Complexité avancée
 TD 5

Cristina Sirangelo - LSV, ENS-Cachan

October 22, 2014

Exercise 1. Alternating Turing machines with negations Let us define an alternating Turing machine with negations as a Turing machine where the set of non-halting states is partitioned into the set of existential states, the set of universal states and the set of negation states. Moreover there is the restriction that each configuration on a negation state has exactly one successor configuration. Remark that we do not require that the machine always halts.

For such a machine \mathcal{M} we define the set of eventually accepting configurations, and the set of eventually rejecting configurations as the minimal sets of configurations satisfying the following conditions :

- if C is an accepting configuration, then C is eventually accepting;
- if C is an existential configuration and there exists a successor configuration C^{\prime} of C (i.e, $C \rightarrow \mathcal{M} C^{\prime}$) which is eventually accepting, then C is eventually accepting;
- if C is a universal configuration, and all successor configurations C^{\prime} of C are eventually accepting, then C is eventually accepting;
- if C is a negation configuration and the (unique) successor configuration C^{\prime} of C is eventually rejecting, then C is eventually accepting;
- if C is a rejecting configuration, then C is eventually rejecting;
- if C is an existential configuration and all successor configuration C^{\prime} of C are eventually rejecting, then C is eventually rejecting;
- If C is universal configuration, and there exists a successor configuration C^{\prime} of C which is eventually rejecting, then C is eventually rejecting;
- if C is a negation configuration and the (unique) successor configuration C^{\prime} of C is eventually accepting, then C is eventually rejecting.
The machine accepts an input x iff the initial configuration on input x is eventually accepting. The language accepted by an alternating Turing machine with negations \mathcal{M} is the set of all x accepted by \mathcal{M}.

Prove that any alternating Turing machine \mathcal{M} with negations can be simulated by an alternating Turing machine \mathcal{M}^{*} without negations, with no extra cost in time or space. More precisely prove that there exists a configuration reachable in n steps and using m working tape units in \mathcal{M} iff there exists a configuration reachable in n steps and using m working tape units in \mathcal{M}^{*}. Do not assume any space or time bound on \mathcal{M}.

Exercise 2. Alternating logarithmic time vs logarithmic space

Show that ATIME $(\log n)$ does not coincide with \mathbf{L}.
Exercise 3. Minimal Formula A boolean formula is minimal if it has no equivalent shorter formula - where the length of the formula is the number of symbols it contains. Let MIN-FORMULA be the problem of deciding whether a boolean formula is minimal. Is MIN-FORMULA in AP, in NP, in coNP?

Exercise 4. Tautology and coNP

- Describe a polynomial time alternating Turing machine which decides whether a boolean formula is a tautology.
- Show that coNP $\subseteq \mathbf{A P}$, by exhibiting an alternating polynomial time Turing machine for each problem in coNP.

Exercise 5. Linearly and logarithmically bounded alternations Let $\mathbf{A P}(O(n))($ resp. $\mathbf{A P}(O(\log n)))$ be the class of problems which can be decided by an alternating polynomial time Turing machine whose computations have a linear (resp. logarithmic) number of alternations (in the size of the input).

- Is QBF in $\mathbf{A P}(O(n))$? in $\mathbf{A P}(O(\log n))$?
- Can we conclude PSPACE $=\mathbf{A P}(O(n)) ? \mathbf{P S P A C E}=\mathbf{A P}(O(\log n))$?

