# Complexité avancée <br> TD 3 <br> Cristina Sirangelo - LSV, ENS-Cachan 

October 8, 2014

## Exercise 1. Geography game Principle:

- The game starts with a given name of a city, for instance Cachan;
- the first player gives the name of a city whose first letter coincides with the last letter of the previous city, for instance Nanterre;
- the second player gives then another city name, always starting with the last letter of the previous city, for instance Evian;
- the first player plays again, and so on - with the restriction that no player is allowed to give the name of a city already used in the game;
- the loser is the first player who does not find a new city name to continue.

This game can be described using a graph whose vertices represent cities and where an edge $(X, Y)$ means that the last letter of the city $X$ is the same as the first letter of the city $Y$. This graph has also a vertex marked as the initial vertex of the game (the initial city). Each player choses a vertex of the graph, the first player choses first, and the two players alternate their moves. At each move, the sequence of vertices chosen by the two players must form a simple path in the graph, starting from the distinguished initial vertex.

Player 1 wins the game if, after some number of moves, Player 2 has no valid move (that is no move that forms a simple path with the sequence of previous moves).

1. The geography game problem $(J G)$ is the problem of checking, given an input arbitrary graph and initial vertex, whether the first player has a winning strategy for the above mentioned set of rules (i.e. a strategy that allows Player 1 to win, no matter the moves of Player 2).
Show that $J G$ is in PSPACE by describing a polynomial space Turing machine for it.
2. Show that $J G$ is PSPACE-complete.

Exercise 2. NFA universality Show that the problem of deciding - given a nondeterministic finite state automaton $A$ over alphabet $\Sigma$ - whether the language accepted by $A$ is $\Sigma^{*}$, is PSPACE-complete.

Exercise 3. NFA equivalence Show that the problem of deciding - given two nondeterministic finite state automata $A_{1}$ and $A_{2}$ over alphabet $\Sigma$ - whether $L\left(A_{1}\right)=L\left(A_{2}\right)$, is PSPACE-complete.

Exercise 4. Intersection of deterministic finite state automata Show that the problem of deciding $\bigcap_{i=1}^{m} L\left(A_{i}\right)=\emptyset$ for a given set of deterministic finite state automata, $A_{i}, i=1 . . m$, is PSPACE-complete.

Exercise 5. Non-trivial FO theories Recall that the FO-theory of an FO-structure A of vocabulary $\sigma$ is the set of all FO $\sigma$-sentences which are satisfied by $A$. The decision problem for an FO theory is to determine whether a given sentence $\varphi$ belongs to the theory (i.e to determine whether $\mathbf{A} \models \varphi$ ).

Come up with a definition of trivial for FO theories, in terms of constraints on the structure A. Prove that for your definition of trivial :

1. The decision problem of every non-trivial theory is PSPACE-hard.
2. The decision problem of every non-trivial theory of a finite structure is PSPACEcomplete.
3. The decision problem of every trivial theory is in $\mathbf{P}$.

Exercise 6. First-order theory of natural numbers with linear order Determine the complexity of the decision problem for the FO-theory of the structure ( $\omega, \leq$ ), where $\omega$ is the set of natural numbers and $\leq$ is the usual linear order on $\omega$.

For the upper bound proceed as follows. For $k$-tuples $a_{1}, \ldots, a_{k}$ and $b_{1}, \ldots, b_{k}$ of natural numbers, let $a_{0}=b_{0}=0$ and define

$$
a_{1}, \ldots, a_{k} \equiv_{k}^{m} b_{1}, \ldots b_{k}
$$

if there exists a permutation $\pi:\{0, \ldots, k\} \rightarrow\{0, \ldots, k\}$ such that
$-a_{\pi(0)} \leq \cdots \leq a_{\pi(k)}$ and $b_{\pi(0)} \leq \cdots \leq b_{\pi(k)}$ and
$-\min \left(2^{m}, a_{\pi(i+1)}-a_{\pi(i)}\right)=\min \left(2^{m}, b_{\pi(i+1)}-b_{\pi(i)}\right)$ for all $i=0 . . k-1$

1. Prove the following lemma:

Lemma 0.1 If $a_{1}, \ldots, a_{k} \equiv_{k}^{m} b_{1}, \ldots, b_{k}$ then for all $a_{k+1}$ there exists $b_{k+1}$ such that $a_{1}, \ldots, a_{k}, a_{k+1} \equiv_{k+1}^{m-1} b_{1}, \ldots, b_{k}, b_{k+1}$.
2. Use the lemma above to show that if $a_{1}, \ldots, a_{k} \equiv_{k}^{m} b_{1}, \ldots, b_{k}$ and $\varphi\left(x_{1}, \ldots x_{k}\right)$ is a formula with $k$ free variables of quantifier rank $m$, then $\varphi\left(a_{1}, \ldots a_{k}\right)$ holds in $(\omega, \leq)$ iff $\varphi\left(b_{1}, \ldots b_{k}\right)$ does. (The quantifier rank of a formula is the depth of nesting of quantifiers; a quantifier-free formula is of rank 0 .)
3. Using 2. determine the complexity of checking whether a given FO sentence holds in $(\omega, \leq)$.

