
1/81

Tree Automata and Applications

M1 course, 2023/2024

2/81

Organization
Timetable

I Exercises: Thursday 8:30 – 10:30 (Luc Lapointe)

I Course: Thursday 10:45 – 12:45 (Stefan Schwoon)

Exams
I DM or CC (to be specified by Luc)

I Final Exam: 2h, 11 January

I First session: DM/CC + Exam (50/50)

I Second session: DM/CC + Repeat Exam (50/50)

Course materials
I Website: lecturer’s homepage + Wiki MPRI, course 1-18

(exercise sheets, slides, former exams)

I Hubert Comon et al.
Tree Automata Techniques and Applications.
http://tata.gforge.inria.fr/

http://tata.gforge.inria.fr/

2/81

Organization
Timetable

I Exercises: Thursday 8:30 – 10:30 (Luc Lapointe)

I Course: Thursday 10:45 – 12:45 (Stefan Schwoon)

Exams
I DM or CC (to be specified by Luc)

I Final Exam: 2h, 11 January

I First session: DM/CC + Exam (50/50)

I Second session: DM/CC + Repeat Exam (50/50)

Course materials
I Website: lecturer’s homepage + Wiki MPRI, course 1-18

(exercise sheets, slides, former exams)

I Hubert Comon et al.
Tree Automata Techniques and Applications.
http://tata.gforge.inria.fr/

http://tata.gforge.inria.fr/

2/81

Organization
Timetable

I Exercises: Thursday 8:30 – 10:30 (Luc Lapointe)

I Course: Thursday 10:45 – 12:45 (Stefan Schwoon)

Exams
I DM or CC (to be specified by Luc)

I Final Exam: 2h, 11 January

I First session: DM/CC + Exam (50/50)

I Second session: DM/CC + Repeat Exam (50/50)

Course materials
I Website: lecturer’s homepage + Wiki MPRI, course 1-18

(exercise sheets, slides, former exams)

I Hubert Comon et al.
Tree Automata Techniques and Applications.
http://tata.gforge.inria.fr/

http://tata.gforge.inria.fr/

3/81

Motivations

1. Natural extension of formal-language notions (automata, logic, . . .)

2. Treatment of tree-like data structures: parse tree, XML documents
(XPath, CSS selectors)

3. Applications e.g. in compiler construction, formal verification

4/81

Trees
We consider finite ordered ranked trees.

I ordered : internal nodes have children 1 . . . n

I ranked : number of children fixed by node’s label

Let N denote the set of positive integers.
Nodes (positions) of a tree are associated with elements of N∗:

ε

1 2 3

21 22

Definition: Tree

A (finite, ordered) tree is a non-empty, finite, prefix-closed set Pos ⊆ N∗

such that w(i + 1) ∈ Pos implies wi ∈ Pos for all w ∈ N∗, i ∈ N.

5/81

Ranked Trees

Ranked symbols

Let F0,F1, . . . be disjoint sets of symbols of arity 0, 1, . . .
We note F :=

⋃
i Fi .

I Notation (example): F = {f (2), g(1), a, b}
Let X denote a set of variables (disjoint from the other symbols).

Definition: Ranked tree

A ranked tree is a mapping t : Pos → (F ∪ X) satisfying:

I Pos is a tree;

I for all p ∈ Pos, if t(p) ∈ Fn, n ≥ 1 then Pos ∩ pN = {p1, . . . , pn};
I for all p ∈ Pos, if t(p) ∈ X ∪ F0 then Pos ∩ pN = ∅.

5/81

Ranked Trees

Ranked symbols

Let F0,F1, . . . be disjoint sets of symbols of arity 0, 1, . . .
We note F :=

⋃
i Fi .

I Notation (example): F = {f (2), g(1), a, b}
Let X denote a set of variables (disjoint from the other symbols).

Definition: Ranked tree

A ranked tree is a mapping t : Pos → (F ∪ X) satisfying:

I Pos is a tree;

I for all p ∈ Pos, if t(p) ∈ Fn, n ≥ 1 then Pos ∩ pN = {p1, . . . , pn};
I for all p ∈ Pos, if t(p) ∈ X ∪ F0 then Pos ∩ pN = ∅.

6/81

Trees and Terms

Definition: Terms

The set of terms T (F ,X) is the smallest set satisfying:

I X ∪ F0 ⊆ T (F ,X);

I if t1, . . . , tn ∈ T (F ,X) and f ∈ Fn, then f (t1, . . . , tn) ∈ T (F ,X).

We note T (F) := T (F , ∅). A term in T (F) is called ground term.
A term of T (F ,X) is linear if every variable occurs at most once.

Example: F = {f (2), g(1), a, b}, X = {x , y}
I f (g(a), b) ∈ T (F);

I f (x , f (b, y)) ∈ T (F ,X) is linear;

I f (x , x) ∈ T (F ,X) is non-linear.

We confuse terms and trees in the obvious manner.

6/81

Trees and Terms

Definition: Terms

The set of terms T (F ,X) is the smallest set satisfying:

I X ∪ F0 ⊆ T (F ,X);

I if t1, . . . , tn ∈ T (F ,X) and f ∈ Fn, then f (t1, . . . , tn) ∈ T (F ,X).

We note T (F) := T (F , ∅). A term in T (F) is called ground term.
A term of T (F ,X) is linear if every variable occurs at most once.

Example: F = {f (2), g(1), a, b}, X = {x , y}
I f (g(a), b) ∈ T (F);

I f (x , f (b, y)) ∈ T (F ,X) is linear;

I f (x , x) ∈ T (F ,X) is non-linear.

We confuse terms and trees in the obvious manner.

6/81

Trees and Terms

Definition: Terms

The set of terms T (F ,X) is the smallest set satisfying:

I X ∪ F0 ⊆ T (F ,X);

I if t1, . . . , tn ∈ T (F ,X) and f ∈ Fn, then f (t1, . . . , tn) ∈ T (F ,X).

We note T (F) := T (F , ∅). A term in T (F) is called ground term.
A term of T (F ,X) is linear if every variable occurs at most once.

Example: F = {f (2), g(1), a, b}, X = {x , y}
I f (g(a), b) ∈ T (F);

I f (x , f (b, y)) ∈ T (F ,X) is linear;

I f (x , x) ∈ T (F ,X) is non-linear.

We confuse terms and trees in the obvious manner.

7/81

Height and size

Definition

Let t ∈ T (F ,X). We note H(t) the height of t and |t| the size of t.

I if t ∈ X , then H(t) := 0 and |t| := 0; (for notational convenience)

I if t ∈ F0, then H(t) := 1 and |t| := 1;

I if t = f (t1, . . . , tn), then H(t) := 1 + max{H(t1), . . . ,H(tn)} and
|t| := 1 + |t1|+ · · ·+ |tn|.

8/81

Subterms / subtrees

Definition: Subtree

Let t, u ∈ T (F ,X) and p a position. Then t|p : Posp → T (F ,X) is the
ranked tree defined by

I Posp := { q | pq ∈ Pos };
I t|p(q) := t(pq).

Moreover, t[u]p is the tree obtained by replacing t|p by u in t.

t D t ′ (resp. t B t ′) denotes that t ′ is a (proper) subtree of t.

9/81

Substitutions and Context

Definition: Substitution
I (Ground) substitution σ: mapping from X to T (F ,X) resp. T (F)

I Notation: σ := {x1 ← t1, . . . , xn ← tn}, with σ(x) := x for all
x ∈ X \ {x1, . . . , xn}

I Extension to terms: for all f ∈ Fm and t ′1, . . . , t
′
m ∈ T (F ,X)

σ(f (t ′1, . . . , t
′
m)) = f (σ(t ′1), . . . , σ(t ′m))

I Notation: tσ for σ(t)

Definition: Context

A context is a linear term C ∈ T (F ,X) with variables x1, . . . , xn.
We note C [t1, . . . , tn] := C{x1 ← t1, . . . , xn ← tn}.

Cn(F) denotes the contexts with n variables and C(F) := C1(F).
Let C ∈ C(F). We note C 0 := x1 and Cn+1 = Cn[C] for n ≥ 0.

9/81

Substitutions and Context

Definition: Substitution
I (Ground) substitution σ: mapping from X to T (F ,X) resp. T (F)

I Notation: σ := {x1 ← t1, . . . , xn ← tn}, with σ(x) := x for all
x ∈ X \ {x1, . . . , xn}

I Extension to terms: for all f ∈ Fm and t ′1, . . . , t
′
m ∈ T (F ,X)

σ(f (t ′1, . . . , t
′
m)) = f (σ(t ′1), . . . , σ(t ′m))

I Notation: tσ for σ(t)

Definition: Context

A context is a linear term C ∈ T (F ,X) with variables x1, . . . , xn.
We note C [t1, . . . , tn] := C{x1 ← t1, . . . , xn ← tn}.

Cn(F) denotes the contexts with n variables and C(F) := C1(F).
Let C ∈ C(F). We note C 0 := x1 and Cn+1 = Cn[C] for n ≥ 0.

10/81

Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

abc =̂ a(b(c($)))

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.

Two variants: bottom-up vs top-down labelling

Basic results (preview)

I Non-deterministic bottom-up and top-down are equally powerful

I Deterministic bottom-up equally powerful

I Deterministic top-down less powerful

10/81

Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

abc =̂ a(b(c($)))

Finite automaton: labels every prefix of a word with a state.
Tree automaton: labels every position/subtree of a tree with a state.

Two variants: bottom-up vs top-down labelling

Basic results (preview)

I Non-deterministic bottom-up and top-down are equally powerful

I Deterministic bottom-up equally powerful

I Deterministic top-down less powerful

11/81

Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple A = 〈Q,F ,G ,∆〉,
where:

I Q is a finite set of states;

I F a finite ranked alphabet;

I G ⊆ Q are the final states;

I ∆ is a finite set of rules of the form

f (q1, . . . , qn)→ q

for f ∈ Fn and q, q1, . . . , qn ∈ Q.

Example: Q := {q0, q1, qf }, F = {f (2), g(1), a}, G := {qf }, and rules

a→ q0 g(q0)→ q1 g(q1)→ q1 f (q1, q1)→ qf

11/81

Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple A = 〈Q,F ,G ,∆〉,
where:

I Q is a finite set of states;

I F a finite ranked alphabet;

I G ⊆ Q are the final states;

I ∆ is a finite set of rules of the form

f (q1, . . . , qn)→ q

for f ∈ Fn and q, q1, . . . , qn ∈ Q.

Example: Q := {q0, q1, qf }, F = {f (2), g(1), a}, G := {qf }, and rules

a→ q0 g(q0)→ q1 g(q1)→ q1 f (q1, q1)→ qf

12/81

Move relation and computation tree

Move relation

Let t, t ′ ∈ T (F ,Q). We write t →A t ′ if the following are satisfied:

I t = C [f (q1, . . . , qn)] for some context C ;

I t ′ = C [q] for some rule f (q1, . . . , qn)→ q of A.

Idea: successively reduce t to a single state, starting from the leaves.
As usual, we write →∗A for the transitive and reflexive closure of →A.

Computation

Let t : Pos → F a ground tree. A run or computation of A on t is a labelling
t ′ : Pos → Q compatible with ∆, i.e.:

I for all p ∈ Pos, if t(p) = f ∈ Fn, t ′(p) = q, and t ′(pj) = qj for all
pj ∈ Pos ∩ pN, then f (q1, . . . , qn)→ q ∈ ∆

12/81

Move relation and computation tree

Move relation

Let t, t ′ ∈ T (F ,Q). We write t →A t ′ if the following are satisfied:

I t = C [f (q1, . . . , qn)] for some context C ;

I t ′ = C [q] for some rule f (q1, . . . , qn)→ q of A.

Idea: successively reduce t to a single state, starting from the leaves.
As usual, we write →∗A for the transitive and reflexive closure of →A.

Computation

Let t : Pos → F a ground tree. A run or computation of A on t is a labelling
t ′ : Pos → Q compatible with ∆, i.e.:

I for all p ∈ Pos, if t(p) = f ∈ Fn, t ′(p) = q, and t ′(pj) = qj for all
pj ∈ Pos ∩ pN, then f (q1, . . . , qn)→ q ∈ ∆

13/81

Regular tree languages

A tree t is accepted by A iff t →∗A q for some q ∈ G .

L(A) denotes the set of trees accepted by A.

L is regular/recognizable iff L := L(A) for some NFTA A.

Two NFTAs A1 and A2 are equivalent iff L(A1) = L(A2).

14/81

NFTA with ε-moves

Definition:

An ε-NFTA is an NFTA A = 〈Q,F ,G ,∆〉, where ∆ can additionally contain
rules of the form q → q′, with q, q′ ∈ Q.

Semantics: Allow to re-label a position from q to q′.

Equivalence of ε-NFTA

For every ε-NFTA A there exists an equivalent NFTA A′.

Proof (sketch): Construct the rules of A′ by a saturation procedure.

15/81

Deterministic, complete, and reduced
NFTA

An NFTA is deterministic if no two rules have the same left-hand side.
An NFTA is complete if for every f ∈ Fn and q1, . . . , qn ∈ Q, there exists
at least one rule f (q1, . . . , qn)→ q ∈ ∆.

As usual, a DFTA has at most one run per tree.
A DCFTA as exactly one run per tree.

A state q of A is accessible if there exists a tree t s.t. t →∗A q.
A is said to be reduced if all its states are accessible.

16/81

A pumping lemma for tree languages

Lemma

Let L be recognizable. Then there exists a constant k such that for all t ∈ L
with H(t) > k there exist contexts C ,D ∈ C(F) and u ∈ T (F) satisfying:

I D is non-trivial (i.e. not just a variable);

I t = C [D[u]];

I for all n ≥ 0, we have C [Dn[u]] ∈ L.

Proof: Let k be the number of states of an NFTA A recognizing L.
Then an accepting run for t has positions p, pp′ (p′ 6= ε) labelled with the
same state q. Let C := t[x]p, D := t|p[x]p′ , and u := t|pp′ . We have
t = C [D[u]] ∈ L, D[u]→∗A q, and u →∗A q, hence the accepting run of t
implies D[q]→∗A q and C [q]→∗A qf , for some final qf . Therefore,
C [u]→∗A qf and for any n ≥ 0, (by induction)

C [Dn+1[u]]→∗A C [Dn[D[q]]]→∗A C [Dn[q]]→∗A C [q]→∗A qf

16/81

A pumping lemma for tree languages

Lemma

Let L be recognizable. Then there exists a constant k such that for all t ∈ L
with H(t) > k there exist contexts C ,D ∈ C(F) and u ∈ T (F) satisfying:

I D is non-trivial (i.e. not just a variable);

I t = C [D[u]];

I for all n ≥ 0, we have C [Dn[u]] ∈ L.

Proof: Let k be the number of states of an NFTA A recognizing L.
Then an accepting run for t has positions p, pp′ (p′ 6= ε) labelled with the
same state q. Let C := t[x]p, D := t|p[x]p′ , and u := t|pp′ . We have
t = C [D[u]] ∈ L, D[u]→∗A q, and u →∗A q, hence the accepting run of t
implies D[q]→∗A q and C [q]→∗A qf , for some final qf . Therefore,
C [u]→∗A qf and for any n ≥ 0, (by induction)

C [Dn+1[u]]→∗A C [Dn[D[q]]]→∗A C [Dn[q]]→∗A C [q]→∗A qf

17/81

Illustration of pumping lemma

Let L = { f (g i (a), g i (a)) | i ≥ 0 } for F = {f (2), g(1), a}.
Suppose (by contradiction) that L is recognizable by NFTA A with k
states. Let t = f (gk(a), gk(a)).

