
Introduction
A generic API

Security of the generic API
Conclusion

A Generic Security API for Symmetric Key
Management on Cryptographic Devices

Véronique Cortier and Graham Steel
LORIA, Nancy (France) LSV, Cachan (France)

July 10th, 2009

To appear at Esorics’09

1/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Security APIs

Goal : Enforce security of data stored inside the trusted device,
even when connected to untrusted host machines.

2/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Example : PKCS#11

Host machine

n1

n2

{k1}k2

wrap n1 n2

k1

k2

A(n1)

A(n2)

Trusted device

3/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Key Separation Attack (Clulow, 2003)

Intruder knows : h(n1, k1), h(n2, k2).

State : wrap(n2), decrypt(n2), sensitive(n1), extract(n1)

Wrap : h(n2, k2), h(n1, k1) → {k1}k2

Decrypt : h(n2, k2), {k1}k2 → k1

4/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Key Separation Attack (Clulow, 2003)

Intruder knows : h(n1, k1), h(n2, k2).

State : wrap(n2), decrypt(n2), sensitive(n1), extract(n1)

Wrap : h(n2, k2), h(n1, k1) → {k1}k2

Decrypt : h(n2, k2), {k1}k2 → k1

Many variations of this attack exist, not easy to fix.

Data are not related to identities.

4/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Implementing protocols

Security APIs are used to implement endpoints of protocols

Idea :

Abduct security API policy from suite of protocols it is
supposed to implement

Design generic API that can be instantiated to any protocol

Prove properties for the generic API that hold no matter what
protocol is implemented

5/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Outline of the talk

1 Introduction

2 A generic API
Handles
Commands

3 Security of the generic API
Intruder model
Preservation of serecy
Security against replay attack

4 Conclusion
Implementing protocols
Related work
Further work

6/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Handles
Commands

Generic API : Concepts

Handles for objects stored on device

h(N, K , i , S)

K : secret data stored on the trusted device

N : value of the handle for K

7/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Handles
Commands

Generic API : Concepts

Handles for objects stored on device

h(N, K , i , S)

K : secret data stored on the trusted device

N : value of the handle for K

i : Static security types for objects on device :

0 Public data (exists outside device)

1 Secret on device, not usable as key

2 Short term (session) key

3 Long term (key transport) key

7/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Handles
Commands

Generic API : Concepts

Handles for objects stored on device

h(N, K , i , S)

K : secret data stored on the trusted device

N : value of the handle for K

i : Static security types for objects on device :

0 Public data (exists outside device)

1 Secret on device, not usable as key

2 Short term (session) key

3 Long term (key transport) key

S : Agent identifiers that specify part of the policy
→ Crucial for supporting compromised parties

7/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Handles
Commands

Generic API : Generate Commands

N,K
⇒ Ka(h

g
a (N, K , i , S)) i ≥ 1 (Secure Generate)

N,K
⇒ Ka(K ), Ka(h

g
a (N, K , 0, All)) (Public Generate)

where

Ka local knowledge on the machine/agent a

N ∈ VarNonce,

K ∈ VarNonce if i = 1,

K ∈ VarKey if i = 2.

8/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Handles
Commands

Generic API : Encrypt

Ka(h
α

a (X , K , i0, S0)), Ka(x1), . . . ,Ka(xk),

Ka(h
α1
a (Xn1 , y1, i1, S1)), . . . ,Ka(h

αl
a (Xnl

, yl , il , Sl))

⇒ Ka({x1, 0, . . . , xk , 0, y1, i1, S1, . . . , yl , il , Sl}K ) (Encrypt)

Require

i0 > ij (keys only encrypt data of strictly lower security level)

S0 ⊆ Sj

9/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Handles
Commands

Generic API : Decrypt

Ka(h
α

a (X , K , i0, S0)), Ka({x1, 0, . . . , xk , 0, y1, i1, S1, . . . , yl , il , Sl}K ),

