Complexité avancée TD 9\&10

Cristina Sirangelo - LSV, ENS-Cachan

December 3rd, 2014

Exercise 1. PP vs \#P A polynomially balanced relation is a binary relation R between words of Σ^{*} for which there exist two polynomials p and q such that :

- if $R(x, y)$ holds then $|y|<p(|x|)$, and
- for all words $x, y \in \Sigma^{*}$, whether $R(x, y)$ holds can be verified in time $q(|x|)$.

A function $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in the class $\# \mathbf{P}$ if there exists a polynomially balanced relation R over words of Σ^{*} such that for all $x \in \Sigma^{*}$,

$$
f(x)=|\{y \mid R(x, y)\}|
$$

1. Prove that a function $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in the class $\# \mathbf{P}$ iff there exists a nondeterministic polynomial time Turing machine M such that for all $x \in \Sigma^{*}$

$$
f(x)=\mid\{\rho \mid \rho \text { is an accepting run of } M \text { on input } x\} \mid
$$

2. Prove that a function $f: \Sigma^{*} \rightarrow \mathbb{N}$ is in the class $\# \mathbf{P}$ iff there exists a probabilistic Turing machine M running in time $t(n)$ and having random tape of size $t(n)$, for some polynomial t, such that for all $x \in \Sigma^{*}$

$$
f(x)=\mid\{r \text { of size } t(n) \mid M(x, r) \text { accepts }\} \mid
$$

3. Oracle machines with a function oracle $f: \Sigma^{*} \rightarrow \mathbb{N}$ are defined in the same way as usual oracle machines with language oracles, except that the oracle returns its output $f(x)$ in binary on a dedicated tape (as opposed to just checking membership in a language).
Recall from TD 8 that $\mathbf{P P}$ is the class of languages L for which there exists a polynomial time probabilistic Turing machine M such that :

$$
\begin{aligned}
& \text { if } x \in L \text { then } \operatorname{Pr}[M(x, r) \text { accepts }] \geq \frac{1}{2} \\
& \text { if } x \notin L \text { then } \operatorname{Pr}[M(x, r) \text { accepts }]<\frac{1}{2}
\end{aligned}
$$

Prove that $\mathbf{P}^{\mathbf{P P}}=\mathbf{P} \# \mathbf{P}$.

Exercise 2. 2SAT and RP Let φ be a 2 CNF formula and let ρ_{0} be an arbitrary assignment of variables of φ. Consider the following randomized algorithm for 2SAT on input φ :
$\rho \leftarrow \rho_{0} ;$
repeat r times
if ρ satisfies all clauses of $\varphi \operatorname{accept}(\varphi$ is satisfiable) ;
otherwise let $C=L_{1} \vee L_{2}$ be the first clause of φ which is false under ρ;
pick one of the two literals at random (with probability $\frac{1}{2}$ each) ;
flip the truth value of the corresponding variable in ρ (so that C is true) ;
end repeat
reject; (φ is probably not satisfiable)
Find a value of r such that the above is an $\mathbf{R P}$ algorithm for 2 SAT .

Exercise 3. Polynomial identity An n-variable algebraic circuit is a directed acyclic graph having exactly one node with out-degree zero, and exactly n nodes with in-degree zero. The latter are called sources, and are labelled by variables $x_{1}, \ldots x_{n}$; the former is called the output of the circuit. Moreover each non-source node is labelled by an operator in the set $\{+,-, \times\}$, and has in-degree two.

An algebraic circuit defines a function from \mathbb{Z}^{n} to \mathbb{Z}, associating to each integer assignment of the sources the value of the output node, computed through the circuit. It is easy to show that this function can be described by a polynomial in the variables $x_{1}, \ldots x_{n}$. Algebraic circuits are indeed a form of implicit representation of multivariate polynomials. Nevertheless algebraic circuits are more compact than polynomials.

An algebraic circuit C is said to be identically zero if it evaluates to zero for all possible integer assignments of the sources.

The Polynomial identity problem is as follows :

```
INPUT : An algebraic circuit C
QUESTION : is C identically zero?
```

Show that Polynomial identity is in coRP (note that it is not known whether Polynomial identity is in \mathbf{P}).

Hint : you may need the following known facts :
Fact (Schwartz-Zippel lemma) If $p\left(x_{1}, \ldots x_{n}\right)$ is a nonzero polynomial with coefficients in \mathbb{Z} and total degree at most d, and $S \subseteq \mathbb{Z}$, then the number of roots of p belonging to S^{n} is at most $d \cdot|S|^{n-1}$.

Fact (Prime number theorem) There exists a known integer $X_{0} \geq 0$ such that, for all integers $X \geq X_{0}$, the number of prime numbers in the set $\left[1 . .2^{X}\right]$ is at least $\frac{2^{X}}{X}$.

Exercise 4. BPP and oracle machines. Prove that $\mathbf{P}^{B P P}=\mathbf{B P P}$.

Exercise 5. Arthur-Merlin protocols. Prove the following statements, directly from definition of Arthur-Merlin games :
$-\mathbf{M}=\mathbf{N P}$;
$-\mathbf{A}=\mathbf{B P P}$;
$-\mathbf{N P}^{\mathbf{B P P}} \subseteq \mathbf{M A}$;
$-\mathbf{A M} \subseteq \mathbf{B P} \mathbf{P}^{\mathbf{N P}}$.

Exercise 6. Prove that if $\mathbf{N P} \subseteq \mathbf{B P P}$ then $\mathbf{A M}=\mathbf{M A}$.