D

u

f

g g

g g

g g

a a

...
...

...
...

...
...

qf

q

q
k + 1

Pumping D creates trees outside L ⇒ L not recognizable.

18/81

Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple A = 〈Q,F , I ,∆〉, where
Q,F are as in NFTA, I ⊆ Q is a set of initial states, and ∆ contains rules
of the form

q(f)→ (q1, . . . , qn)

for f ∈ Fn and q, q1, . . . , qn ∈ Q.

Move relation: t →A t ′ iff

I t = C [q(f (t1, . . . , tn))] for some context C , f ∈ Fn, and
t1, . . . , tn ∈ T (F);

I t ′ = C [f (q1(t1), . . . , qn(tn))] for some rule q(f)→ (q1, . . . , qn).

t is accepted by A if q(t)→∗A t for some q ∈ I .

18/81

Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple A = 〈Q,F , I ,∆〉, where
Q,F are as in NFTA, I ⊆ Q is a set of initial states, and ∆ contains rules
of the form

q(f)→ (q1, . . . , qn)

for f ∈ Fn and q, q1, . . . , qn ∈ Q.

Move relation: t →A t ′ iff

I t = C [q(f (t1, . . . , tn))] for some context C , f ∈ Fn, and
t1, . . . , tn ∈ T (F);

I t ′ = C [f (q1(t1), . . . , qn(tn))] for some rule q(f)→ (q1, . . . , qn).

t is accepted by A if q(t)→∗A t for some q ∈ I .

19/81

From top-down to bottom-up

Theorem (T-NFTA = NFTA)

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA A = 〈Q,F ,G ,∆〉 iff it is accepted by
T-NFTA A′ = 〈Q,F ,G ,∆′〉, with

∆′ := { q(f)→ (q1, . . . , qn) | f (q1, . . . , qn)→ q ∈ ∆ }

Proof: Let t ∈ T (F). We show t →∗A q iff q(t)→∗A′ t.

I Base: t = a (for some a ∈ F0)

t = a→∗A q ⇐⇒ a→∆ q ⇐⇒ q(a)→∆′ ε⇐⇒ q(a)→∗A′ a

I Induction: t = f (t1, . . . , tn), hypothesis holds for t1, . . . , tn

f (t1, . . . , tn)→∗A q ⇐⇒ ∃q1, . . . qn : f (q1, . . . , qn)→∆ q∧∀i : ti →∗A qi

⇐⇒ ∃q1, . . . , qn : q(f)→∆′ (q1, . . . , qn) ∧ ∀i : qi (ti)→∗A′ ti

⇐⇒ q(f (t1, . . . , tn))→A′ f (q1(t1), . . . , qn(tn))→∗A′ f (t1, . . . , tn)

19/81

From top-down to bottom-up

Theorem (T-NFTA = NFTA)

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA A = 〈Q,F ,G ,∆〉 iff it is accepted by
T-NFTA A′ = 〈Q,F ,G ,∆′〉, with

∆′ := { q(f)→ (q1, . . . , qn) | f (q1, . . . , qn)→ q ∈ ∆ }

Proof: Let t ∈ T (F). We show t →∗A q iff q(t)→∗A′ t.

I Base: t = a (for some a ∈ F0)

t = a→∗A q ⇐⇒ a→∆ q ⇐⇒ q(a)→∆′ ε⇐⇒ q(a)→∗A′ a

I Induction: t = f (t1, . . . , tn), hypothesis holds for t1, . . . , tn

f (t1, . . . , tn)→∗A q ⇐⇒ ∃q1, . . . qn : f (q1, . . . , qn)→∆ q∧∀i : ti →∗A qi

⇐⇒ ∃q1, . . . , qn : q(f)→∆′ (q1, . . . , qn) ∧ ∀i : qi (ti)→∗A′ ti

⇐⇒ q(f (t1, . . . , tn))→A′ f (q1(t1), . . . , qn(tn))→∗A′ f (t1, . . . , tn)

19/81

From top-down to bottom-up

Theorem (T-NFTA = NFTA)

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.

Claim: L is accepted by NFTA A = 〈Q,F ,G ,∆〉 iff it is accepted by
T-NFTA A′ = 〈Q,F ,G ,∆′〉, with

∆′ := { q(f)→ (q1, . . . , qn) | f (q1, . . . , qn)→ q ∈ ∆ }

Proof: Let t ∈ T (F). We show t →∗A q iff q(t)→∗A′ t.

I Base: t = a (for some a ∈ F0)

t = a→∗A q ⇐⇒ a→∆ q ⇐⇒ q(a)→∆′ ε⇐⇒ q(a)→∗A′ a

I Induction: t = f (t1, . . . , tn), hypothesis holds for t1, . . . , tn

f (t1, . . . , tn)→∗A q ⇐⇒ ∃q1, . . . qn : f (q1, . . . , qn)→∆ q∧∀i : ti →∗A qi

⇐⇒ ∃q1, . . . , qn : q(f)→∆′ (q1, . . . , qn) ∧ ∀i : qi (ti)→∗A′ ti

⇐⇒ q(f (t1, . . . , tn))→A′ f (q1(t1), . . . , qn(tn))→∗A′ f (t1, . . . , tn)

20/81

From NFTA to DFTA
Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = 〈Q,F ,G ,∆〉 an NFTA recognizing L.
The following DCFTA A′ = 〈2Q ,F ,G ′,∆′〉 also recognizes L:

I G ′ = {S ⊆ Q | S ∩ G 6= ∅ }
I for every f ∈ Fn and S1, . . . ,Sn ⊆ Q, let f (S1, . . . ,Sn)→ S ∈ ∆′,

where S = { q ∈ Q | ∃q1 ∈ S1, . . . , qn ∈ Sn : f (q1, . . . , qn)→ q ∈ ∆ }

Proof: For t ∈ T (F), show t →∗A′ { q | t →∗A q }, by structural induction.

DFTA with accessible states

In practice, the construction of A′ can be restricted to accessible states:
Start with transitions a→ S , then saturate.

Deterministic top-down are less powerful

E.g., L = {f (a, b), f (b, a)} can be recognized by DFTA but not by T-DFTA.

20/81

From NFTA to DFTA
Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = 〈Q,F ,G ,∆〉 an NFTA recognizing L.
The following DCFTA A′ = 〈2Q ,F ,G ′,∆′〉 also recognizes L:

I G ′ = {S ⊆ Q | S ∩ G 6= ∅ }
I for every f ∈ Fn and S1, . . . ,Sn ⊆ Q, let f (S1, . . . ,Sn)→ S ∈ ∆′,

where S = { q ∈ Q | ∃q1 ∈ S1, . . . , qn ∈ Sn : f (q1, . . . , qn)→ q ∈ ∆ }

Proof: For t ∈ T (F), show t →∗A′ { q | t →∗A q }, by structural induction.

DFTA with accessible states

In practice, the construction of A′ can be restricted to accessible states:
Start with transitions a→ S , then saturate.

Deterministic top-down are less powerful

E.g., L = {f (a, b), f (b, a)} can be recognized by DFTA but not by T-DFTA.

20/81

From NFTA to DFTA
Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = 〈Q,F ,G ,∆〉 an NFTA recognizing L.
The following DCFTA A′ = 〈2Q ,F ,G ′,∆′〉 also recognizes L:

I G ′ = {S ⊆ Q | S ∩ G 6= ∅ }
I for every f ∈ Fn and S1, . . . ,Sn ⊆ Q, let f (S1, . . . ,Sn)→ S ∈ ∆′,

where S = { q ∈ Q | ∃q1 ∈ S1, . . . , qn ∈ Sn : f (q1, . . . , qn)→ q ∈ ∆ }

Proof: For t ∈ T (F), show t →∗A′ { q | t →∗A q }, by structural induction.

DFTA with accessible states

In practice, the construction of A′ can be restricted to accessible states:
Start with transitions a→ S , then saturate.

Deterministic top-down are less powerful

E.g., L = {f (a, b), f (b, a)} can be recognized by DFTA but not by T-DFTA.

20/81

From NFTA to DFTA
Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.

Claim (subset construct.): Let A = 〈Q,F ,G ,∆〉 an NFTA recognizing L.
The following DCFTA A′ = 〈2Q ,F ,G ′,∆′〉 also recognizes L:

I G ′ = {S ⊆ Q | S ∩ G 6= ∅ }
I for every f ∈ Fn and S1, . . . ,Sn ⊆ Q, let f (S1, . . . ,Sn)→ S ∈ ∆′,

where S = { q ∈ Q | ∃q1 ∈ S1, . . . , qn ∈ Sn : f (q1, . . . , qn)→ q ∈ ∆ }

Proof: For t ∈ T (F), show t →∗A′ { q | t →∗A q }, by structural induction.

DFTA with accessible states

In practice, the construction of A′ can be restricted to accessible states:
Start with transitions a→ S , then saturate.

Deterministic top-down are less powerful

E.g., L = {f (a, b), f (b, a)} can be recognized by DFTA but not by T-DFTA.

21/81

Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)

Let 〈Q,F ,G ,∆〉 be a DCFTA recognizing L.
Then 〈Q,F ,Q \ G ,∆〉 recognizes T (F) \ L.

Union (juxtapose)

Let 〈Qi ,F ,Gi ,∆i 〉 be NFTA recognizing Li , for i = 1, 2.
Then 〈Q1] Q2,F ,G1 ∪ G2,∆1 ∪∆2〉 recognizes L1 ∪ L2.

21/81

Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)

Let 〈Q,F ,G ,∆〉 be a DCFTA recognizing L.
Then 〈Q,F ,Q \ G ,∆〉 recognizes T (F) \ L.

Union (juxtapose)

Let 〈Qi ,F ,Gi ,∆i 〉 be NFTA recognizing Li , for i = 1, 2.
Then 〈Q1] Q2,F ,G1 ∪ G2,∆1 ∪∆2〉 recognizes L1 ∪ L2.

21/81

Closure properties

Theorem (Boolean closure)

Recognizable tree languages are closed under Boolean operations.

Negation (invert accepting states)

Let 〈Q,F ,G ,∆〉 be a DCFTA recognizing L.
Then 〈Q,F ,Q \ G ,∆〉 recognizes T (F) \ L.

Union (juxtapose)

Let 〈Qi ,F ,Gi ,∆i 〉 be NFTA recognizing Li , for i = 1, 2.
Then 〈Q1] Q2,F ,G1 ∪ G2,∆1 ∪∆2〉 recognizes L1 ∪ L2.

22/81

Cross-product construction

Direct intersection

Let Ai = 〈Qi ,F ,Gi ,∆i 〉 be NFTA recognizing Li , for i = 1, 2.
Then A = 〈Q1 × Q2,F ,G1 × G2,∆〉 recognizes L1 ∩ L2, where

f (q1, . . . , qn)→ q ∈ ∆1 f (q′1, . . . , q
′
n)→ q′ ∈ ∆2

f (〈q1, q′1〉, . . . , 〈qn, q′n〉)→ 〈q, q′〉 ∈ ∆

Remarks:

I If A1,A2 are D(C)FTA, then so is A.

I If A1,A2 are complete, replace G1 × G2 with (G1 × Q2) ∪ (Q1 × G2)
to recognize L1 ∪ L2.

22/81

Cross-product construction

Direct intersection

Let Ai = 〈Qi ,F ,Gi ,∆i 〉 be NFTA recognizing Li , for i = 1, 2.
Then A = 〈Q1 × Q2,F ,G1 × G2,∆〉 recognizes L1 ∩ L2, where

f (q1, . . . , qn)→ q ∈ ∆1 f (q′1, . . . , q
′
n)→ q′ ∈ ∆2

f (〈q1, q′1〉, . . . , 〈qn, q′n〉)→ 〈q, q′〉 ∈ ∆

Remarks:

I If A1,A2 are D(C)FTA, then so is A.

I If A1,A2 are complete, replace G1 × G2 with (G1 × Q2) ∪ (Q1 × G2)
to recognize L1 ∪ L2.

23/81

Tree languages and context-free languages
Front

Let t be a ground tree. Then fr(t) ∈ F∗0 denotes the word obtained from
reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f (a, g(b, a), c), fr(t) = abac

Leaf languages

I Let L be a recognizable tree language. Then fr(L) is context-free.

I Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(A)).

Proof (idea):

I Given a T-NFTA recognizing L, construct a CFG from it.

I L is generated by a CFG using productions of the form A→ BC | a
only. Replace A→ BC by A→ A2 and A2 → BC , construct a
T-NFTA from the result.

23/81

Tree languages and context-free languages
Front

Let t be a ground tree. Then fr(t) ∈ F∗0 denotes the word obtained from
reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f (a, g(b, a), c), fr(t) = abac

Leaf languages

I Let L be a recognizable tree language. Then fr(L) is context-free.

I Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(A)).

Proof (idea):

I Given a T-NFTA recognizing L, construct a CFG from it.

I L is generated by a CFG using productions of the form A→ BC | a
only. Replace A→ BC by A→ A2 and A2 → BC , construct a
T-NFTA from the result.

23/81

Tree languages and context-free languages
Front

Let t be a ground tree. Then fr(t) ∈ F∗0 denotes the word obtained from
reading the leaves from left to right (in increasing lexicographical order of
their positions).

Example: t = f (a, g(b, a), c), fr(t) = abac

Leaf languages

I Let L be a recognizable tree language. Then fr(L) is context-free.

I Let L be a context-free language that does not contain the empty word.
Then there exists an NFTA A with L = fr(L(A)).

Proof (idea):

I Given a T-NFTA recognizing L, construct a CFG from it.

I L is generated by a CFG using productions of the form A→ BC | a
only. Replace A→ BC by A→ A2 and A2 → BC , construct a
T-NFTA from the result.

24/81

Visibly pushdown automata

Visibly pushdown automaton

Let A = 〈Q,Σ, Γ,T , q0z0,F 〉 be a pushdown automaton.
A is called visibly pushdown (VPA) if there exist Σ0,Σ1,Σ2 such that

I Σ = Σ0] Σ1] Σ2

I T ⊆
⋃2

i=0(Q × Γ)× Σi × (Q × Γi)

Closure properties

Languages accepted by VPA are closed under boolean operations.

VPA and tree languages

Let L ⊆ T (F) be a recognizable tree language.
Then L, seen as a word language of terms, is accepted by a VPA.

24/81

Visibly pushdown automata

Visibly pushdown automaton

Let A = 〈Q,Σ, Γ,T , q0z0,F 〉 be a pushdown automaton.
A is called visibly pushdown (VPA) if there exist Σ0,Σ1,Σ2 such that

I Σ = Σ0] Σ1] Σ2

I T ⊆
⋃2

i=0(Q × Γ)× Σi × (Q × Γi)

Closure properties

Languages accepted by VPA are closed under boolean operations.

