
Extraction of Properties in
C Implementations of Security APIs for Verification

of Java Applications

Cyrille Artho, Yutaka Oiwa, Kuniyasu Suzaki
Research Center for Information Security (RCIS), AIST,

Tokyo, Japan

Masami Hagiya
University of Tokyo, Tokyo, Japan

07/11/2009

Cyrille Artho, RCIS/AIST, 07/11/2009

Anatomy of a Java application

N
at

iv
e

C
od

e

Java Virtual Machine

Platform (OS + system libraries)

(JVM)

Java Application

Native Libraries
(machine code)

Java Libraries

Ja
va

 C
od

e

Java code can interact with native libraries via Java Native Interface (JNI).

Cyrille Artho, RCIS/AIST, 07/11/2009 1

Java Native Interface (JNI)

Platform (OS + system libraries)

(machine code)
Native LibrariesJVM

N
at

iv
e

C
od

e
Ja

va
 C

od
e

Java Application

Java Native Interface (JNI)

Effects of JNI calls difficult to analyze!

Cyrille Artho, RCIS/AIST, 07/11/2009 2

Overview

1. Dynamic and static program analysis.

2. Security properties in JNI code.

3. Bridging the gap between Java and native code.

4. Conclusion.

Cyrille Artho, RCIS/AIST, 07/11/2009 3

Dynamic and Static Analysis

Dynamic Analysis Static Analysis

ä “at run time”

ä analyze real system

ä “at compile time’

ä analyze simplified system (model)

Cyrille Artho, RCIS/AIST, 07/11/2009 4

Two divided worlds?

Run-time Verification Static Analysis

1 2 3 31 2

ä Concrete values/states

ä Full-sized system

ä Testing never exhaustive

ä Dependent on tests + schedule

ä Abstract values/states

ä Smaller system

ä Complete exploration possible

ä Requires precise pointer analysis

May miss errors Exhaustive search possible

Real example scenario False warnings

Cyrille Artho, RCIS/AIST, 07/11/2009 5

Strengths and weaknesses

Run-time Verification (RV) Static Analysis

ä Single event trace

ä Depends on schedule

ä Unsound

ä Precise information

ä Over-approximation

ä Depends on abstraction

ä Sound

ä Requires manual tuning

Complementary technologies

ä Tools typically support only one given programming language.

Cyrille Artho, RCIS/AIST, 07/11/2009 6

Verification platforms for Java and native code

Dynamic Analysis

* Abstract interpretation
* Native code ignored

* Analyzes all outcomes of ND choices
* Native code needs special model

Static Analysis

Java PathFinder

Jlint Eraser

?
* Lock usage analysis

* Native code exec’d
 but not analyzed

!

0101

Cyrille Artho, RCIS/AIST, 07/11/2009 7

Overview

1. Dynamic and static program analysis.

2. Security properties in JNI code.

3. Bridging the gap between Java and native code.

4. Conclusion.

Cyrille Artho, RCIS/AIST, 07/11/2009 8

Platform mismatch between application and library

Layer Language Description

Application Java Target of this project
Java library Java High-level functions
JNI layer Java passes library calls to low-level code
JNI impl. C C counterpart of JNI
Crypto library C Low-level functions
Device driver C (If present) interface to hardware

ä Many crypto/security functions are implemented as a C library.

ä Existing Java tools only analyze Java code (top three layers).

ä How much information from lower layer(s) can we bring to the top?

Cyrille Artho, RCIS/AIST, 07/11/2009 9

Example

Java declaration:
public final static native void
TPM NONCE nonce set(long jarg1, TPM NONCE jarg1 , short[] jarg2);

C code:
SWIGEXPORT void JNICALL
Java iaik tc tss impl jni tsp TspiWrapperJNI TSS 1NONCE 1nonce 1set
(JNIEnv *jenv, jclass jcls, jlong jarg1, jobject jarg1 ,
jshortArray jarg2) {

// other declarations omitted
if (jarg2 && (*jenv)->GetArrayLength(jenv, jarg2) !=

TPM SHA1BASED NONCE LEN) {
SWIG JavaThrowException(jenv,

SWIG JavaIndexOutOfBoundsException,
"incorrect array size");

return;
}

...

Cyrille Artho, RCIS/AIST, 07/11/2009 10

Goal of this project

Layer Language Description

Application Java Target of this project
Java library Java High-level functions
JNI layer Java passes library calls to low-level code
Crypto library C→ Java Low-level functions

Convert native method to Java code:
public final static void
TPM NONCE nonce set(long jarg1, TPM NONCE jarg1 , short[] jarg2) {

if ((jarg2 != null)
&& (jarg2.length != TPM SHA1BASED NONCE LEN) {
throw new IndexOutOfBoundsException("incorrect array size");
return;

}
}

Cyrille Artho, RCIS/AIST, 07/11/2009 11

Benefits

ä Better integration into the analysis tool.

ä Combining properties of multiple implementations.

ä Usage of various analysis techniques:

– static analysis
– symbolic execution
– model checking
– fault injection

ä Cross-platform tools do not exist (yet)!

How to bring C code into the Java world?

Cyrille Artho, RCIS/AIST, 07/11/2009 12

Overview

1. Dynamic and static program analysis.

2. Security properties in JNI code.

3. Bridging the gap between Java and native code.

4. Conclusion.

Cyrille Artho, RCIS/AIST, 07/11/2009 13

Model-driven architecture

Runnable

name

Interface

Method

public

access

void

type

run

name

ä Domain-specific language models problem data.

ä Domain = programming languages.

ä Data = Abstract Syntax Tree.

Cyrille Artho, RCIS/AIST, 07/11/2009 14

Implementation architecture

Function

void

type

garbled_run

name

Class

Method

public

access

void

type

run

name

Worker

name

ä Create same representation for C and Java code [Gondow, Maruyama].

ä Map JNI „name mangling” to Java name.

ä Map C code constructs as far as applicable.

Cyrille Artho, RCIS/AIST, 07/11/2009 15

Why is a partial code mapping useful?

ä Analyze Java Application.

ä Are security APIs used correctly?

– Under all circumstances: static analysis.
– Create test cases: symbolic execution.
– Analyze multi-threading: model checking.
– Exception handling: fault injection.

ä Implementation of APIs not relevant.

– Design by contract: preconditions/postconditions important.
– Implementation details can be verified by other tools (in C).

Cyrille Artho, RCIS/AIST, 07/11/2009 16

Conclusion

Java application C library

Java analysis tools miss C bugs!

Cyrille Artho, RCIS/AIST, 07/11/2009 17

Conclusion

Java application

Make C library usage bugs visible!

C library

Cyrille Artho, RCIS/AIST, 07/11/2009 18