Ka(h
g
a (X1, x1, 0, All)), . . . ,Ka(h

g
a (Xs , xs , 0, All)),

Ka(h
g
a (Y1, y1, i1, S1)), . . . ,Ka(h

g
a (Yl , yl , il , Sl))

Nr+1,...,Nl
⇒ Ka(xs+1) . . . ,Ka(xk),

Ka(h
r (Nr+1, yr+1, ir+1, Sr+1)) . . . ,Ka(Nl , yl , il , Sl)

(Decrypt/Test)

provided

i0 > ij (keys only encrypt data of strictly lower security level)

S0 ⊆ Sj Secure data will be accessible at most to agents in S ,
which are all authorized agents.

10/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Intruder model
Preservation of serecy
Security against replay attack

Attacker scenario

Agent
Compromised

Agent
Compromised

Network

Attacker
control

TRD

TRDTRD

TRD

TRD

TRD

Honest
Agent

Honest
Agent

Honest
Agent

Honest
Agent

11/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Intruder model
Preservation of serecy
Security against replay attack

Attacker model

As usual, the attacker can apply cryptographic primitives.

Kint(x), Kint(y) ⇒ Kint(〈x , y〉)

Kint(〈x , y〉) ⇒ Kint(x)

Kint(〈x , y〉) ⇒ Kint(y)

Kint(x), Kint(y) ⇒ Kint({x}y )

Kint({x}y ), Kint(y) ⇒ Kint(x)

12/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Intruder model
Preservation of serecy
Security against replay attack

Attacker model

As usual, the attacker can apply cryptographic primitives.

Kint(x), Kint(y) ⇒ Kint(〈x , y〉)

Kint(〈x , y〉) ⇒ Kint(x)

Kint(〈x , y〉) ⇒ Kint(y)

Kint(x), Kint(y) ⇒ Kint({x}y )

Kint({x}y ), Kint(y) ⇒ Kint(x)

The attacker also controls any host machine (incl. honest ones).

Ka(x) ⇒ I (x)

I (x) ⇒ Ka(x)

Kb(h
α

b (x , y , i , S)) ⇒ I (y) if b compromised

12/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Intruder model
Preservation of serecy
Security against replay attack

Property 1 : Secrecy Invariant

“Secret data of honest users should not be known to the intruder.”

i.e. data values k for which there are handles of the form
hα

a (n, k , i , S), where S is a subset of honest users, are unknown to
the intruder.

∀a ∈ Agent,∀x , y ∈ Msg,∀i ∈ {1, 2, 3},∀α ∈ {r , g},∀S ⊆ H

S ⊢ hα

a (x , y , i , S) ⇒ S 6⊢ y (Sec)

Theorem

Sec is preserved by application of any of the API commands.

13/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Intruder model
Preservation of serecy
Security against replay attack

Property 1 : Secrecy Invariant

“Secret data of honest users should not be known to the intruder.”

i.e. data values k for which there are handles of the form
hα

a (n, k , i , S), where S is a subset of honest users, are unknown to
the intruder.

∀a ∈ Agent,∀x , y ∈ Msg,∀i ∈ {1, 2, 3},∀α ∈ {r , g},∀S ⊆ H

S ⊢ hα

a (x , y , i , S) ⇒ S 6⊢ y (Sec)

Theorem

Sec is preserved by application of any of the API commands.

Limitation : This does not guaranty any security in case some
honest keys get compromised (e.g. using brute force attack).

13/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Intruder model
Preservation of serecy
Security against replay attack

Compromised keys

Assume the adversary has compromised some key K associated to
some handle h(N, K , 2, S) with S set of honest agents.

Consider h(N ′, K ′, 1, S ′) with S ′ honest, S ⊆ S ′

Encrypt h(N, K , 2, S) h(N ′
, K ′

, 1, S ′) ⇒ {K ′}K

14/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Intruder model
Preservation of serecy
Security against replay attack

Compromised keys

Assume the adversary has compromised some key K associated to
some handle h(N, K , 2, S) with S set of honest agents.