VPA and tree languages

Let L ⊆ T (F) be a recognizable tree language.
Then L, seen as a word language of terms, is accepted by a VPA.

24/81

Visibly pushdown automata

Visibly pushdown automaton

Let A = 〈Q,Σ, Γ,T , q0z0,F 〉 be a pushdown automaton.
A is called visibly pushdown (VPA) if there exist Σ0,Σ1,Σ2 such that

I Σ = Σ0] Σ1] Σ2

I T ⊆
⋃2

i=0(Q × Γ)× Σi × (Q × Γi)

Closure properties

Languages accepted by VPA are closed under boolean operations.

VPA and tree languages

Let L ⊆ T (F) be a recognizable tree language.
Then L, seen as a word language of terms, is accepted by a VPA.

25/81

From TA to VPA

Let A = 〈Q,F , I ,∆〉 be a T-NFTA accepting L.
For convenience, assume I = {q0} is a singleton (closure under union). We
construct a single-state VPA B = 〈Σ, Γ,T , q0〉 accepting by empty stack
and recognizing the terms of L (can be converted into a normal VPA).

I Σ0 = F0 ∪ {) }, Σ1 = F \ F0, Σ2 = { , , (}
I Γ = Q ∪ { ri | r ∈ ∆, r = q(f)→ (q1, . . . , qn), n ≥ 1, 0 ≤ i ≤ n }
I T =

⋃
r∈∆ Tr

I for r = q(a)→ ε, we have Tr = { 〈q, a, ε〉 };
I for r = q(f)→ (q1, . . . , qn), n ≥ 1, we have

Tr = {〈q, f , r0〉, 〈r0, (, q1r1〉, 〈rn,) , ε〉}
∪ { 〈ri , , , qi+1ri+1〉 | 1 ≤ i < n }

Idea: q
t→∗B ε iff q(t)→∗A t

26/81

From TA to VPA: Example
Consider a T-NFTA 〈Q,F , I ,∆〉 accepting L = { f (g i (a)) | i ≥ 0 }:

I Q = {q0, q1, qf }, F = {f (2), g(1), a}, I = {qf };
I ∆ := {α :q0(a)→ ε, β :q1(g)→ q0, γ :q1(g)→ q1, δ :qf (f)→

(q1, q1)}.

We construct the single-state VPA 〈Σ, Γ,T , qf 〉, where:

I Σ0 = {a,) }, Σ1 = {f , g}, Σ2 = { , , (};
I Γ = Q ∪ {β0, β1, γ0, γ1, δ0, δ1, δ2};
I Tα = {〈q0, a, ε〉};
I Tβ = {〈q1, g , β0〉, 〈β0, (, q0β1〉, 〈β1,) ε〉};
I Tγ = {〈q1, g , γ0〉, 〈γ0, (, q1γ1〉, 〈γ1,) ε〉};
I Tδ = {〈qf , f , δ0〉, 〈δ0, (, q1δ1〉, 〈δ1, , , q1δ2〉, 〈δ2,) ε〉}.

Run on f (g(a), g(g(a))):

qf
f→ δ0

(→ q1δ1
g→ β0δ1

(→ q0β1δ1
a→ β1δ1

)→ δ1
,→ q1δ2

g→ γ0δ2
(→ q1γ1δ2

g→ β0γ1δ2
(→ q0β1γ1δ2

a→ β1γ1δ2
)→ γ1δ2

)→ δ2
)→ ε

27/81

Tree homomorphism

Definition

Let Xn := {x1, . . . , xn} and F ,F ′ ranked alphabets.
A tree homomorphism is a mapping h : F → T (F ′,X),
with h(f) ∈ T (F ,Xn) if f ∈ Fn.

Extension of h to trees (T (F)→ T (F ′)):

I h(f (t1, . . . , tn)) = h(f){x1 ← h(t1), . . . , xn ← h(tn)}

Intuition:

I h(f) “explodes” f -positions into trees

I reorders/copies/deletes subtrees.

28/81

Examples
Example

I F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c , d}
I h(f) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c , d)

f

g g

a a

=⇒

f ′

g ′

g ′

g ′

c d

c

d

Example (ternary to binary tree)

I F = {f (3), a, b}, F ′ = {g(2), a, b}
I h32(f) = g(x1, g(x2, x3)), h32(a) = a, h32(b) = b

28/81

Examples
Example

I F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c , d}
I h(f) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c , d)

f

g g

a a

=⇒

f ′

g ′

g ′

g ′

c d

c

d

Example (ternary to binary tree)

I F = {f (3), a, b}, F ′ = {g(2), a, b}
I h32(f) = g(x1, g(x2, x3)), h32(a) = a, h32(b) = b

29/81

Properties of homomorphisms

A homomorphism h is

I linear if h(f) linear for all f ;

I non-erasing if H(h(f)) > 0 for all f ;

I flat if H(h(f)) = 1 for all f ;

I complete if f ∈ Fn implies that h(f) contains all of Xn;

I permuting if h is complete, linear, and flat;

I alphabetic if h(f) has the form g(x1, . . . , xn) for all f .

Example: h32 is linear, non-erasing, and complete.

Non-linear homomorphisms do not preserve recognizability

I Example: h(f) = f ′(x1, x1), h(g) = g(x1), h(a) = a

I L = { f (g i (a)) | i ≥ 0 } (recognizable)

I h(L) = { f ′(g i (a), g i (a)) | i ≥ 0 } (not recognizable)

29/81

Properties of homomorphisms

A homomorphism h is

I linear if h(f) linear for all f ;

I non-erasing if H(h(f)) > 0 for all f ;

I flat if H(h(f)) = 1 for all f ;

I complete if f ∈ Fn implies that h(f) contains all of Xn;

I permuting if h is complete, linear, and flat;

I alphabetic if h(f) has the form g(x1, . . . , xn) for all f .

Example: h32 is linear, non-erasing, and complete.

Non-linear homomorphisms do not preserve recognizability

I Example: h(f) = f ′(x1, x1), h(g) = g(x1), h(a) = a

I L = { f (g i (a)) | i ≥ 0 } (recognizable)

I h(L) = { f ′(g i (a), g i (a)) | i ≥ 0 } (not recognizable)

30/81

Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L ⊆ T (F) be recognizable and h : F → F ′ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:

I F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c, d}
I h(f) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c, d)

I L = { f (g i (a), g k(a)) | i , k ≥ 0 }
I A = 〈{q0, q1, qf },F , {qf },∆〉 recognizes L with

∆ := {α :a→ q0, β :g(q0)→ q1, γ :g(q1)→ q1, δ :f (q1, q1)→ qf }

f

g g

a a

=⇒

qf

q1

f ′

g ′

g ′

g ′

c d

c

d

Run on A
Rules used

to produce states

Construct automaton
for h(L) preserving
state labels from A

30/81

Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L ⊆ T (F) be recognizable and h : F → F ′ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:

I F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c, d}
I h(f) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c, d)

I L = { f (g i (a), g k(a)) | i , k ≥ 0 }
I A = 〈{q0, q1, qf },F , {qf },∆〉 recognizes L with

∆ := {α :a→ q0, β :g(q0)→ q1, γ :g(q1)→ q1, δ :f (q1, q1)→ qf }

f

g g

a a

=⇒

qf

q1

f ′

g ′

g ′

g ′

c d

c

d

Run on A
Rules used

to produce states

Construct automaton
for h(L) preserving
state labels from A

30/81

Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L ⊆ T (F) be recognizable and h : F → F ′ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:

I F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c, d}
I h(f) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c, d)

I L = { f (g i (a), g k(a)) | i , k ≥ 0 }
I A = 〈{q0, q1, qf },F , {qf },∆〉 recognizes L with

∆ := {α :a→ q0, β :g(q0)→ q1, γ :g(q1)→ q1, δ :f (q1, q1)→ qf }

f

g g

a a

=⇒

qf

q1

f ′

g ′

g ′

g ′

c d

c

d

Run on A
Rules used

to produce states

Construct automaton
for h(L) preserving
state labels from A

30/81

Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L ⊆ T (F) be recognizable and h : F → F ′ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:

I F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c, d}
I h(f) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c, d)

I L = { f (g i (a), g k(a)) | i , k ≥ 0 }
I A = 〈{q0, q1, qf },F , {qf },∆〉 recognizes L with

∆ := {α :a→ q0, β :g(q0)→ q1, γ :g(q1)→ q1, δ :f (q1, q1)→ qf }

f

g g

a a

=⇒

qf

q1q1

q0

β

α

qf

q1

q0

δ

β

α

f ′

g ′

g ′

g ′

c d

c

d

Run on A
Rules used

to produce states

Run on A

Rules used
to produce states

Construct automaton
for h(L) preserving
state labels from A

30/81

Linear homomorphisms
Theorem: Linear homomorphisms preserve recognizability

Let L ⊆ T (F) be recognizable and h : F → F ′ a linear tree homomorphism.
Then h(L) is recognizable.

Illustrating example:

I F = {f (2), g(1), a}, F ′ = {f ′(1), g ′(2), c, d}
I h(f) = f ′(g ′(x2, d)), h(g) = g ′(x1, c), h(a) = g ′(c, d)

I L = { f (g i (a), g k(a)) | i , k ≥ 0 }
I A = 〈{q0, q1, qf },F , {qf },∆〉 recognizes L with

∆ := {α :a→ q0, β :g(q0)→ q1, γ :g(q1)→ q1, δ :f (q1, q1)→ qf }

f

g g

a a

=⇒

qf

q1

qf

q1

q0

δ

β

α

///q1

///q0

//β

//α

f ′

g ′

g ′

g ′

c d

c

d

qf

q1

q0

Run on A
Rules used

to produce states

Run on A

Rules used
to produce states

Construct automaton
for h(L) preserving
state labels from A

Construct automaton
for h(L) preserving
state labels from A

+
Guess the rules.

α β

δ

31/81

Automaton construction for h(L)
Given a reduced NFTA A = 〈Q,F ,G ,∆〉 for L,
construct NFTA A′ = 〈Q ′,F ′,G ,∆′〉 for h(L).

I Q ′ := Q ∪ { 〈r , p〉 | r ∈ ∆, ∃f ∈ F : r = f (. . .)→ . . . , p ∈ Posh(f) };
I ∆′ contains, for each transition r : f (s1, . . . , sn)→ s in ∆ and

p ∈ Posh(f):
I f ′(〈r , p1〉, . . . , 〈r , pk〉)→ 〈r , p〉 if h(f)(p) = f ′ ∈ F ′k
I si → 〈r , p〉 if h(f)(p) = xi
I 〈r , ε〉 → s

f

g g

a a

qf

q1

q0

δ

β

α

///q1

///q0

//β

//α

f ′

g ′

g ′

g ′

c d

c

d

〈δ, ε〉

〈δ, 12〉

=⇒

31/81

Automaton construction for h(L)
Given a reduced NFTA A = 〈Q,F ,G ,∆〉 for L,
construct NFTA A′ = 〈Q ′,F ′,G ,∆′〉 for h(L).

I Q ′ := Q ∪ { 〈r , p〉 | r ∈ ∆, ∃f ∈ F : r = f (. . .)→ . . . , p ∈ Posh(f) };
I ∆′ contains, for each transition r : f (s1, . . . , sn)→ s in ∆ and

p ∈ Posh(f):
I f ′(〈r , p1〉, . . . , 〈r , pk〉)→ 〈r , p〉 if h(f)(p) = f ′ ∈ F ′k
I si → 〈r , p〉 if h(f)(p) = xi
I 〈r , ε〉 → s

f

g g

a a

qf

q1

q0

δ

β

α

///q1

///q0

//β

//α

f ′

g ′

g ′

g ′

c d

c

d

q0

〈α, ε〉

〈α, 1〉 〈α, 2〉

〈δ, ε〉

〈δ, 12〉

=⇒

31/81

Automaton construction for h(L)
Given a reduced NFTA A = 〈Q,F ,G ,∆〉 for L,
construct NFTA A′ = 〈Q ′,F ′,G ,∆′〉 for h(L).

I Q ′ := Q ∪ { 〈r , p〉 | r ∈ ∆, ∃f ∈ F : r = f (. . .)→ . . . , p ∈ Posh(f) };
I ∆′ contains, for each transition r : f (s1, . . . , sn)→ s in ∆ and

p ∈ Posh(f):
I f ′(〈r , p1〉, . . . , 〈r , pk〉)→ 〈r , p〉 if h(f)(p) = f ′ ∈ F ′k
I si → 〈r , p〉 if h(f)(p) = xi
I 〈r , ε〉 → s

f

g g

a a

qf

q1

q0

δ

β

α

///q1

///q0

//β

//α

f ′

g ′

g ′

g ′

c d

c

d

q0

〈α, ε〉

〈α, 1〉 〈α, 2〉

q1

〈β, 1〉

〈β, 2〉

〈β, ε〉

〈δ, ε〉

〈δ, 12〉

=⇒

31/81

Automaton construction for h(L)
Given a reduced NFTA A = 〈Q,F ,G ,∆〉 for L,
construct NFTA A′ = 〈Q ′,F ′,G ,∆′〉 for h(L).

I Q ′ := Q ∪ { 〈r , p〉 | r ∈ ∆, ∃f ∈ F : r = f (. . .)→ . . . , p ∈ Posh(f) };
I ∆′ contains, for each transition r : f (s1, . . . , sn)→ s in ∆ and

p ∈ Posh(f):
I f ′(〈r , p1〉, . . . , 〈r , pk〉)→ 〈r , p〉 if h(f)(p) = f ′ ∈ F ′k
I si → 〈r , p〉 if h(f)(p) = xi
I 〈r , ε〉 → s

f

g g

a a

qf

q1

q0

δ

β

α

///q1

///q0

//β

//α

f ′

g ′

g ′

g ′

c d

c

d

q0

〈α, ε〉

〈α, 1〉 〈α, 2〉

q1

〈β, 1〉

〈β, 2〉

〈β, ε〉

〈δ, ε〉

〈δ, 12〉

qf

〈δ, 11〉

〈δ, 12〉

〈δ, 1〉

〈δ, ε〉

=⇒

32/81

Correctness

To prove: A′ accepts h(L).

I h(L) ⊆ L(A′):
For t ∈ T (F), prove that t →∗A q implies h(t)→∗A′ q,
by structural induction over t.

I h(L) ⊇ L(A′):
For t ′ ∈ T (F ′), prove that if t ′ →∗A′ q ∈ Q,
then there exists t ∈ T (F) ∩ h−1(t ′) with t →∗A q,
by induction on number of states (of Q) in the computation t ′ →∗A′ q.

32/81

Correctness

To prove: A′ accepts h(L).

I h(L) ⊆ L(A′):
For t ∈ T (F), prove that t →∗A q implies h(t)→∗A′ q,
by structural induction over t.

I h(L) ⊇ L(A′):
For t ′ ∈ T (F ′), prove that if t ′ →∗A′ q ∈ Q,
then there exists t ∈ T (F) ∩ h−1(t ′) with t →∗A q,
by induction on number of states (of Q) in the computation t ′ →∗A′ q.

32/81

Correctness

To prove: A′ accepts h(L).

I h(L) ⊆ L(A′):
For t ∈ T (F), prove that t →∗A q implies h(t)→∗A′ q,
by structural induction over t.

