Complexité avancée
TD 12

Cristina Sirangelo - LSV, ENS-Cachan
December 17th, 2014

Definition (Multi-prover interactive protocols). Let Py,..., P; be infinitely powerful machines
whose output is polynomially bounded. Let V be a probabilistic polynomial-time machine. V' is called
the verifier, and Py, ..., Py are called the provers.

A round of a multi-prover interactive protocol on input = consists of an exchange of messages (i.e.
words over a given alphabet) between the verifier and the provers, and works as follows :

— The verifier V' is executed on an input consisting of z, the history of all previous messages
exchanged with all provers (both sent and received messages), and a random tape content of
size polynomial in |z|. The output of the verifier is computed in time polynomial in |z|, and
consists of messages to some or all of the provers.

— Each message ¢; sent from the verifier to prover P; is followed by an answer a;, of size polynomial
in |z, sent from the prover P; to the verifier. The answer a; is computed by P; on input consisting
of z and the history of all messages previously exchanged between the verifier and the prover
P; (and only F;).

— Alternatively the verifier may decide not to produce messages, and terminates the protocol by
either accepting or rejecting, based on the input x and the history of all previous messages
exchanged with all provers.

You can view the protocol as executed by the verifier sharing communication tapes with each P;,
where different provers P; and P; have no tapes they can both access, besides the input tape. In a
round the verifier stores each message ¢; to prover P; on the i-th communication tape, shared between
the prover and P;. The answer of P; is put on tape ¢ as well. The verifier has access to the input and
all communication tapes, while each prover P; has access only to the input and tape <.

Py, ..., P, and V form a multi-prover interactive protocol for a language L if the execution of the
protocol between V and Py, ... Py terminates after a polynomial number of rounds (in the size of the
input x) and :

— if z € L, then Pr[(V, Py,...,P) accepts] > 1 — 279"

— if & ¢ L, then for all provers P,..., P, Pr[(V,P],...,P}) accepts z| < 2-a(n) .
where ¢ is a polynomial and the probability is computed over all possible random choices of V.

In this case, we denote L € MIPj. The number of provers k need not be fixed and may be a
polynomial in the size of the input x. We say that L € MIP if L € MIP,, for some polynomial
p. Clearly MIP; = IP, but allowing more provers makes the interactive protocol model potentially
more powerful.

Exercice 1. Characterization of MIP. Prove the following characterizations of the class MIP.

1. Let M be a probabilistic polynomial-time Turing machine with access to a function oracle. A
language L is accepted by M iff :
— if z € L, then there exists an oracle O s.t. M© accepts = with probability greater than
1—2am) .
— if z ¢ L, then for any oracle O', M 0" accepts = with probability smaller than 2-2(").
Show that L € MIP if and only if L is accepted by a probabilistic polynomial time oracle

machine.
2. Show that MIP = MIP;.

Exercise 2. PCP, MIP and NEXPTIME Prove that

U PCP(R(n),Q(n),T(n)) C MIP C NEXPTIME
R(n),Q(n),T(n) polynomials

(Hint. It is possible to prove (but you are not required to) that, as with IP, one can equivalently
use perfect completeness in the definition of MIP. That is, in the case x € L, we require that the
protocol accepts with probability 1, rather than at least 1 — 279" In this exercise use the definition
of MIP with perfect completeness, and the corresponding notion of probabilistic oracle machine.)

Remark. Indeed MIP and this version of PCP coincide with NEXPTIME, but you are not
required to prove the opposite inclusions.

