
Complexité avancée

TD 3

Cristina Sirangelo - LSV, ENS-Cachan

October 8, 2014

Exercise 1. Geography game Principle :
– The game starts with a given name of a city, for instance Cachan ;
– the first player gives the name of a city whose first letter coincides with the last

letter of the previous city, for instance Nanterre ;
– the second player gives then another city name, always starting with the last letter

of the previous city, for instance Evian ;
– the first player plays again, and so on – with the restriction that no player is allowed

to give the name of a city already used in the game ;
– the loser is the first player who does not find a new city name to continue.
This game can be described using a graph whose vertices represent cities and where

an edge (X,Y ) means that the last letter of the city X is the same as the first letter of
the city Y . This graph has also a vertex marked as the initial vertex of the game (the
initial city). Each player choses a vertex of the graph, the first player choses first, and the
two players alternate their moves. At each move, the sequence of vertices chosen by the
two players must form a simple path in the graph, starting from the distinguished initial
vertex.

Player 1 wins the game if, after some number of moves, Player 2 has no valid move
(that is no move that forms a simple path with the sequence of previous moves).

1. The geography game problem (JG) is the problem of checking, given an input
arbitrary graph and initial vertex, whether the first player has a winning strategy
for the above mentioned set of rules (i.e. a strategy that allows Player 1 to win, no
matter the moves of Player 2).
Show that JG is in PSPACE by describing a polynomial space Turing machine for
it.

2. Show that JG is PSPACE-complete.

Exercise 2. NFA universality Show that the problem of deciding – given a non-
deterministic finite state automaton A over alphabet Σ – whether the language accepted
by A is Σ∗, is PSPACE-complete.

Exercise 3. NFA equivalence Show that the problem of deciding – given two non-
deterministic finite state automata A1 and A2 over alphabet Σ – whether L(A1) = L(A2),
is PSPACE-complete.

Exercise 4. Intersection of deterministic finite state automata Show that the
problem of deciding

⋂m
i=1 L(Ai) = ∅ for a given set of deterministic finite state automata,

Ai, i = 1..m, is PSPACE-complete.

1



Exercise 5. Non-trivial FO theories Recall that the FO-theory of an FO-structure
A of vocabulary σ is the set of all FO σ-sentences which are satisfied by A. The decision
problem for an FO theory is to determine whether a given sentence ϕ belongs to the
theory (i.e to determine whether A |= ϕ).

Come up with a definition of trivial for FO theories, in terms of constraints on the
structure A. Prove that for your definition of trivial :

1. The decision problem of every non-trivial theory is PSPACE-hard.

2. The decision problem of every non-trivial theory of a finite structure is PSPACE-
complete.

3. The decision problem of every trivial theory is in P.

Exercise 6. First-order theory of natural numbers with linear order Determine
the complexity of the decision problem for the FO-theory of the structure (ω,≤), where
ω is the set of natural numbers and ≤ is the usual linear order on ω.

For the upper bound proceed as follows. For k-tuples a1, . . . , ak and b1, . . . , bk of na-
tural numbers, let a0 = b0 = 0 and define

a1, . . . , ak ≡mk b1, . . . bk

if there exists a permutation π : {0, . . . , k} → {0, . . . , k} such that
– aπ(0) ≤ · · · ≤ aπ(k) and bπ(0) ≤ · · · ≤ bπ(k) and

– min(2m, aπ(i+1) − aπ(i)) = min(2m, bπ(i+1) − bπ(i)) for all i = 0..k − 1

1. Prove the following lemma :

Lemma 0.1 If a1, . . . , ak ≡mk b1, . . . , bk then for all ak+1 there exists bk+1 such that
a1, . . . , ak, ak+1 ≡m−1

k+1 b1, . . . , bk, bk+1.

2. Use the lemma above to show that if a1, . . . , ak ≡mk b1, . . . , bk and ϕ(x1, . . . xk) is a
formula with k free variables of quantifier rank m, then ϕ(a1, . . . ak) holds in (ω,≤)
iff ϕ(b1, . . . bk) does. (The quantifier rank of a formula is the depth of nesting of
quantifiers ; a quantifier-free formula is of rank 0.)

3. Using 2. determine the complexity of checking whether a given FO sentence holds
in (ω,≤).

2