I h(L) ⊇ L(A′):
For t ′ ∈ T (F ′), prove that if t ′ →∗A′ q ∈ Q,
then there exists t ∈ T (F) ∩ h−1(t ′) with t →∗A q,
by induction on number of states (of Q) in the computation t ′ →∗A′ q.

33/81

Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let L ⊆ T (F ′) be recognizable and h : F → F ′ a tree homomorphism (not
necessarily linear). Then h−1(L) is recognizable.

Given an NFTA A′ = 〈Q,F ′,G ,∆′〉 for L,
construct NFTA A = 〈Q] {!},F ,G ,∆〉 for h−1(L).

For all n ≥ 0 and f ∈ Fn, and p1, . . . , pn ∈ Q,

I add f (!, . . . , !)→ ! to ∆;

I if h(f){x1 ← p1, . . . , xn ← pn} →∗A′ q, add f (q1, . . . , qn)→ q to ∆,
with:

qi =

{
pi if xi appears in h(f)

! otherwise

Proof: Show t →∗A q iff h(t)→∗A′ q, for all t ∈ T (F).

33/81

Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability

Let L ⊆ T (F ′) be recognizable and h : F → F ′ a tree homomorphism (not
necessarily linear). Then h−1(L) is recognizable.

Given an NFTA A′ = 〈Q,F ′,G ,∆′〉 for L,
construct NFTA A = 〈Q] {!},F ,G ,∆〉 for h−1(L).

For all n ≥ 0 and f ∈ Fn, and p1, . . . , pn ∈ Q,

I add f (!, . . . , !)→ ! to ∆;

I if h(f){x1 ← p1, . . . , xn ← pn} →∗A′ q, add f (q1, . . . , qn)→ q to ∆,
with:

qi =

{
pi if xi appears in h(f)

! otherwise

Proof: Show t →∗A q iff h(t)→∗A′ q, for all t ∈ T (F).

34/81

Intersection problem

Theorem

The following problem is EXPTIME-complete:
Given tree automata A1, . . . ,An, is L(A1) ∩ · · · ∩ L(An) 6= ∅?

Proof (sketch):

I Hardness: Simulate an linear-space ATM M with input of length n.
If M accepts the input, there is an accepting run.
Encode the run of M as a tree.
Construct Ai , for i = 1, . . . , n, to check:

1. if M starts with the correct configuration;
2. if all configurations in the run are of length n;
3. if all final configurations are accepting;
4. if the part of the configurations around the i-th symbol are coherent.

I Membership: Compute the productive tuples of states in
A1 × · · · × An.

Detailed proof: Veanes, 1997

34/81

Intersection problem

Theorem

The following problem is EXPTIME-complete:
Given tree automata A1, . . . ,An, is L(A1) ∩ · · · ∩ L(An) 6= ∅?

Proof (sketch):

I Hardness: Simulate an linear-space ATM M with input of length n.

If M accepts the input, there is an accepting run.
Encode the run of M as a tree.
Construct Ai , for i = 1, . . . , n, to check:

1. if M starts with the correct configuration;
2. if all configurations in the run are of length n;
3. if all final configurations are accepting;
4. if the part of the configurations around the i-th symbol are coherent.

I Membership: Compute the productive tuples of states in
A1 × · · · × An.

Detailed proof: Veanes, 1997

34/81

Intersection problem

Theorem

The following problem is EXPTIME-complete:
Given tree automata A1, . . . ,An, is L(A1) ∩ · · · ∩ L(An) 6= ∅?

Proof (sketch):

I Hardness: Simulate an linear-space ATM M with input of length n.
If M accepts the input, there is an accepting run.
Encode the run of M as a tree.

Construct Ai , for i = 1, . . . , n, to check:

1. if M starts with the correct configuration;
2. if all configurations in the run are of length n;
3. if all final configurations are accepting;
4. if the part of the configurations around the i-th symbol are coherent.

I Membership: Compute the productive tuples of states in
A1 × · · · × An.

Detailed proof: Veanes, 1997

34/81

Intersection problem

Theorem

The following problem is EXPTIME-complete:
Given tree automata A1, . . . ,An, is L(A1) ∩ · · · ∩ L(An) 6= ∅?

Proof (sketch):

I Hardness: Simulate an linear-space ATM M with input of length n.
If M accepts the input, there is an accepting run.
Encode the run of M as a tree.
Construct Ai , for i = 1, . . . , n, to check:

1. if M starts with the correct configuration;
2. if all configurations in the run are of length n;
3. if all final configurations are accepting;
4. if the part of the configurations around the i-th symbol are coherent.

I Membership: Compute the productive tuples of states in
A1 × · · · × An.

Detailed proof: Veanes, 1997

34/81

Intersection problem

Theorem

The following problem is EXPTIME-complete:
Given tree automata A1, . . . ,An, is L(A1) ∩ · · · ∩ L(An) 6= ∅?

Proof (sketch):

I Hardness: Simulate an linear-space ATM M with input of length n.
If M accepts the input, there is an accepting run.
Encode the run of M as a tree.
Construct Ai , for i = 1, . . . , n, to check:

1. if M starts with the correct configuration;
2. if all configurations in the run are of length n;
3. if all final configurations are accepting;
4. if the part of the configurations around the i-th symbol are coherent.

I Membership: Compute the productive tuples of states in
A1 × · · · × An.

Detailed proof: Veanes, 1997

34/81

Intersection problem

Theorem

The following problem is EXPTIME-complete:
Given tree automata A1, . . . ,An, is L(A1) ∩ · · · ∩ L(An) 6= ∅?

Proof (sketch):

I Hardness: Simulate an linear-space ATM M with input of length n.
If M accepts the input, there is an accepting run.
Encode the run of M as a tree.
Construct Ai , for i = 1, . . . , n, to check:

1. if M starts with the correct configuration;
2. if all configurations in the run are of length n;
3. if all final configurations are accepting;
4. if the part of the configurations around the i-th symbol are coherent.

I Membership: Compute the productive tuples of states in
A1 × · · · × An.

Detailed proof: Veanes, 1997

35/81

Congruences on trees

Definition: Congruence

Let ≡ be an equivalence relation on T (F).

I ≡ is called a congruence
if for any n ≥ 0 and f ∈ Fn, u1 ≡ v1, . . . , un ≡ vn we have

f (u1, . . . , un) ≡ f (v1, . . . , vn)

I ≡ saturates L if u ≡ v implies u ∈ L ⇐⇒ v ∈ L.

For L ⊆ T (F), write u ≡L v if

∀C ∈ C(F) : C [u] ∈ L⇔ C [v] ∈ L

Myhill-Nerode Theorem for trees

The following are equivalent:

1. L ⊆ T (F) is recognizable.

2. L is saturated by some congruence of finite index.

3. ≡L is of finite index.

35/81

Congruences on trees

Definition: Congruence

Let ≡ be an equivalence relation on T (F).

I ≡ is called a congruence
if for any n ≥ 0 and f ∈ Fn, u1 ≡ v1, . . . , un ≡ vn we have

f (u1, . . . , un) ≡ f (v1, . . . , vn)

I ≡ saturates L if u ≡ v implies u ∈ L ⇐⇒ v ∈ L.

For L ⊆ T (F), write u ≡L v if

∀C ∈ C(F) : C [u] ∈ L⇔ C [v] ∈ L

Myhill-Nerode Theorem for trees

The following are equivalent:

1. L ⊆ T (F) is recognizable.

2. L is saturated by some congruence of finite index.

3. ≡L is of finite index.

35/81

Congruences on trees

Definition: Congruence

Let ≡ be an equivalence relation on T (F).

I ≡ is called a congruence
if for any n ≥ 0 and f ∈ Fn, u1 ≡ v1, . . . , un ≡ vn we have

f (u1, . . . , un) ≡ f (v1, . . . , vn)

I ≡ saturates L if u ≡ v implies u ∈ L ⇐⇒ v ∈ L.

For L ⊆ T (F), write u ≡L v if

∀C ∈ C(F) : C [u] ∈ L⇔ C [v] ∈ L

Myhill-Nerode Theorem for trees

The following are equivalent:

1. L ⊆ T (F) is recognizable.

2. L is saturated by some congruence of finite index.

3. ≡L is of finite index.

36/81

Myhill-Nerode Theorem
Application:

Consider L = { f (g i (a), g i (a)) | i ≥ 0 }.
For any pair i 6= k, consider C = f (x , g i (a)).
Then C [g i (a)] ∈ L but C [gk(a)] /∈ L ⇒ g i (a) 6≡L gk(a)
Therefore ≡L is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

I 1→ 2: Let A be DCFTA and let u ≡ v iff u →∗A q ∗A ← v .
Then ≡ is of finite index and saturates L.

I 2→ 3: Let ≡ be a saturating congruence, u ≡ v implies u ≡L v
(prove u ≡ v implies C [u] ≡ C [v] for all C , by recurrence over height
of position of x in C).

I 3→ 1: Let A = 〈T (F)/ ≡L,F , L/ ≡L,∆〉, with

f ([u1], . . . , [un])→ [f (u1, . . . , un)]

for all n ≥ 0, f ∈ Fn, u1, . . . , un ∈ T (F),
where [u] is the equivalence class of u ∈ T (F);

Remark: This can be shown to be the canonical minimal DCFTA.

36/81

Myhill-Nerode Theorem
Application:

Consider L = { f (g i (a), g i (a)) | i ≥ 0 }.
For any pair i 6= k, consider C = f (x , g i (a)).
Then C [g i (a)] ∈ L but C [gk(a)] /∈ L ⇒ g i (a) 6≡L gk(a)
Therefore ≡L is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

I 1→ 2: Let A be DCFTA and let u ≡ v iff u →∗A q ∗A ← v .
Then ≡ is of finite index and saturates L.

I 2→ 3: Let ≡ be a saturating congruence, u ≡ v implies u ≡L v
(prove u ≡ v implies C [u] ≡ C [v] for all C , by recurrence over height
of position of x in C).

I 3→ 1: Let A = 〈T (F)/ ≡L,F , L/ ≡L,∆〉, with

f ([u1], . . . , [un])→ [f (u1, . . . , un)]

for all n ≥ 0, f ∈ Fn, u1, . . . , un ∈ T (F),
where [u] is the equivalence class of u ∈ T (F);

Remark: This can be shown to be the canonical minimal DCFTA.

36/81

Myhill-Nerode Theorem
Application:

Consider L = { f (g i (a), g i (a)) | i ≥ 0 }.
For any pair i 6= k, consider C = f (x , g i (a)).
Then C [g i (a)] ∈ L but C [gk(a)] /∈ L ⇒ g i (a) 6≡L gk(a)
Therefore ≡L is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

I 1→ 2: Let A be DCFTA and let u ≡ v iff u →∗A q ∗A ← v .
Then ≡ is of finite index and saturates L.

I 2→ 3: Let ≡ be a saturating congruence, u ≡ v implies u ≡L v
(prove u ≡ v implies C [u] ≡ C [v] for all C , by recurrence over height
of position of x in C).

I 3→ 1: Let A = 〈T (F)/ ≡L,F , L/ ≡L,∆〉, with

f ([u1], . . . , [un])→ [f (u1, . . . , un)]

for all n ≥ 0, f ∈ Fn, u1, . . . , un ∈ T (F),
where [u] is the equivalence class of u ∈ T (F);

Remark: This can be shown to be the canonical minimal DCFTA.

36/81

Myhill-Nerode Theorem
Application:

Consider L = { f (g i (a), g i (a)) | i ≥ 0 }.
For any pair i 6= k, consider C = f (x , g i (a)).
Then C [g i (a)] ∈ L but C [gk(a)] /∈ L ⇒ g i (a) 6≡L gk(a)
Therefore ≡L is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

I 1→ 2: Let A be DCFTA and let u ≡ v iff u →∗A q ∗A ← v .
Then ≡ is of finite index and saturates L.

I 2→ 3: Let ≡ be a saturating congruence, u ≡ v implies u ≡L v
(prove u ≡ v implies C [u] ≡ C [v] for all C , by recurrence over height
of position of x in C).

I 3→ 1: Let A = 〈T (F)/ ≡L,F , L/ ≡L,∆〉, with

f ([u1], . . . , [un])→ [f (u1, . . . , un)]

for all n ≥ 0, f ∈ Fn, u1, . . . , un ∈ T (F),
where [u] is the equivalence class of u ∈ T (F);

Remark: This can be shown to be the canonical minimal DCFTA.

36/81

Myhill-Nerode Theorem
Application:

Consider L = { f (g i (a), g i (a)) | i ≥ 0 }.
For any pair i 6= k, consider C = f (x , g i (a)).
Then C [g i (a)] ∈ L but C [gk(a)] /∈ L ⇒ g i (a) 6≡L gk(a)
Therefore ≡L is not of finite index, and L is not recognizable.

Proof of the theorem (sketch):

I 1→ 2: Let A be DCFTA and let u ≡ v iff u →∗A q ∗A ← v .
Then ≡ is of finite index and saturates L.

I 2→ 3: Let ≡ be a saturating congruence, u ≡ v implies u ≡L v
(prove u ≡ v implies C [u] ≡ C [v] for all C , by recurrence over height
of position of x in C).

I 3→ 1: Let A = 〈T (F)/ ≡L,F , L/ ≡L,∆〉, with

f ([u1], . . . , [un])→ [f (u1, . . . , un)]

for all n ≥ 0, f ∈ Fn, u1, . . . , un ∈ T (F),
where [u] is the equivalence class of u ∈ T (F);

Remark: This can be shown to be the canonical minimal DCFTA.

37/81

Path languages

Path languages

Let t ∈ T (F). The path language π(t) is defined as follows:

I if t = a ∈ F0, then π(t) = {a};
I if t = f (t1, . . . , tn), for f ∈ Fn, then π(t) = { fiw | w ∈ π(ti) }.

We write π(L) =
⋃
{π(t) | t ∈ L } for L ⊆ T (F).

Example: L = {f (a, b), f (b, a)}, π(L) = {f 1a, f 2b, f 1b, f 2a}.

Path closure

Let L ⊆ T (F) be a tree language.

I The path closure of L is pc(L) = { t | π(t) ⊆ π(L) } ⊇ L.

I L is called path-closed if L = pc(L).

Example: pc(L) = {f (a, a), f (a, b), f (b, a), f (b, b)}, so L is not path-closed.

37/81

Path languages

Path languages

Let t ∈ T (F). The path language π(t) is defined as follows:

I if t = a ∈ F0, then π(t) = {a};
I if t = f (t1, . . . , tn), for f ∈ Fn, then π(t) = { fiw | w ∈ π(ti) }.

We write π(L) =
⋃
{π(t) | t ∈ L } for L ⊆ T (F).

Example: L = {f (a, b), f (b, a)}, π(L) = {f 1a, f 2b, f 1b, f 2a}.

Path closure

Let L ⊆ T (F) be a tree language.

I The path closure of L is pc(L) = { t | π(t) ⊆ π(L) } ⊇ L.

I L is called path-closed if L = pc(L).

Example: pc(L) = {f (a, a), f (a, b), f (b, a), f (b, b)}, so L is not path-closed.

38/81

Path closure and T-NFTA
Lemma

Let L ⊆ T (F) be a recognizable tree language. Then:

I π(L) is a recognizable word language.

