C for our
example is:

contract C {
initial state transfer { !cell -> wait;

!close_me -> end; }
state wait { ?ack -> transfer; }
final state end {} }

The program send_list is then modified to specify
that the channel follows contract C: line 23 becomes
(e,f) = open(C).

We give simple syntactical conditions on contracts that
suffice to ensure Bounded and NoLeak:

Deterministic
From every state of the contract, there should
be at most one transition labeled by a given
message name and a given direction.

2We also believe that contracts can be of some help to ensure that com-
munications never fail (e.g. when the wrong message is received) nor dead-
lock, but have not yet investigated this line of work.

Positional
Every state of the contract must allow either only
sends or only receives.

Synch
All cycles in the contract must contain at least
one send and one receive.

Theorem 1 Deterministic & Positional & Synch imply
Bounded & NoLeak.

Contract C satisfies these three conditions, hence closing
the channel on line 20 does not leak memory, as we will
see in the next section. If we relax Synch to apply only
to cycles that contain final states, then NoLeak still holds,
but Bounded does not. This is the case in our example if
we suppress the acknowledgment mechanism, as described
earlier. In the following, we only consider contracts that
satisfy NoLeak.

A Separation Logic for Copyless Message
Passing

We now turn to defining a proof system for proving that
program do not fault (on memory accesses), and, what is
new in this work, that they obey ownership transfer of mes-
sages. More precisely, we will specify programs p using
Hoare triples {A} p {B} where A and B are formulas of
our logic, an extension of separation logic. Our goal is to
define a proof system for Hoare triples and a semantics for
programs, and to relate them by a soundness theorem stated
informally below.

Theorem 2 (Soundness) If {A} p {B} is derivable in the
proof system, then for every initial state satisfying formula
A, if p terminates on this state then it does not fault, it is
race free, the contracts are respected, and the final states of
the program satisfy formula B.

Two crucial ingredients of separation logic are the sepa-
rating conjunction, in the assertion language, and the frame
rule, in the proof system (which contains also standard
Hoare logic rules), that permit local reasoning. The sepa-
rating conjunction A ∗ B of two formulas A and B is ver-
ified by all states that can be split into two disjoint parts
such that one of them satisfies A and the other satisfies B.
The rule for parallel composition uses this to specify that
disjoint pieces of the current state should be distributed to
each program of the parallel composition at the beginning,
and the (disjoint) results should be glued back together at
the end:

{A1} p1 {B1} {A2} p2 {B2}
{A1 ∗A2} p1 ‖ p2 {B1 ∗B2}

PARALLEL

2

The frame rule is based on the idea that to prove a pro-
gram, one only needs to consider the portion of state that is
accessed by it (its footprint [6]):

{A} p {B}
{A ∗ F} p {B ∗ F}

FRAME

In our model, following standard separation logic, states
are given by a stack and a heap. The heap describes cells
and endpoints that are currently allocated, and the stack
keeps track of the values associated to local variables. Our
assertion language then extends the one of separation logic
with a points-to predicate of the form E

ep7→(C{a}, F) that
describes endpoints on the heap. Each expression E and
F can be either a value (a memory location or an integer)
or a program variable. This predicate means that only the
endpoint at address E is allocated on the heap, and this end-
point follows contract C, is in the state a of C, and its peer
(the other end of the channel) is denoted by expression F .
The rest of our logic includes classical first order, ∗ and its
adjoint −−∗ (A −−∗ B is true of states that satisfy B when
any state satisfying A is added to them) and the usual pred-
icates of separation logic, including emp that describes the
empty heap. We also treat variables as resources [1]. Our
proof system extends separation logic with axioms for open,
send, receive and close.

For instance, the axiom for open is the following:

i = init(C)
{e, f emp}

(e , f) = open(C)
{e, f e

ep7→(C{i}, f) ∗ f
ep7→(C̄{i}, e)}

The pre-condition requires variables e and f to be allocated
on the stack and an empty heap, and the post-condition is
a two-cell heap made of two coupled endpoints following
dual contracts C and C̄ and placed in the initial state i of
C. Similarly, close(E,E’) must check that E and E′ are
two expressions that can be evaluated using available vari-
ables listed by O (we will use this notation each time an
expression needs to be evaluated in the pre-condition), and
whose values are two coupled endpoints in the same final
state. Closing such a channel gives an empty heap thanks to
Theorem 1.

a ∈ final(C)
{O E

ep7→(C{a}, E′) ∗ E′ ep7→(C̄{a}, E)}
close (E,E’)
{O emp}

To enforce ownership transfer of messages (required by
the copyless paradigm) in a way that permits local reason-
ing, we must describe the contents associated to messages.
For example, ack does not carry anything, while cell should

carry a single cell, pointed to by the third argument (the pa-
rameter) of send(cell,e,x). Hence, we associate an in-
variant to each message, in the spirit of concurrent sepa-
ration logic [5]. Invariants are precise formulas where the
only variables that may appear free are val and src, which
are both instantiated at run-time, respectively by the value
of the parameter and by the sending endpoint. We define the
following invariants for our example (7→ is used to denote a
regular cell, as opposed to endpoints denoted by ep7→):

Iack (val, src) , emp

Icell(val, src) , ∃X. val 7→ X

Iclose me(val, src) , ∃X. val
ep7→(C{end}, X)

∧ val = src

Ownership transfer is then materialized by the fact that
the invariant of a message is removed from the heap when
the message is sent, and tacked on the heap when the mes-
sage is received:

a
!m−→ b ∈ C

{O E
ep7→(C{a}, ε) ∗ (E ep7→(C{b}, ε) −−∗ (Im(E,F) ∗A))}

send(m,E,F)
{O A}

a
?m−→ b ∈ C

{O, x E
ep7→(C{a}, ε)}

x = receive (m,E)
{O, x E

ep7→(C{b}, ε) ∗ Im(ε, x)}

The rule for send first updates the state of the endpoint ac-
cording to the contract by removing it from the heap and
then adding it back in the new state b using −−∗. The re-
sulting state must contain the invariant and possibly some
left-over state described by A. In practice, A will either
be E

ep7→(C{b}, ε), meaning that the endpoint is not part of
the invariant (like in the case of cell), or emp, meaning that
the endpoint was sent in the message (like in the case of
close me). The latter case explains why we need the intri-
cate construct with −−∗ in the precondition: the state of the
sending endpoint must be updated before it is sent.

