
Complexité avancée

TD 1

Cristina Sirangelo - LSV, ENS-Cachan

September 24, 2014

Exercise 1 Let G be a directed graph (V,E), with V = {0, 1, ..., N − 1}. The
vertices are just integers, which are assumed to be written in binary. We can re-
present G by its adjacency matrix MG, which is an N ×N matrix, where each
element mij is the bit 1 if (i, j) ∈ E, the bit 0 otherwise. More precisely, G is re-
presented by the word starting with N written in binary, followed by the special
symbol #, and by the list of bits m00,m01, . . . ,m0(N−1), m10,m11, . . . ,m1(N−1), . . . ,
m(N−1)0,m(N−1)1, . . . ,m(N−1)(N−1).

We can also represent G by its adjacency lists. The adjacency list of vertex i is
the set of vertices j such that (i, j) ∈ E, sorted in ascendent order, say j1, . . . , jm.
We will represent it as the word j1; j2; . . . ; jm;, where the ji are written in binary,
over the alphabet {0, 1}, and where ; is a third symbol. We represent then G as the
string L0 • L1 • . . . LN−1•, where each Li is the adjacency list of vertex i, and where
• is a fourth symbol.

Describe a logarithmic space bounded deterministic Turing machine which takes
as input the graph G, represented by adjacency lists, and returns the adjacency
matrix of G.

Exercise 2 Show that, conversely, we can also define a logarithmic space bounded
deterministic Turing machine taking as input the adjacency matrix of a graph G, and
computing the adjacency list representation of G.

Definition (Proper) A function f : N → N is said to be proper if f is non-
decreasing, and there exists a deterministic Turing machineMf (with a fixed number
of tapes) such that for each input x of size n, the machineMf halts with exactly f(n)
blank symbols written on the output tape, andMf runs in time O(n+f(n)) and space
O(f(n)).

Exercise 3 Show that we end up defining the same class SPACE(f(n)) if we do not
require that the machine M halts on every input. More precisely, let SPACE′(f(n))
be the class of languages L such that there exists a deterministic Turing machine M
using at most space f(n) (n being the size of the input x), and accepting x if and
only if x ∈ L. (Notice that we do not require that M halts when x /∈ L). Show that
if f is a proper complexity function and f(n) = Ω(log n), then SPACE′(f(n)) =
SPACE(f(n)).

1

Exercise 4 Let SPACE′′(f(n)) be the class of languages L such that there exists
a deterministic Turing machine M such that M accepts x iff x ∈ L, and M accepts
using space f(n) on each input x ∈ L of size n (however M might use more space,
and might also not halt if x /∈ L). Show that if f is a proper complexity function and
f(n) = Ω(log n), then SPACE′′(f(n)) = SPACE(f(n)).

Exercise 5 Show that NSPACE(f(n)) ⊆ TIME(O(cf(n)+log n)) (assume that f
is proper).

Exercise 6 Let 3-SAT be the restriction of SAT to clauses consisting of at most
three literals (called 3-clauses). In other words, the input is a finite set S of 3-clauses,
and the question is whether S is satisfiable. Show that 3-SAT is NP -complete for
logspace reductions (you can assume that SAT is).

Exercise 7 Let 2-SAT be the restriction of SAT to clauses consisting of at most
two literals (called 2-clauses). In other words, the input is a finite set S of 2-clauses,
and the question is whether S is satisfiable. Show that :

– 2-SAT is in P.
– the complement of 2-SAT (i.e, the unsatisfiability of a set of 2-clauses) is NL-

complete.

Exercise 8 Using Exercise 7, show that 2-SAT is NL-complete.

Exercise 9
– Let A be the language of balanced parentheses – that is the language generated

by the grammar S → (S)|SS|ε. Show that A ∈ L.
– What about the language B of balanced parentheses of two types ? that is the

language generated by the grammar S → (S)|[S]|SS|ε

2