I pc(L) is a recognizable tree language.

Proof: Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.

I Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)

I Construct A′ = 〈Q,F ,G ,∆′〉 for pc(L) as follows:
for all a ∈ F0:

q(a)→∆ ε → q(a)→∆′ ε

for all n ≥ 1, f ∈ Fn:

∀i : q(f)→∆ (qi ,1, . . . , qn,1) → q(f)→∆′ (q1,1, . . . , qn,n)

Let Lq = L(〈Q,F , {q},∆〉) and L′q = L(〈Q,F , {q},∆′〉).
Prove t ∈ L′q ⇔ π(t) ⊆ π(Lq) for all q ∈ Q, t ∈ T (F) by induction.

38/81

Path closure and T-NFTA
Lemma

Let L ⊆ T (F) be a recognizable tree language. Then:

I π(L) is a recognizable word language.

I pc(L) is a recognizable tree language.

Proof: Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.

I Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)

I Construct A′ = 〈Q,F ,G ,∆′〉 for pc(L) as follows:
for all a ∈ F0:

q(a)→∆ ε → q(a)→∆′ ε

for all n ≥ 1, f ∈ Fn:

∀i : q(f)→∆ (qi ,1, . . . , qn,1) → q(f)→∆′ (q1,1, . . . , qn,n)

Let Lq = L(〈Q,F , {q},∆〉) and L′q = L(〈Q,F , {q},∆′〉).
Prove t ∈ L′q ⇔ π(t) ⊆ π(Lq) for all q ∈ Q, t ∈ T (F) by induction.

38/81

Path closure and T-NFTA
Lemma

Let L ⊆ T (F) be a recognizable tree language. Then:

I π(L) is a recognizable word language.

I pc(L) is a recognizable tree language.

Proof: Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.

I Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)

I Construct A′ = 〈Q,F ,G ,∆′〉 for pc(L) as follows:
for all a ∈ F0:

q(a)→∆ ε → q(a)→∆′ ε

for all n ≥ 1, f ∈ Fn:

∀i : q(f)→∆ (qi ,1, . . . , qn,1) → q(f)→∆′ (q1,1, . . . , qn,n)

Let Lq = L(〈Q,F , {q},∆〉) and L′q = L(〈Q,F , {q},∆′〉).
Prove t ∈ L′q ⇔ π(t) ⊆ π(Lq) for all q ∈ Q, t ∈ T (F) by induction.

38/81

Path closure and T-NFTA
Lemma

Let L ⊆ T (F) be a recognizable tree language. Then:

I π(L) is a recognizable word language.

I pc(L) is a recognizable tree language.

Proof: Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.

I Construct a finite (word) automaton out of A.
(Easy, but does require A to be reduced!)

I Construct A′ = 〈Q,F ,G ,∆′〉 for pc(L) as follows:
for all a ∈ F0:

q(a)→∆ ε → q(a)→∆′ ε

for all n ≥ 1, f ∈ Fn:

∀i : q(f)→∆ (qi ,1, . . . , qn,1) → q(f)→∆′ (q1,1, . . . , qn,n)

Let Lq = L(〈Q,F , {q},∆〉) and L′q = L(〈Q,F , {q},∆′〉).
Prove t ∈ L′q ⇔ π(t) ⊆ π(Lq) for all q ∈ Q, t ∈ T (F) by induction.

39/81

Path closure and T-NFTA
Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let L ⊆ T (F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.

Proof:

I “→”:
Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.
Construct a T-DFTA A′ = 〈2Q ,F ,G ,∆′〉 as follows:
for all a ∈ F0, S(a)→∆′ ε if ∃q ∈ S , q(a)→∆ ε;
for all n ≥ 1, f ∈ Fn, S(f)→∆′ (S1, . . . ,Sn)

where Si = { qi | ∃q ∈ S , q(f)→∆ (q1, . . . , qn) }.
I “←”:

Let A be a complete T-DFTA for L, define Lq as before.
Prove that π(t) ⊆ π(Lq) implies t ∈ Lq, for all q ∈ Q, t ∈ T (F).

39/81

Path closure and T-NFTA
Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let L ⊆ T (F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.

Proof:

I “→”:
Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.
Construct a T-DFTA A′ = 〈2Q ,F ,G ,∆′〉 as follows:
for all a ∈ F0, S(a)→∆′ ε if ∃q ∈ S , q(a)→∆ ε;
for all n ≥ 1, f ∈ Fn, S(f)→∆′ (S1, . . . ,Sn)

where Si = { qi | ∃q ∈ S , q(f)→∆ (q1, . . . , qn) }.
I “←”:

Let A be a complete T-DFTA for L, define Lq as before.
Prove that π(t) ⊆ π(Lq) implies t ∈ Lq, for all q ∈ Q, t ∈ T (F).

39/81

Path closure and T-NFTA
Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let L ⊆ T (F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.

Proof:

I “→”:
Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.
Construct a T-DFTA A′ = 〈2Q ,F ,G ,∆′〉 as follows:
for all a ∈ F0, S(a)→∆′ ε if ∃q ∈ S , q(a)→∆ ε;
for all n ≥ 1, f ∈ Fn, S(f)→∆′ (S1, . . . ,Sn)

where Si = { qi | ∃q ∈ S , q(f)→∆ (q1, . . . , qn) }.

I “←”:
Let A be a complete T-DFTA for L, define Lq as before.
Prove that π(t) ⊆ π(Lq) implies t ∈ Lq, for all q ∈ Q, t ∈ T (F).

39/81

Path closure and T-NFTA
Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let L ⊆ T (F) be a recognizable tree language.
L is path-closed iff it is recognized by a T-DFTA.

Proof:

I “→”:
Let A = 〈Q,F ,G ,∆〉 be a reduced T-NFTA for L.
Construct a T-DFTA A′ = 〈2Q ,F ,G ,∆′〉 as follows:
for all a ∈ F0, S(a)→∆′ ε if ∃q ∈ S , q(a)→∆ ε;
for all n ≥ 1, f ∈ Fn, S(f)→∆′ (S1, . . . ,Sn)

where Si = { qi | ∃q ∈ S , q(f)→∆ (q1, . . . , qn) }.
I “←”:

Let A be a complete T-DFTA for L, define Lq as before.
Prove that π(t) ⊆ π(Lq) implies t ∈ Lq, for all q ∈ Q, t ∈ T (F).

40/81

Logic over trees

Alternative specification for sets of trees

E.g., to describe valid HTML documents:

I A p tag may only appear inside a body tag.

I A dl tag must contain pairs of dt and dd tags.

Roadmap
I We shall define a logic that defines such properties of trees.

I The sets of trees definable in that language will be recognizable.

40/81

Logic over trees

Alternative specification for sets of trees

E.g., to describe valid HTML documents:

I A p tag may only appear inside a body tag.

I A dl tag must contain pairs of dt and dd tags.

Roadmap
I We shall define a logic that defines such properties of trees.

I The sets of trees definable in that language will be recognizable.

41/81

Recall: First-/second-order logic

First-order logic (FO)

Let σ = ((Ri)1≤i≤n) be a relation signature and X1 = {x1, x2, . . .} a set of
variables. The first-order formulas FO(σ) are:

Ri (xj1 , . . . , xji) | x = x ′ | ¬φ | φ ∧ φ′ | ∃x .φ

Second-order logic: allow quantifying over relations
Monadic: only quantify over sets

Monadic second-order logic (MSO)

Let σ as before and X1 = {x1, x2, . . .}, X2 = {X1,X2, . . .} sets of first-
/second-order variables. The set of MSO(σ) formulae are:

Ri (xj1 , . . . , xji) | x = x ′ | x ∈ X | ¬φ | φ ∧ φ′ | ∃x .φ | ∃X .φ

Weak second-order: only quantify over finite sets

WSkS (weak MSO over with k successors)

WSkS = MSO(<1,. . . ,<k)

41/81

Recall: First-/second-order logic

First-order logic (FO)

Let σ = ((Ri)1≤i≤n) be a relation signature and X1 = {x1, x2, . . .} a set of
variables. The first-order formulas FO(σ) are:

Ri (xj1 , . . . , xji) | x = x ′ | ¬φ | φ ∧ φ′ | ∃x .φ

Second-order logic: allow quantifying over relations
Monadic: only quantify over sets

Monadic second-order logic (MSO)

Let σ as before and X1 = {x1, x2, . . .}, X2 = {X1,X2, . . .} sets of first-
/second-order variables. The set of MSO(σ) formulae are:

Ri (xj1 , . . . , xji) | x = x ′ | x ∈ X | ¬φ | φ ∧ φ′ | ∃x .φ | ∃X .φ

Weak second-order: only quantify over finite sets

WSkS (weak MSO over with k successors)

WSkS = MSO(<1,. . . ,<k)

41/81

Recall: First-/second-order logic

First-order logic (FO)

Let σ = ((Ri)1≤i≤n) be a relation signature and X1 = {x1, x2, . . .} a set of
variables. The first-order formulas FO(σ) are:

Ri (xj1 , . . . , xji) | x = x ′ | ¬φ | φ ∧ φ′ | ∃x .φ

Second-order logic: allow quantifying over relations
Monadic: only quantify over sets

Monadic second-order logic (MSO)

Let σ as before and X1 = {x1, x2, . . .}, X2 = {X1,X2, . . .} sets of first-
/second-order variables. The set of MSO(σ) formulae are:

Ri (xj1 , . . . , xji) | x = x ′ | x ∈ X | ¬φ | φ ∧ φ′ | ∃x .φ | ∃X .φ

Weak second-order: only quantify over finite sets

WSkS (weak MSO over with k successors)

WSkS = MSO(<1,. . . ,<k)

42/81

Semantics of MSO

Definition

Let M a domain, σ a signature, ν a valuation with

I ν(x) ∈M for x ∈ X1

I ν(X) ⊆M for X ∈ X2

M, σ, ν |= Ri (xj1 , . . . , xji) if (ν(xj1), . . . , ν(xji)) ∈ Ri

M, σ, ν |= x = x ′ if ν(x) = ν(x ′)
M, σ, ν |= x ∈ X if ν(x) ∈ ν(X)
M, σ, ν |= ¬φ if M, σ, ν 6|= φ
M, σ, ν |= φ ∧ φ′ if M, σ, ν |= φ ∧ M, σ, ν |= φ′

M, σ, ν |= ∃x .φ if ∃m ∈M. M, σ, ν[x 7→ m] |= φ
M, σ, ν |= ∃X .φ if ∃M ⊆M. M, σ, ν[X 7→ M] |= φ

We omit M, σ when clear from context.

42/81

Semantics of MSO

Definition

Let M a domain, σ a signature, ν a valuation with

I ν(x) ∈M for x ∈ X1

I ν(X) ⊆M for X ∈ X2

M, σ, ν |= Ri (xj1 , . . . , xji) if (ν(xj1), . . . , ν(xji)) ∈ Ri

M, σ, ν |= x = x ′ if ν(x) = ν(x ′)
M, σ, ν |= x ∈ X if ν(x) ∈ ν(X)
M, σ, ν |= ¬φ if M, σ, ν 6|= φ
M, σ, ν |= φ ∧ φ′ if M, σ, ν |= φ ∧ M, σ, ν |= φ′

M, σ, ν |= ∃x .φ if ∃m ∈M. M, σ, ν[x 7→ m] |= φ
M, σ, ν |= ∃X .φ if ∃M ⊆M. M, σ, ν[X 7→ M] |= φ

We omit M, σ when clear from context.

42/81

Semantics of MSO

Definition

Let M a domain, σ a signature, ν a valuation with

I ν(x) ∈M for x ∈ X1

I ν(X) ⊆M for X ∈ X2

M, σ, ν |= Ri (xj1 , . . . , xji) if (ν(xj1), . . . , ν(xji)) ∈ Ri

M, σ, ν |= x = x ′ if ν(x) = ν(x ′)
M, σ, ν |= x ∈ X if ν(x) ∈ ν(X)
M, σ, ν |= ¬φ if M, σ, ν 6|= φ
M, σ, ν |= φ ∧ φ′ if M, σ, ν |= φ ∧ M, σ, ν |= φ′

M, σ, ν |= ∃x .φ if ∃m ∈M. M, σ, ν[x 7→ m] |= φ
M, σ, ν |= ∃X .φ if ∃M ⊆M. M, σ, ν[X 7→ M] |= φ

We omit M, σ when clear from context.

43/81

Recall: Common abbreviations

I ∀x , ∀X , ∨, etc can be expressed in the usual way.

I X ⊆ Y :
∀x .(x ∈ X → x ∈ Y)

I Z = X ∪ Y :
∀x .(x ∈ Z ↔ x ∈ X ∨ x ∈ Y)

I Partition(X ,X1, . . . ,Xm):(
∀x .
(

x ∈ X ↔
m∨
i=1

x ∈ Xi

))
∧
(m∧

i=1

∧
j 6=i

∀x .(x /∈ Xi ∨ x /∈ Xj)

)
I Similarly, X = ∅, X = {x}, X = Y ,. . .

44/81

WSkS and trees
Let M = N∗, we fix <i to be the relation <i = { 〈p, pip′〉 | p, p′ ∈ N∗ }.
We define < =

⋃k
i=1 <i and ≤ as usual, and ε for the minimal element.

We write xi to denote the least q s.t. ν(x) <i q.

Coding of a tree

Let t ∈ T (F) and k the maximal arity in F .
As a shorthand, define SF := (Sf)f ∈F .
We note C (t) := (S ,SF), where:

I S =
⋃

f ∈F Sf ;

I for all f ∈ F , Sf = { p ∈ Post | t(p) = f }.

(S , SF) encodes a tree if Tree(S , SF) holds:

Tree(S ,SF) := S 6= ∅ ∧ Partition(S ,SF)
∧ ∀x .∀y .(x ∈ S ∧ y < x)→ y ∈ S

∧
∧k

n=1

∧
f ∈Fn

∧n
i=1(x ∈ Sf → xi ∈ S)

∧
∧k

n=1

∧
f ∈Fn

∧k
i=n+1(x ∈ Sf → xi /∈ S)

44/81

WSkS and trees
Let M = N∗, we fix <i to be the relation <i = { 〈p, pip′〉 | p, p′ ∈ N∗ }.
We define < =

⋃k
i=1 <i and ≤ as usual, and ε for the minimal element.

We write xi to denote the least q s.t. ν(x) <i q.

Coding of a tree

Let t ∈ T (F) and k the maximal arity in F .
As a shorthand, define SF := (Sf)f ∈F .
We note C (t) := (S , SF), where:

I S =
⋃

f ∈F Sf ;

I for all f ∈ F , Sf = { p ∈ Post | t(p) = f }.

(S , SF) encodes a tree if Tree(S , SF) holds:

Tree(S ,SF) := S 6= ∅ ∧ Partition(S ,SF)
∧ ∀x .∀y .(x ∈ S ∧ y < x)→ y ∈ S

∧
∧k

n=1

∧
f ∈Fn

∧n
i=1(x ∈ Sf → xi ∈ S)

∧
∧k

n=1

∧
f ∈Fn

∧k
i=n+1(x ∈ Sf → xi /∈ S)

44/81

WSkS and trees
Let M = N∗, we fix <i to be the relation <i = { 〈p, pip′〉 | p, p′ ∈ N∗ }.
We define < =

⋃k
i=1 <i and ≤ as usual, and ε for the minimal element.

