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Anatomy of a Java application
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Java code can interact with native libraries via Java Native Interface (JNI).
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Java Native Interface (JNI)
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Java Application

Java Native Interface (JNI)

Effects of JNI calls difficult to analyze!
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Overview

1. Dynamic and static program analysis.

2. Security properties in JNI code.

3. Bridging the gap between Java and native code.

4. Conclusion.
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Dynamic and Static Analysis

Dynamic Analysis Static Analysis

ä “at run time”

ä analyze real system

ä “at compile time’

ä analyze simplified system (model)
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Two divided worlds?

Run-time Verification Static Analysis

1 2 3 31 2

ä Concrete values/states

ä Full-sized system

ä Testing never exhaustive

ä Dependent on tests + schedule

ä Abstract values/states

ä Smaller system

ä Complete exploration possible

ä Requires precise pointer analysis

May miss errors Exhaustive search possible

Real example scenario False warnings
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Strengths and weaknesses

Run-time Verification (RV) Static Analysis

ä Single event trace

ä Depends on schedule

ä Unsound

ä Precise information

ä Over-approximation

ä Depends on abstraction

ä Sound

ä Requires manual tuning

Complementary technologies

ä Tools typically support only one given programming language.
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Verification platforms for Java and native code

Dynamic Analysis

* Abstract interpretation
* Native code ignored

* Analyzes all outcomes of ND choices
* Native code needs special model

Static Analysis

Java PathFinder

Jlint Eraser

?
* Lock usage analysis

* Native code exec’d
  but not analyzed

!

0101

Cyrille Artho, RCIS/AIST, 07/11/2009 7



Overview

1. Dynamic and static program analysis.

2. Security properties in JNI code.

3. Bridging the gap between Java and native code.

4. Conclusion.

Cyrille Artho, RCIS/AIST, 07/11/2009 8



Platform mismatch between application and library

Layer Language Description

Application Java Target of this project
Java library Java High-level functions
JNI layer Java passes library calls to low-level code
JNI impl. C C counterpart of JNI
Crypto library C Low-level functions
Device driver C (If present) interface to hardware

ä Many crypto/security functions are implemented as a C library.

ä Existing Java tools only analyze Java code (top three layers).

ä How much information from lower layer(s) can we bring to the top?
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Example

Java declaration:
public final static native void
TPM NONCE nonce set(long jarg1, TPM NONCE jarg1 , short[] jarg2);

C code:
SWIGEXPORT void JNICALL
Java iaik tc tss impl jni tsp TspiWrapperJNI TSS 1NONCE 1nonce 1set
(JNIEnv *jenv, jclass jcls, jlong jarg1, jobject jarg1 ,
jshortArray jarg2) {

// other declarations omitted
if (jarg2 && (*jenv)->GetArrayLength(jenv, jarg2) !=

TPM SHA1BASED NONCE LEN) {
SWIG JavaThrowException(jenv,

SWIG JavaIndexOutOfBoundsException,
"incorrect array size");

return;
}

...
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Goal of this project

Layer Language Description

Application Java Target of this project
Java library Java High-level functions
JNI layer Java passes library calls to low-level code
Crypto library C→ Java Low-level functions

Convert native method to Java code:
public final static void
TPM NONCE nonce set(long jarg1, TPM NONCE jarg1 , short[] jarg2) {

if ((jarg2 != null)
&& (jarg2.length != TPM SHA1BASED NONCE LEN) {
throw new IndexOutOfBoundsException("incorrect array size");
return;

}
}
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Benefits

ä Better integration into the analysis tool.

ä Combining properties of multiple implementations.

ä Usage of various analysis techniques:

– static analysis
– symbolic execution
– model checking
– fault injection

ä Cross-platform tools do not exist (yet)!

How to bring C code into the Java world?
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Model-driven architecture

Runnable
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ä Domain-specific language models problem data.

ä Domain = programming languages.

ä Data = Abstract Syntax Tree.

Cyrille Artho, RCIS/AIST, 07/11/2009 14



Implementation architecture
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ä Create same representation for C and Java code [Gondow, Maruyama].

ä Map JNI „name mangling” to Java name.

ä Map C code constructs as far as applicable.
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Why is a partial code mapping useful?

ä Analyze Java Application.

ä Are security APIs used correctly?

– Under all circumstances: static analysis.
– Create test cases: symbolic execution.
– Analyze multi-threading: model checking.
– Exception handling: fault injection.

ä Implementation of APIs not relevant.

– Design by contract: preconditions/postconditions important.
– Implementation details can be verified by other tools (in C).
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Conclusion

Java application C library

Java analysis tools miss C bugs!
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Conclusion

Java application

Make C library usage bugs visible!

C library
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