Consider h(N ′, K ′, 1, S ′) with S ′ honest, S ⊆ S ′

Encrypt h(N, K , 2, S) h(N ′
, K ′

, 1, S ′) ⇒ {K ′}K

→ The adversary can get any data of lower security level !

⇒ Short term keys should be regularly erased from the trusted
device :

They are short keys anyway

Necessary to save the memory of the device

14/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Intruder model
Preservation of serecy
Security against replay attack

Freshness tests

Erasing compromised keys does not suffice !

Assume the adversary has compromised some key K associated to
some (erased) handle h(N, K , 2, S) with S set of honest agents.

And assume the adversary has seen {. . . ,K , 2, S , . . .}Kab

15/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Intruder model
Preservation of serecy
Security against replay attack

Freshness tests

Erasing compromised keys does not suffice !

Assume the adversary has compromised some key K associated to
some (erased) handle h(N, K , 2, S) with S set of honest agents.

And assume the adversary has seen {. . . ,K , 2, S , . . .}Kab

Decrypt h(N ′
, Kab, 3, S ′) {. . . ,K , 2, S , . . .}Kab

⇒ h(N”, K , 2, S)

And we are back to the previous case...

15/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Intruder model
Preservation of serecy
Security against replay attack

Freshness tests

Erasing compromised keys does not suffice !

Assume the adversary has compromised some key K associated to
some (erased) handle h(N, K , 2, S) with S set of honest agents.

And assume the adversary has seen {. . . ,K , 2, S , . . .}Kab

Decrypt h(N ′
, Kab, 3, S ′) {. . . ,K , 2, S , . . .}Kab

⇒ h(N”, K , 2, S)

And we are back to the previous case...

⇒ The token needs to perform some freshness tests.

15/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Intruder model
Preservation of serecy
Security against replay attack

Property 2 : Secrecy After Compromise

Intruder may learn some session keys

Honest users erase old handles

API enforces tests - no session keys accepted without a test

Theorem

Sec is still preserved.

16/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Implementing protocols
Related work
Further work

Implementing protocols

1 Our API can implement all symmetric key management
protocols of the Clark & Jacob library.

2 More generally, most of the protocols can be implemented
provided that :

They are secure !
In case of nested encryption, nested cyphertext do not need to
be secret.
Symmetric key protocols only

17/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Implementing protocols
Related work
Further work

Benchmark

Protocol (section in Clark-Jacob) API APIr

Needham-Schroeder SK (6.3.1) + -

NSSK amended version (6.3.4) + +

Otway-Rees (6.3.3) + +

Yahalom (6.3.6) + -

Carlsen (6.3.7) + +

Woo-Lam Mutual Auth (6.3.11) + +

http://www.lsv.ens-cachan.fr/∼steel/genericapi/

18/20 Véronique Cortier and Graham Steel A Generic Security API

http://www.lsv.ens-cachan.fr/~steel/genericapi/


Introduction
A generic API

Security of the generic API
Conclusion

Implementing protocols
Related work
Further work

Related Work

Cachin and Tandran, presented at CSF’09 (on Wednesday 9th)

Cryptographic model

Symmetric and asymmetric encryption, key derivation

But assume a unique token, having a global view of the system

19/20 Véronique Cortier and Graham Steel A Generic Security API



Introduction
A generic API

Security of the generic API
Conclusion

Implementing protocols
Related work
Further work

Further Work

Cryptographic soundness

Long-term key update

PKI (asymmetric crypto, certificates,. . .)

Timestamps

20/20 Véronique Cortier and Graham Steel A Generic Security API


	Introduction
	A generic API
	Handles
	Commands

	Security of the generic API
	Intruder model
	Preservation of serecy
	Security against replay attack

	Conclusion
	Implementing protocols
	Related work
	Further work