We write xi to denote the least q s.t. ν(x) <i q.

Coding of a tree

Let t ∈ T (F) and k the maximal arity in F .
As a shorthand, define SF := (Sf)f ∈F .
We note C (t) := (S , SF), where:

I S =
⋃

f ∈F Sf ;

I for all f ∈ F , Sf = { p ∈ Post | t(p) = f }.

(S , SF) encodes a tree if Tree(S , SF) holds:

Tree(S ,SF) := S 6= ∅ ∧ Partition(S , SF)
∧ ∀x .∀y .(x ∈ S ∧ y < x)→ y ∈ S

∧
∧k

n=1

∧
f ∈Fn

∧n
i=1(x ∈ Sf → xi ∈ S)

∧
∧k

n=1

∧
f ∈Fn

∧k
i=n+1(x ∈ Sf → xi /∈ S)

45/81

Semantics of WSkS on trees

Coded valuation

Let F ′ := F × 2X1∪X2 . The arity of (f , τ) is n if f ∈ Fn.
Let t ∈ T (F) and ν a valuation. The tuple 〈t, ν〉 is coded by a tree t ′ ∈
T (F ′), as follows, for all p ∈ Pos and t ′(p) = 〈f , τ〉:

I if x ∈ X1 then τ(x) = 1 iff p = ν(x);

I if X ∈ X2 then τ(X) = 1 iff p ∈ ν(X).

A tree t ′ ∈ T (F ′) is valid (t ′ ∈ Tv (F ′)) if it codes some 〈t, ν〉.

Semantics of WSkS

Let φ be a formula of WSkS and V ⊆ (X1 ∪ X2)] ({S} ∪ SF) its free
variables.

L(φ) := { 〈t, ν〉 ∈ Tv (F ′) | ν[(S ,SF) 7→ C (t)] |= φ }

45/81

Semantics of WSkS on trees

Coded valuation

Let F ′ := F × 2X1∪X2 . The arity of (f , τ) is n if f ∈ Fn.
Let t ∈ T (F) and ν a valuation. The tuple 〈t, ν〉 is coded by a tree t ′ ∈
T (F ′), as follows, for all p ∈ Pos and t ′(p) = 〈f , τ〉:

I if x ∈ X1 then τ(x) = 1 iff p = ν(x);

I if X ∈ X2 then τ(X) = 1 iff p ∈ ν(X).

A tree t ′ ∈ T (F ′) is valid (t ′ ∈ Tv (F ′)) if it codes some 〈t, ν〉.

Semantics of WSkS

Let φ be a formula of WSkS and V ⊆ (X1 ∪ X2)] ({S} ∪ SF) its free
variables.

L(φ) := { 〈t, ν〉 ∈ Tv (F ′) | ν[(S , SF) 7→ C (t)] |= φ }

46/81

Examples

I Let t = f (g(a), a).
Left: 〈t, ν〉 with ν(x) = ε, ν(y) = 11, and ν(Z) = {ε, 11, 2}.
Right: 〈t, ν ′〉 with ν ′(x) = 1

〈f , 101〉

〈g , 000〉 〈a, 001〉

〈a, 011〉

〈f , 0〉

〈g , 1〉 〈a, 0〉

〈a, 0〉

I We have C (t) = (S ,Sf ,Sg ,Sa) with S = {ε, 1, 11, 2},
Sf = {ε}, Sg = {1}, Sa = {11, 2}.

I ν ′[(S ,SF) 7→ C (t)] |= x ∈ Sg , thus 〈t, ν ′〉 ∈ L(x ∈ Sg)

I t ∈ L(∃x .x ∈ Sg)

46/81

Examples

I Let t = f (g(a), a).
Left: 〈t, ν〉 with ν(x) = ε, ν(y) = 11, and ν(Z) = {ε, 11, 2}.
Right: 〈t, ν ′〉 with ν ′(x) = 1

〈f , 101〉

〈g , 000〉 〈a, 001〉

〈a, 011〉

〈f , 0〉

〈g , 1〉 〈a, 0〉

〈a, 0〉

I We have C (t) = (S ,Sf , Sg , Sa) with S = {ε, 1, 11, 2},
Sf = {ε}, Sg = {1}, Sa = {11, 2}.

I ν ′[(S , SF) 7→ C (t)] |= x ∈ Sg , thus 〈t, ν ′〉 ∈ L(x ∈ Sg)

I t ∈ L(∃x .x ∈ Sg)

47/81

WSkS and recognizability

Theorem

A tree language L ⊆ T (F) is recognizable
iff L = L(φ) for some formula φ(S ,SF) of WSkS.

Proof: (sketch)

I DCFTA A → WSkS: Construct formula φ that
(i) verifies that the structure is a tree;
(ii) guesses a computation of A, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;
(iv) verifies that the root is labelled by an accepting state.

I WSkS φ → NFTA A: Proceed by recurrence on φ,
show that all subformulae of φ are recognizable.

47/81

WSkS and recognizability

Theorem

A tree language L ⊆ T (F) is recognizable
iff L = L(φ) for some formula φ(S ,SF) of WSkS.

Proof: (sketch)

I DCFTA A → WSkS: Construct formula φ that
(i) verifies that the structure is a tree;
(ii) guesses a computation of A, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;
(iv) verifies that the root is labelled by an accepting state.

I WSkS φ → NFTA A: Proceed by recurrence on φ,
show that all subformulae of φ are recognizable.

47/81

WSkS and recognizability

Theorem

A tree language L ⊆ T (F) is recognizable
iff L = L(φ) for some formula φ(S ,SF) of WSkS.

Proof: (sketch)

I DCFTA A → WSkS: Construct formula φ that
(i) verifies that the structure is a tree;
(ii) guesses a computation of A, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;
(iv) verifies that the root is labelled by an accepting state.

I WSkS φ → NFTA A: Proceed by recurrence on φ,
show that all subformulae of φ are recognizable.

48/81

Example: DCFTA → WSkS

I Let Q := {q0, q1, qf }, F = {f (2), g(1), a}, G := {qf }, and rules

a→ q0 g(q0)→ q1 g(q1)→ q1 f (q1, q1)→ qf

(automate à compléter !)

I Corresponding formula:

φ = Tree(S , SF)
∧ ∃Q0,Q1,Qf .Partition(S ,Q0,Q1,Qf)

∧ ∀x .(x ∈ Sa → x ∈ Q0)
∧ ∀x .((x ∈ Sg ∧ x1 ∈ Q0)→ x ∈ Q1)
∧ ∀x .((x ∈ Sg ∧ x1 ∈ Q1)→ x ∈ Q1)
∧ ∀x .((x ∈ Sf ∧ x1 ∈ Q1 ∧ x2 ∈ Q1)→ x ∈ Qf)
∧ · · ·
∧ ε ∈ Qf

49/81

Example: WSkS → NFTA

Consider F = {f (2), g(1), a}.

I φ = x ∈ Sg

Aφ = 〈{q, q′},F × 2{x}, {q′},∆〉 with transitions

〈a, 0〉 → q
〈g , 1〉(q)→ q′ 〈g , 0〉(q)→ q 〈g , 0〉(q′)→ q′

〈f , 0〉(q, q)→ q 〈f , 0〉(q, q′)→ q′ 〈f , 0〉(q′, q)→ q′

accepts L(x ∈ Sg) (scans for a single g -position with τ(x) = 1).

I φ′ = ∃x .φ
Obtain Aφ′ from Aφ by stripping τ(x):

Aφ′ = 〈{q, q′},F , {q′},∆〉
a→ q
g(q)→ q′ g(q)→ q g(q′)→ q′

f (q, q)→ q f (q, q′)→ q′ f (q′, q)→ q′

49/81

Example: WSkS → NFTA

Consider F = {f (2), g(1), a}.

I φ = x ∈ Sg

Aφ = 〈{q, q′},F × 2{x}, {q′},∆〉 with transitions

〈a, 0〉 → q
〈g , 1〉(q)→ q′ 〈g , 0〉(q)→ q 〈g , 0〉(q′)→ q′

〈f , 0〉(q, q)→ q 〈f , 0〉(q, q′)→ q′ 〈f , 0〉(q′, q)→ q′

accepts L(x ∈ Sg) (scans for a single g -position with τ(x) = 1).

I φ′ = ∃x .φ
Obtain Aφ′ from Aφ by stripping τ(x):

Aφ′ = 〈{q, q′},F , {q′},∆〉
a→ q
g(q)→ q′ g(q)→ q g(q′)→ q′

f (q, q)→ q f (q, q′)→ q′ f (q′, q)→ q′

50/81

Unranked trees

We now consider finite ordered unranked trees.

I ordered : internal nodes have children 1 . . . n

I unranked : nodes may have an arbitrary number of children

Motivation: e.g., XML documents

I “A html tag contains an optional head and an obligatory body.”

I “A div tag contains an unlimited number of p, ol, ul, . . . tags.”

Definition: Tree (recall)

A (finite, ordered) tree is a non-empty, finite, prefix-closed set Pos ⊆ N∗.

50/81

Unranked trees

We now consider finite ordered unranked trees.

I ordered : internal nodes have children 1 . . . n

I unranked : nodes may have an arbitrary number of children

Motivation: e.g., XML documents

I “A html tag contains an optional head and an obligatory body.”

I “A div tag contains an unlimited number of p, ol, ul, . . . tags.”

Definition: Tree (recall)

A (finite, ordered) tree is a non-empty, finite, prefix-closed set Pos ⊆ N∗.

50/81

Unranked trees

We now consider finite ordered unranked trees.

I ordered : internal nodes have children 1 . . . n

I unranked : nodes may have an arbitrary number of children

Motivation: e.g., XML documents

I “A html tag contains an optional head and an obligatory body.”

I “A div tag contains an unlimited number of p, ol, ul, . . . tags.”

Definition: Tree (recall)

A (finite, ordered) tree is a non-empty, finite, prefix-closed set Pos ⊆ N∗.

51/81

Hedge automata

Definition: (Bottom-up) hedge automaton

A hedge automaton (NHA) is a tuple A = 〈Q,Σ,G ,∆〉, where:

I Q is a finite set of states;

I Σ a finite alphabet;

I G ⊆ Q are the final states;

I ∆ is a finite set of rules of the form

a(R)→ q

for a ∈ Σ, q ∈ Q, and R a regular (word) language over Q.

Example: Q := {qx , qh, qb, qp}, Σ = {x , h, b, p}, G := {qx}, and rules

x(q?
hqb)→ qx h(ε)→ qh b(q∗p)→ qb p(ε)→ qp

This accepts trees of the form x(h, b(p, . . . , p)) and x(b(p, . . . , p)).

51/81

Hedge automata

Definition: (Bottom-up) hedge automaton

A hedge automaton (NHA) is a tuple A = 〈Q,Σ,G ,∆〉, where:

I Q is a finite set of states;

I Σ a finite alphabet;

I G ⊆ Q are the final states;

I ∆ is a finite set of rules of the form

a(R)→ q

for a ∈ Σ, q ∈ Q, and R a regular (word) language over Q.

Example: Q := {qx , qh, qb, qp}, Σ = {x , h, b, p}, G := {qx}, and rules

x(q?
hqb)→ qx h(ε)→ qh b(q∗p)→ qb p(ε)→ qp

This accepts trees of the form x(h, b(p, . . . , p)) and x(b(p, . . . , p)).

52/81

Semantics of hedge automata

Remark:

I The R in a(R)→ q are called horizontal languages.

I They are (finitely) represented by regular expressions or finite
automata.

Computation of NHA

Let t ∈ T (Σ) be a tree. A run or computation of A on t is a tree t ′ ∈ T (Q),
i.e. for all p ∈ Pos:

I if t(p) = a ∈ Σ, t ′(p) = q ∈ Q, and Pos ∩ pN = {p1, . . . , pn},
there exists a(R)→ q ∈ ∆ such that t ′(p1) · · · t ′(pn) ∈ R.

Acceptance condition: t ′(ε) ∈ G

L ⊆ T (Σ) is called hedge-recognizable if L = L(A) for some NHA A.

52/81

Semantics of hedge automata

Remark:

I The R in a(R)→ q are called horizontal languages.

I They are (finitely) represented by regular expressions or finite
automata.

Computation of NHA

Let t ∈ T (Σ) be a tree. A run or computation of A on t is a tree t ′ ∈ T (Q),
i.e. for all p ∈ Pos:

I if t(p) = a ∈ Σ, t ′(p) = q ∈ Q, and Pos ∩ pN = {p1, . . . , pn},
there exists a(R)→ q ∈ ∆ such that t ′(p1) · · · t ′(pn) ∈ R.

Acceptance condition: t ′(ε) ∈ G

L ⊆ T (Σ) is called hedge-recognizable if L = L(A) for some NHA A.

52/81

Semantics of hedge automata

Remark:

I The R in a(R)→ q are called horizontal languages.

I They are (finitely) represented by regular expressions or finite
automata.

Computation of NHA

Let t ∈ T (Σ) be a tree. A run or computation of A on t is a tree t ′ ∈ T (Q),
i.e. for all p ∈ Pos:

I if t(p) = a ∈ Σ, t ′(p) = q ∈ Q, and Pos ∩ pN = {p1, . . . , pn},
there exists a(R)→ q ∈ ∆ such that t ′(p1) · · · t ′(pn) ∈ R.

Acceptance condition: t ′(ε) ∈ G

L ⊆ T (Σ) is called hedge-recognizable if L = L(A) for some NHA A.

53/81

Complete / normalized / deterministic HA

An NHA is . . .

I complete if for all t ∈ T (Σ), t →∗A q for some q;

I full if for all a ∈ Σ, q ∈ Q, there is some a(R)→ q;

I reduced if a(R1)→ q, a(R2)→ q ∈ ∆ implies R1 = R2;

I deterministic (DHA) if a(R1)→ q1, a(R2)→ q2 ∈ ∆ implies
R1 ∩ R2 = ∅ or q1 = q2.

Any NHA has an equivalent complete / full / reduced / deterministic NHA.

I complete: add garbage state, as usual

I full: add rules a(∅)→ q where necessary

I reduced: replace a(R1)→ q and a(R2)→ q with a(R1 ∪ R2)→ q
where necessary

53/81

Complete / normalized / deterministic HA

An NHA is . . .

I complete if for all t ∈ T (Σ), t →∗A q for some q;

I full if for all a ∈ Σ, q ∈ Q, there is some a(R)→ q;

I reduced if a(R1)→ q, a(R2)→ q ∈ ∆ implies R1 = R2;

I deterministic (DHA) if a(R1)→ q1, a(R2)→ q2 ∈ ∆ implies
R1 ∩ R2 = ∅ or q1 = q2.

Any NHA has an equivalent complete / full / reduced / deterministic NHA.