To see how the invariant of close me allows us to deduce
that both ends of the same channel are present, which is
required to close the channel at line 20 of our example, let
us show how to derive

{x, e′, f ∃X. f
ep7→(C̄{transfer}, X)}

e’ = receive (close me, f); close (e ’, f);
{x, e′, f emp}

After the receive, according to Iclose me , we obtain a state
satisfying

x, e′, f∃X. f
ep7→(C̄{end}, X)∗∃Y. e′ ep7→(C{end}, Y)∧e′ = X

3

from which we can deduce that Y = f . Thus, the invariant
of close me has helped us to discover information about a
distant piece of the heap (the endpoint e′ that is received)
while keeping the reasoning purely local. This allows us
to apply the rule for close, which gives the desired post-
condition.

We can prove the following specifications for our exam-
ple, given an inductive predicate list(x) , (x = 0∧emp)∨
(x 6= 0 ∧ ∃X. x 7→ X ∗ list(X)):

{list(x)} send list (x) {emp}

{∃X. e
ep7→(C{transfer}, X) ∗ list(x)} putter (e ,x) {emp}

{∃X. f
ep7→(C̄{transfer}, X)} getter (f) {emp}

Soundness. To give a semantics to our programming lan-
guage, we use abstract separation logic [3] that derives a
trace-based denotational semantics from the specifications
of commands, and automatically ensures soundness of our
proof system for this semantics. However, we can already
see that the semantics we will obtain based on the axioms
of send and receive will be quite distant from our initial
goal of modeling copyless message passing. Indeed, send-
ing will correspond to erasing the contents of the message,
and receiving to non-deterministically generating a message
satisfying the invariant and adding it to the current state.
This is a good description of what happens as far as local
reasoning is concerned but, when considering the program
as a whole, this is not a satisfying semantics.

Moreover, due to the technical details of how it was con-
ceived, the synchronization mechanism of abstract separa-
tion logic is too weak for our setting, which means that the
semantics given by abstract separation logic will not prevent
a receive to happen before the corresponding send.

We have thus enriched our model and the semantics of
send and receive to log all communications on every chan-
nel and to count the number of exchanged messages on each
endpoint (by associating counters to endpoints). The coun-
ters allow us to force receives to block until the correspond-
ing send has happened (technically, we rule out states where
the receive counter of an endpoint is ahead the send counter
of its peer), and logs are used to make sure that the contents
of sent and received messages match (again by ruling out
states where two corresponding log contents differ).

Finally, we define a third semantics where send and
receive only increment the corresponding counters. Com-
munications are then reduced to mere exchanges of point-
ers, as was intended. We then show the correspondence of
all three semantics for programs that are provable with our
proof system in a third theorem:

Theorem 3 For every provable program p with contracts
satisfying NoLeak, communications can safely be reduced
to pointer-passing.

Conclusion

In this abstract, we have described informally a new
proof system that allows local reasoning for memory-
manipulating programs that communicate by message pass-
ing, and a semantics for such programs which, while being
based on it, goes beyond the limitations of abstract sepa-
rations logic by exhibiting complex synchronization mech-
anisms. We also showed how contracts are related to the
analysis, thus giving a formal setting to the analysis per-
formed by Sing#.

Acknowledgments. The author would like to acknowl-
edge the work of Étienne Lozes on the matter discussed in
this abstract, and thank Cristiano Calcagno for his help and
initial impulse.

References

[1] R. Bornat, C. Calcagno, and H. Yang. Variables as Re-
source in Separation Logic. Electronic Notes in Theo-
retical Computer Science, 155:247–276, 2006.

[2] C. Calcagno, M. Parkinson, and V. Vafeiadis. Modular
Safety Checking for Fine-Grained Concurrency. Lec-
ture Notes in Computer Science, 4634:233, 2007.

[3] Cristiano Calcagno, Peter O’Hearn, and Hongseok
Yang. Local action and abstract separation logic. In
22nd LICS, pages 366–378, 2007.

[4] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson,
G. C. Hunt, J. R. Larus, and S. Levi. Language support
for fast and reliable message-based communication in
Singularity OS. In EuroSys, 2006.

[5] P.W. O’Hearn. Resources, concurrency, and local rea-
soning. TCS, 375(1-3):271–307, 2007.

[6] Mohammad Raza and Philippa Gardner. Footprints in
local reasoning. In FoSSaCS, volume 4962 of Lecture
Notes in Computer Science, pages 201–215. Springer,
2008.

[7] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In LICS 2002.

[8] K. Takeuchi, K. Honda, and M. Kubo. An Interaction-
Based Language and Its Typing System. Lecture Notes
in Computer Science, pages 398–398, 1994.

[9] Jules Villard, Étienne Lozes, and Cristiano Calcagno.
Proving copyless message passing. In Zhenjiang Hu,
editor, Proceedings of the 7th Asian Symposium on Pro-
gramming Languages and Systems (APLAS’09), vol-
ume 5904 of Lecture Notes in Computer Science, pages
194–209, Seoul, Korea, December 2009. Springer.

4

