Complexité avancée TD 6

Cristina Sirangelo - LSV, ENS-Cachan

November 5, 2014

1 The Polynomial Hierarchy

Exercise 1. Complete problems for levels of PH Show that the following problem $\Sigma_k QBF$ is Σ_k^P -complete (under polynomial time reductions).

INPUT : A quantified boolean formula $\exists X_1 \forall X_2 \exists ... Q_k X_k \phi$, where $X_1, ... X_k$ are k sets of variables, Q_k is the quantifier \forall if k is even, and the quantifier \exists if k is odd, ϕ is a boolean formula over variables $\bigcup_{i=1..k} X_i$; QUESTION : is the input formula true?

Show also that the problem $\Pi_k QBF$, defined as above except that \exists and \forall quantifiers are swapped, is Π_k^P -complete.

Exercise 2. Collapse of PH

- Prove that if at some level $k \geq 1$ of the polynomial hierarchy $\Sigma_k^P = \Pi_k^P$, then the polynomial hierarchy collapses to the k-th level, that is $\mathbf{PH} = \Sigma_k^P$.
- Prove that if there exists a **PH**-complete language (complete under polynomial time reductions), then there exists k such that the polynomial hierarchy collapses to its k-th level (i.e. $\mathbf{PH} = \Sigma_k^P$).

Exercise 3. P, NP and oracles Show that there exists an oracle A such that $\mathbf{P}^{A} = \mathbf{NP}^{A}$.

Exercise 4. class DP DP is the class of languages of the form $L_1 \cap L_2$, where $L_1 \in \mathbf{NP}$ and $L_2 \in \mathbf{coNP}$. (In other words a language in **DP** is the difference of two **NP** languages.)

EXACT INDEPENDENT SET is the problem of checking, for an input graph G, and integer k, whether the maximum size of an independent set of G is k (that is whether G has an independent set of size k, and all other independent sets of G have size at most k. Recall that an independent set of a graph is a set I of vertices such that no two vertices of I are connected by an edge).

- Show that EXACT INDEPENDENT SET is in $\Sigma_2^P \cap \Pi_2^P$;
- Show that EXACT INDEPENDENT SET is in **DP**;
- Show that $\mathbf{DP} \subseteq \Sigma_2^P \cap \Pi_2^P$;
- Show that EXACT INDEPENDENT SET is **DP**-complete under polynomial time reductions.