I complete: add garbage state, as usual

I full: add rules a(∅)→ q where necessary

I reduced: replace a(R1)→ q and a(R2)→ q with a(R1 ∪ R2)→ q
where necessary

54/81

Determinization

Determinization of NHA

Let A = 〈Q,Σ,G ,∆〉 be a complete, full, reduced NHA. The complete, full,
reduced DHA A′ = 〈2Q ,Σ,G ′,∆′〉 is equivalent to A where:

I G ′ = {S ⊆ Q | S ∩ G 6= ∅ };
I let Ra,q denote the (unique) language s.t. a(Ra,q)→ q ∈ ∆;

I R ′a,q := Ra,q[q′ → (S ∪ {q′}) | q′ ∈ Q,S ⊆ Q]

I for all a ∈ Σ, S ⊆ Q, we have a(Ra,S)→ S ∈ ∆′;

Ra,S :=

(⋂
q∈S

R ′a,q

)
\
(⋃

q/∈S

R ′a,q

)

55/81

Encoding unranked trees

Bijective encoding of unranked into ranked trees

I Let Σ an alphabet; FΣ := {@(2)} ∪ { a(0) | a ∈ Σ }.
I Define the coding C@(t) ∈ T (FΣ) of t ∈ T (Σ) as

C@(a(t1, . . . , tn)) = @(@(. . . (@(︸ ︷︷ ︸
n

a,C@(t1)),C@(t2)), . . .),C@(tn))

Example:

x

h b

p p p

⇒

@

@

x h

@

@

@

b p

p

p

56/81

Recognizing encoded trees

Theorem

A language L ⊆ T (Σ) is hedge-recognizable iff C@(L) is recognizable.

I NHA → NFTA:
Let A = 〈Q,Σ,G ,∆〉 an NHA; ∆ = {a1(R1)→ q1, . . . , an(Rn)→ qn};
Ri represented by det.compl. FA Ai = 〈Si ,Q, s

(i)
0 ,Fi , δi 〉.

Construct NFTA A′ = 〈Q ′,FΣ,G ,∆
′〉, where:

I Q ′ = Q ∪
⊎n

i=1 Si

I ∆′ =
⋃n

i=1(∆i
1 ∪∆i

2 ∪∆i
3)

∆i
1 = { ai → s

(i)
0 }

∆i
2 = {@(s, q)→ δi (s, q) | s ∈ Si , q ∈ Q }

∆i
3 = { sf → qi | sf ∈ Fi }

57/81

Example: NHA → NFTA

I Q := {qx , qh, qb, qp}, Σ = {x , h, b, p}, G := {qx}, and rules

x(q?
hqb)→ qx h(ε)→ qh b(q∗p)→ qb p(ε)→ qp

I Automaton for first rule:
s0 s1 s2qh qb

qb

I Single-state automata with sh, sb, sp for the other rules

@

@

x h

@

@

@

b p

p

p

s2
qx

s1

s0 sh
qh

sb
qb

sb

sb

sb
sp
qp

sp
qp

sp
qp

57/81

Example: NHA → NFTA

I Q := {qx , qh, qb, qp}, Σ = {x , h, b, p}, G := {qx}, and rules

x(q?
hqb)→ qx h(ε)→ qh b(q∗p)→ qb p(ε)→ qp

I Automaton for first rule:
s0 s1 s2qh qb

qb

I Single-state automata with sh, sb, sp for the other rules

@

@

x h

@

@

@

b p

p

p

s2
qx

s1

s0 sh
qh

sb
qb

sb

sb

sb
sp
qp

sp
qp

sp
qp

57/81

Example: NHA → NFTA

I Q := {qx , qh, qb, qp}, Σ = {x , h, b, p}, G := {qx}, and rules

x(q?
hqb)→ qx h(ε)→ qh b(q∗p)→ qb p(ε)→ qp

I Automaton for first rule:
s0 s1 s2qh qb

qb

I Single-state automata with sh, sb, sp for the other rules

@

@

x h

@

@

@

b p

p

p

s2
qx

s1

s0 sh
qh

sb
qb

sb

sb

sb
sp
qp

sp
qp

sp
qp

57/81

Example: NHA → NFTA

I Q := {qx , qh, qb, qp}, Σ = {x , h, b, p}, G := {qx}, and rules

x(q?
hqb)→ qx h(ε)→ qh b(q∗p)→ qb p(ε)→ qp

I Automaton for first rule:
s0 s1 s2qh qb

qb

I Single-state automata with sh, sb, sp for the other rules

@

@

x h

@

@

@

b p

p

p

s2
qx

s1

s0 sh
qh

sb
qb

sb

sb

sb
sp
qp

sp
qp

sp
qp

57/81

Example: NHA → NFTA

I Q := {qx , qh, qb, qp}, Σ = {x , h, b, p}, G := {qx}, and rules

x(q?
hqb)→ qx h(ε)→ qh b(q∗p)→ qb p(ε)→ qp

I Automaton for first rule:
s0 s1 s2qh qb

qb

I Single-state automata with sh, sb, sp for the other rules

@

@

x h

@

@

@

b p

p

p

s2
qx

s1

s0 sh
qh

sb
qb

sb

sb

sb
sp
qp

sp
qp

sp
qp

57/81

Example: NHA → NFTA

I Q := {qx , qh, qb, qp}, Σ = {x , h, b, p}, G := {qx}, and rules

x(q?
hqb)→ qx h(ε)→ qh b(q∗p)→ qb p(ε)→ qp

I Automaton for first rule:
s0 s1 s2qh qb

qb

I Single-state automata with sh, sb, sp for the other rules

@

@

x h

@

@

@

b p

p

p

s2
qx

s1

s0 sh
qh

sb
qb

sb

sb

sb
sp
qp

sp
qp

sp
qp

58/81

Recognizing encoded trees

Theorem

A language L ⊆ T (Σ) is hedge-recognizable iff C@(L) is recognizable.

I NFTA → NHA:
Let A = 〈Q,FΣ,G ,∆〉 an NFTA (without ε-moves).

Define ∆R := { 〈q0, q1, q2〉 | @(q0, q1)→∆ q2 }
and Out := G ∪ { q | ∃q′, q′′ : @(q′, q)→∆ q′′ }.
For q ∈ Q, q′ ∈ Out, let Aq,q′ := 〈Q,Q, q, {q′},∆R〉 a word
automaton.

Construct NHA A′ := 〈Q,Σ,G ,∆′〉, where

∆′ = { a(L(Aq,q′))→ q′ | a→∆ q, q′ ∈ Out }

Corollary

Hedge-recognizable languages are closed under boolean operations.

58/81

Recognizing encoded trees

Theorem

A language L ⊆ T (Σ) is hedge-recognizable iff C@(L) is recognizable.

I NFTA → NHA:
Let A = 〈Q,FΣ,G ,∆〉 an NFTA (without ε-moves).

Define ∆R := { 〈q0, q1, q2〉 | @(q0, q1)→∆ q2 }
and Out := G ∪ { q | ∃q′, q′′ : @(q′, q)→∆ q′′ }.
For q ∈ Q, q′ ∈ Out, let Aq,q′ := 〈Q,Q, q, {q′},∆R〉 a word
automaton.

Construct NHA A′ := 〈Q,Σ,G ,∆′〉, where

∆′ = { a(L(Aq,q′))→ q′ | a→∆ q, q′ ∈ Out }

Corollary

Hedge-recognizable languages are closed under boolean operations.

59/81

Unranked trees and logic

UTL = weak MSO(child,next) interpreted over M = N∗, where

I child(x , y) iff y = xi for some i ∈ N

I next(x , y) iff ∃z , i : x = zi ∧ y = z(i + 1)

Further predicates can be defined from this:

I right(x , y) = “y is a right sibling of x”

I desc(x , y) = “y is a descendant of x” = “x ≤ y”

Notions like L(φ) are defined in analogy with WSkS.

Theorem: UTL = NHA

A language L ⊆ T (Σ) is hedge-recognizable
iff L = L(φ) for some formula φ(S ,SΣ) of UTL.

59/81

Unranked trees and logic

UTL = weak MSO(child,next) interpreted over M = N∗, where

I child(x , y) iff y = xi for some i ∈ N

I next(x , y) iff ∃z , i : x = zi ∧ y = z(i + 1)

Further predicates can be defined from this:

I right(x , y) = “y is a right sibling of x”

I desc(x , y) = “y is a descendant of x” = “x ≤ y”

Notions like L(φ) are defined in analogy with WSkS.

Theorem: UTL = NHA

A language L ⊆ T (Σ) is hedge-recognizable
iff L = L(φ) for some formula φ(S ,SΣ) of UTL.

59/81

Unranked trees and logic

UTL = weak MSO(child,next) interpreted over M = N∗, where

I child(x , y) iff y = xi for some i ∈ N

I next(x , y) iff ∃z , i : x = zi ∧ y = z(i + 1)

Further predicates can be defined from this:

I right(x , y) = “y is a right sibling of x”

I desc(x , y) = “y is a descendant of x” = “x ≤ y”

Notions like L(φ) are defined in analogy with WSkS.

Theorem: UTL = NHA

A language L ⊆ T (Σ) is hedge-recognizable
iff L = L(φ) for some formula φ(S ,SΣ) of UTL.

60/81

UTL = NHA: Proof sketch

I UTL → NHA:
Let φ be an UTL formula. Define φ′ of WS2S s.t. L(φ′) = C@(L(φ)).

Define leftmost(x , y) as

∀X :
(
x ∈ X ∧ ∀z , z ′ : (z ∈ X ∧ z ′ = z1→ z ′ ∈ X)
∧ ∀z : (z ∈ X → z = x ∨ (∃z ′ : z ′ ∈ X ∧ z = z ′1))

)
→ (y ∈ X ∧ ∀z : z ∈ X → z ≤ y)

(“y is the maximal position in x1∗”)

Then child and next can be translated as follows:
child(x , y) := ∃z : leftmost(z , x) ∧ leftmost(z2, y)
next(x , y) := ∃z : leftmost(z12, x) ∧ leftmost(z2, y)

60/81

UTL = NHA: Proof sketch

I UTL → NHA:
Let φ be an UTL formula. Define φ′ of WS2S s.t. L(φ′) = C@(L(φ)).

Define leftmost(x , y) as

∀X :
(
x ∈ X ∧ ∀z , z ′ : (z ∈ X ∧ z ′ = z1→ z ′ ∈ X)
∧ ∀z : (z ∈ X → z = x ∨ (∃z ′ : z ′ ∈ X ∧ z = z ′1))

)
→ (y ∈ X ∧ ∀z : z ∈ X → z ≤ y)

(“y is the maximal position in x1∗”)

Then child and next can be translated as follows:
child(x , y) := ∃z : leftmost(z , x) ∧ leftmost(z2, y)
next(x , y) := ∃z : leftmost(z12, x) ∧ leftmost(z2, y)

60/81

UTL = NHA: Proof sketch

I UTL → NHA:
Let φ be an UTL formula. Define φ′ of WS2S s.t. L(φ′) = C@(L(φ)).

Define leftmost(x , y) as

∀X :
(
x ∈ X ∧ ∀z , z ′ : (z ∈ X ∧ z ′ = z1→ z ′ ∈ X)
∧ ∀z : (z ∈ X → z = x ∨ (∃z ′ : z ′ ∈ X ∧ z = z ′1))

)
→ (y ∈ X ∧ ∀z : z ∈ X → z ≤ y)

(“y is the maximal position in x1∗”)

Then child and next can be translated as follows:
child(x , y) := ∃z : leftmost(z , x) ∧ leftmost(z2, y)
next(x , y) := ∃z : leftmost(z12, x) ∧ leftmost(z2, y)

61/81

UTL = NHA: Proof sketch

I NHA → UTL:
Let A be a complete, full, normalized, deterministic NHA.

Construct formula φ(S , SΣ) of UTL that
(i) verifies that the structure is a tree;
(ii) guesses a computation of A, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;
(iv) verifies that the root is labelled by an accepting state.

The major difference with the NFTA → WSkS construction is (iii):
(iii): whenever the computation puts q on an a-labelled position p,
guess a run of the automaton for Ra,q over p and its children

61/81

UTL = NHA: Proof sketch

I NHA → UTL:
Let A be a complete, full, normalized, deterministic NHA.

Construct formula φ(S , SΣ) of UTL that
(i) verifies that the structure is a tree;
(ii) guesses a computation of A, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;
(iv) verifies that the root is labelled by an accepting state.

The major difference with the NFTA → WSkS construction is (iii):
(iii): whenever the computation puts q on an a-labelled position p,
guess a run of the automaton for Ra,q over p and its children

62/81

Tuples of trees
Let t1, t2 ∈ T (F) ranked trees. Add a fresh symbol − to F0 and let

F ′ := { 〈f , g〉(k) | f ∈ Fm, g ∈ Fn, k = max{m, n} }.
〈t1, t2〉 denotes the ranked tree t ∈ T (F ′) as follows:

I Post = Post1 ∪ Post2

I for all p ∈ Post ,

t(p) =

〈f , g〉 if t ∈ Post1 ∩ Post2 , t1(p) = f , t2(p) = g

〈f ,−〉 if t ∈ Post1 \ Post2 , t1(p) = f

〈−, g〉 if t ∈ Post2 \ Post1 , t2(p) = g

Example:
f

f

a a

a

f

a g

g

a

〈f , f 〉

〈f , a〉

〈a,−〉〈a,−〉

〈a, g〉

〈−, g〉

〈−, a〉

⇒

62/81

Tuples of trees
Let t1, t2 ∈ T (F) ranked trees. Add a fresh symbol − to F0 and let

F ′ := { 〈f , g〉(k) | f ∈ Fm, g ∈ Fn, k = max{m, n} }.
〈t1, t2〉 denotes the ranked tree t ∈ T (F ′) as follows:

I Post = Post1 ∪ Post2

I for all p ∈ Post ,

t(p) =

〈f , g〉 if t ∈ Post1 ∩ Post2 , t1(p) = f , t2(p) = g

〈f ,−〉 if t ∈ Post1 \ Post2 , t1(p) = f

〈−, g〉 if t ∈ Post2 \ Post1 , t2(p) = g

Example:
f

f

a a

a

f

a g

g

a

〈f , f 〉

〈f , a〉

〈a,−〉〈a,−〉

〈a, g〉

〈−, g〉

〈−, a〉

⇒

63/81

Tree relations
We consider (binary) relations R ⊆ T (F)2.

I Let R2 be the class of recognizable relations
(= recognizable languages over F ′).

I Let X2 be the class of finite unions of cross products

R ∈ X2 iff R =
⋃n

i=1

(
L

(i)
1 × L

(i)
2

)
, for some n ≥ 0 and L

(i)
1 , L

(i)
2

recognizable for all i

I Let T2 be the class of relations recognizable by GTT.

Definition: Ground Tree Transducer

A ground tree transducer (GTT) is pair G = 〈A1,A2〉 of bottom-up NFTA
over F . (The states of A1 and A2 may overlap.)
The relation accepted by G is

{ 〈t, u〉 | ∃n ≥ 0, C ∈ Cn(F),
t1, . . . , tn ∈ T (F), u1, . . . , un ∈ T (F), q1, . . . , qn :

t = C [t1, . . . , tn] ∧ u = C [u1, . . . , un]
∧ ∀i : ti →∗A1

qi
∗
A2
← ui }

63/81

Tree relations
We consider (binary) relations R ⊆ T (F)2.

I Let R2 be the class of recognizable relations
(= recognizable languages over F ′).

I Let X2 be the class of finite unions of cross products

R ∈ X2 iff R =
⋃n

i=1

(
L

(i)
1 × L

(i)
2

)
, for some n ≥ 0 and L

(i)
1 , L

(i)
2

recognizable for all i

I Let T2 be the class of relations recognizable by GTT.

Definition: Ground Tree Transducer

A ground tree transducer (GTT) is pair G = 〈A1,A2〉 of bottom-up NFTA
over F . (The states of A1 and A2 may overlap.)
The relation accepted by G is

{ 〈t, u〉 | ∃n ≥ 0, C ∈ Cn(F),
t1, . . . , tn ∈ T (F), u1, . . . , un ∈ T (F), q1, . . . , qn :

t = C [t1, . . . , tn] ∧ u = C [u1, . . . , un]
∧ ∀i : ti →∗A1

qi
∗
A2
← ui }

64/81

Relations between R2,X2,T2

Propositions

1. R2 6⊆ X2 and T2 6⊆ X2

2. R2 6⊆ T2 and X2 6⊆ T2

3. X2 ⊆ R2

4. T2 ⊆ R2

5. X2 ∪ T2 (R2

Proofs:

1. { 〈t, t〉 | t ∈ T (F) } is in T2 ∩R2 but not X2

2. ∅ is in X2 ∩R2 but not T2

3. see next slides

4. see next slides

5. see next slides

65/81

Proof of X2 ⊆ R2

3. Let Ai = 〈Qi ,F ,Gi ,∆i 〉 (for i = 1, 2) be NFTA
and let R = L(A1)× L(A2) ∈ X2.

Construct NFTA A = 〈Q,F ′,G1 × G2,∆〉 with L(A) = R:
I Q = (Q1 ∪ {−})× (Q2 ∪ {−})
I for every f ∈ Fm, g ∈ Fn, m ≥ n, ¬(f = g = −)

∆ contains

I 〈f , g〉(〈q1, q
′
1〉, . . . , 〈qn, q′

n〉, 〈qn+1,−〉, . . . , 〈qm,−〉)→ 〈q, q′〉 if
f (q1, . . . , qm)→ q ∈ ∆1 and g(q′

1, . . . , q
′
n)→ q′ ∈ ∆2

I 〈g , f 〉(〈q1, q
′
1〉, . . . , 〈qn, q′

n〉, 〈−, q′
n+1〉, . . . , 〈−, qm〉)→ 〈q, q′〉 if

f (q′
1, . . . , q

′
m)→ q ∈ ∆2 and g(q1, . . . , qn)→ q′ ∈ ∆1

(reminder: we assume that − is a fresh symbol in F0)

Intuition: Modified cross-product construction.

66/81

Proof of T2 ⊆ R2

4. Let G = 〈A1,A2〉, Ai = 〈Qi ,F ,Gi ,∆i 〉 (for i = 1, 2).
We construct NFTA A′ = 〈Q ′,F ′, {qf },∆′〉 with L(A′) = L(G).

Construct NFTA A = 〈Q,F ′,G ,∆〉 from A1,A2 as in previous proof.
Then:

I Q ′ = Q] {qf }
I ∆′ = ∆ ∪∆1 ∪∆2

∆1 = { 〈q, q〉 → qf | q ∈ Q1 ∩ Q2 }
∆2 = { 〈f , f 〉(qf , . . . , qf)→ qf | f ∈ Fn, f 6= −}

Intuition:
∆ reads pairs of trees from A1,A2;
∆1 allows to plug pairs of subtrees into some context C ;
∆2 reads the remaining context C .

67/81

Proof of X2 ∪ T2 (R2

5. Let F = {f (1), g(1), a}.
Let R = { 〈t1, t2〉 | ∃C ∈ C(F), t ∈ T (F) : t1 = C [t] ∧ t2 = C [f (t)] }.

I R /∈ X2:
By pigeonhole principle using 〈f i (a), f i+1(a)〉, i ≥ 0.

I R /∈ T2:
Suppose that R is accepted by GTT 〈A1,A2〉 with n states in common.
For all i ≥ 0, let qi such that g i (a)→∗A1

qi and f (g i (a))→∗A2
qi .

Contradiction follows from pigeon-hole principle.

I R ∈ R2:
Let A = 〈{qa, qf , qg , q},F ′, {q},∆〉 with:

〈−, a〉 → qa 〈x , y〉(qx)→ qy qf → q 〈x , x〉(q)→ q

for x , y ∈ {f , g , a}

67/81

Proof of X2 ∪ T2 (R2

5. Let F = {f (1), g(1), a}.
Let R = { 〈t1, t2〉 | ∃C ∈ C(F), t ∈ T (F) : t1 = C [t] ∧ t2 = C [f (t)] }.

I R /∈ X2:
By pigeonhole principle using 〈f i (a), f i+1(a)〉, i ≥ 0.

I R /∈ T2:
Suppose that R is accepted by GTT 〈A1,A2〉 with n states in common.
For all i ≥ 0, let qi such that g i (a)→∗A1

qi and f (g i (a))→∗A2
qi .

Contradiction follows from pigeon-hole principle.

I R ∈ R2:
Let A = 〈{qa, qf , qg , q},F ′, {q},∆〉 with:

〈−, a〉 → qa 〈x , y〉(qx)→ qy qf → q 〈x , x〉(q)→ q

for x , y ∈ {f , g , a}

67/81

Proof of X2 ∪ T2 (R2

5. Let F = {f (1), g(1), a}.
Let R = { 〈t1, t2〉 | ∃C ∈ C(F), t ∈ T (F) : t1 = C [t] ∧ t2 = C [f (t)] }.

I R /∈ X2:
By pigeonhole principle using 〈f i (a), f i+1(a)〉, i ≥ 0.

I R /∈ T2:
Suppose that R is accepted by GTT 〈A1,A2〉 with n states in common.
For all i ≥ 0, let qi such that g i (a)→∗A1

qi and f (g i (a))→∗A2
qi .

Contradiction follows from pigeon-hole principle.

I R ∈ R2:
Let A = 〈{qa, qf , qg , q},F ′, {q},∆〉 with:

〈−, a〉 → qa 〈x , y〉(qx)→ qy qf → q 〈x , x〉(q)→ q

for x , y ∈ {f , g , a}

68/81

Closure properties

Boolean closure

X2 and R2 are closed under boolean operations.

Transitive closure

If R ∈ T2, then R∗ ∈ T2.

Proof: Let 〈A1,A2〉 with states Q1,Q2 a GTT accepting R.
We construct 〈B1,B2〉 accepting R∗ by adding transitions to A1 and A2

using the following saturation rule:

I For i 6= j and all q ∈ Q1 ∩ Q2, q′ ∈ Qj , if there exists a tree t s.t.

t →∗Bi q and t →∗Bj q′

then add q → q′ to Bj .

68/81

Closure properties

Boolean closure

X2 and R2 are closed under boolean operations.

Transitive closure

If R ∈ T2, then R∗ ∈ T2.

Proof: Let 〈A1,A2〉 with states Q1,Q2 a GTT accepting R.
We construct 〈B1,B2〉 accepting R∗ by adding transitions to A1 and A2

using the following saturation rule:

I For i 6= j and all q ∈ Q1 ∩ Q2, q′ ∈ Qj , if there exists a tree t s.t.

t →∗Bi q and t →∗Bj q′

then add q → q′ to Bj .

69/81

Transitive closure: Intuition

Suppose that 〈t, v〉, 〈v , u〉 ∈ R. The interesting case is illustrated below:

Suppose that 〈t, v〉 differ in a position p
and 〈v , u〉 in positions pp1, . . . , ppn.

Then in A2 we want the subtrees of u at pp1, . . . , ppn to be substitutable
for the corresponding subtrees in v .

70/81

Transitive closure: Intuition
Consider the runs of t, v , u in 〈A1,A2〉:

Adding qi → q′i to the right-hand side automaton achieves the objective.

71/81

Transitive closure: R∗ ⊆ L(〈B1,B2〉)

Proof by induction: Let 〈t, u〉 ∈ R i , for i ≥ 0.

I i = 0: trivial

I i → i + 1: Let v s.t. 〈t, v〉 ∈ R i and 〈v , u〉 ∈ R.
Then (by induction) 〈t, v〉 is accepted by 〈B1,B2〉.
Let P be the positions in which 〈t, v〉 differ
and P ′ be the positions in which 〈v , u〉 differ.
All incomparable pairs in P × P ′ are handled by the definition of GTT.
For p ∈ P and pp1, . . . , ppn ∈ P ′ consider the previous drawings.
The case pp1, . . . , ppn ∈ P and p ∈ P ′ is symmetric.

72/81

Transitive closure: R∗ ⊇ L(〈B1,B2〉)
Let 〈Bi1,Bi2〉 denote the GTT after adding i transitions
and show that its language is included in R∗.

I i = 0: trivial

I i → i + 1: Let q → q′ be the transition added in the (i + 1)-th step
(to B1, say) and let q → q′ be used j times in accepting some 〈t, u〉.
If j = 0, then 〈t, u〉 ∈ R∗ by induction hypothesis. Otherwise:

1. there exist n ≥ 0, C ∈ Cn(F) etc such that t = C [t1, . . . , tn],
u = C [u1, . . . , un] and ∀k : tk →∗Bi+1

1

qk
∗

Bi+1
2

← uk .

2. Suppose tk = C ′[t ′]→∗Bi+1
1

C ′[q]→ C ′[q′]→∗Bi+1
1

qk for some k,C ′, t ′.

3. There must be some v ∈ T (F) with v →∗Bi
2

q and v →∗Bi
1

q′.

4. From (2) et (3) we have C ′[v]→∗Bi+1
1

qk .

5. Replacing tk by C ′[v] in (1) we get 〈t[t ′/v], u〉 ∈ L(〈Bi+1
1 ,Bi+1

2 〉)
with fewer than j times q → q′, thus by ind.hyp. 〈t[t ′/v], u〉 ∈ R∗.

6. From (2) and (3), t ′ →∗Bi+1
1

q ∗
Bi

2
← v , with fewer than j times q → q′.

7. From (6) by ind.hyp. 〈t, t[t ′/v]〉 ∈ R∗.

73/81

Application: XML

XML = Extensible Markup Language
I Conceived for platform-independent exchange of structured data

I An XML document consists of tags with attributes
and text (parsed character data, pcdata)

Example:
<html><head><meta charset="UTF-8"/>

<title>My web page</title></head>

<body><p>Bonne année !</p></body></html>

I A well-formed XML document forms a tree
(balanced tags, one single root tag)

I Testing for validity / generating tree from document:
visibly pushdown automaton, LL/LR parser

73/81

Application: XML

XML = Extensible Markup Language
I Conceived for platform-independent exchange of structured data

I An XML document consists of tags with attributes
and text (parsed character data, pcdata)

Example:
<html><head><meta charset="UTF-8"/>

<title>My web page</title></head>

<body><p>Bonne année !</p></body></html>

I A well-formed XML document forms a tree
(balanced tags, one single root tag)

I Testing for validity / generating tree from document:
visibly pushdown automaton, LL/LR parser

73/81

Application: XML

XML = Extensible Markup Language
I Conceived for platform-independent exchange of structured data

I An XML document consists of tags with attributes
and text (parsed character data, pcdata)

Example:
<html><head><meta charset="UTF-8"/>

<title>My web page</title></head>

<body><p>Bonne année !</p></body></html>

I A well-formed XML document forms a tree
(balanced tags, one single root tag)

I Testing for validity / generating tree from document:
visibly pushdown automaton, LL/LR parser

74/81

Valid XML documents

I Languages of XML documents defined by schemas
(DTD, XML Schema, Relax NG)

I Schemas define permissible tag (+attributes) and their nesting

I Examples of XML languages: HTML, SVG, KML, . . .

I Valid XML document: well-formed document satisfying a schema

I Example: XML-Schema for KML

74/81

Valid XML documents

I Languages of XML documents defined by schemas
(DTD, XML Schema, Relax NG)

I Schemas define permissible tag (+attributes) and their nesting

I Examples of XML languages: HTML, SVG, KML, . . .

I Valid XML document: well-formed document satisfying a schema

I Example: XML-Schema for KML

75/81

DTD for XML

DTD = Document Type Definition

DTD define a (restricted) subclass of XML languages.
Essentially, defines a regular language of child tags for each tag type.

Example (from Wikipedia):
<!ELEMENT html (head,body)>

<!ELEMENT hr EMPTY>

<!ELEMENT div (#PCDATA | p | ul | | table | pre | hr |

h1|h2|h3|h4|h5|h6 | blockquote | ...)*>

<!ELEMENT dl (dt|dd)+>

Validity checking of DTD

The language of XML documents defined by DTD is accepted by NHA.

76/81

Restrictions on DTD

Expressivity of DTD

There are hedge-recognizable languages that cannot be defined by DTD.

Example: {f (g(a)), f ′(g(b))}

DTD contain another restriction:

It is an error if the content model allows an element to match
more than one occurrence of an element type in the content
model.

E.g., (ab|ac) is not allowed (but a(b|c) is).

76/81

Restrictions on DTD

Expressivity of DTD

There are hedge-recognizable languages that cannot be defined by DTD.

Example: {f (g(a)), f ′(g(b))}

DTD contain another restriction:

It is an error if the content model allows an element to match
more than one occurrence of an element type in the content
model.

E.g., (ab|ac) is not allowed (but a(b|c) is).

76/81

Restrictions on DTD

Expressivity of DTD

There are hedge-recognizable languages that cannot be defined by DTD.

Example: {f (g(a)), f ′(g(b))}

DTD contain another restriction:

It is an error if the content model allows an element to match
more than one occurrence of an element type in the content
model.

E.g., (ab|ac) is not allowed (but a(b|c) is).

77/81

Deterministic regular expressions

Definition: Marked RE

Let e be a RE over Σ. The marked RE ē is a RE over Σ × IN obtained by
adding a unique subscript to each letter in e.

Example: e = (ab|ac), then ē = (a1b2|a3c4)

Definition: Deterministic RE

Let e a RE over Σ. We call e deterministic if ē satisfies the following:
for all u, v ,w ∈ (Σ× IN)∗ and a ∈ Σ, if uaiv , uajw ∈ L(ē) then i = j .

Example: e = (ab|ac), ē = (a1b2|a3c4), not deterministic because
a1b2, a3c4 ∈ L(ē)

77/81

Deterministic regular expressions

Definition: Marked RE

Let e be a RE over Σ. The marked RE ē is a RE over Σ × IN obtained by
adding a unique subscript to each letter in e.

Example: e = (ab|ac), then ē = (a1b2|a3c4)

Definition: Deterministic RE

Let e a RE over Σ. We call e deterministic if ē satisfies the following:
for all u, v ,w ∈ (Σ× IN)∗ and a ∈ Σ, if uaiv , uajw ∈ L(ē) then i = j .

Example: e = (ab|ac), ē = (a1b2|a3c4), not deterministic because
a1b2, a3c4 ∈ L(ē)

78/81

Parsing deterministic RE

Parsing det. RE

Let e be a deterministic RE. A DFA for e can be constructed in polynomial
(linear) time. [Brüggemann-Klein 1993, Groz et al 2012]

Proof (sketch): Construction of Glushkov automaton from e.

Expressivity of det. RE

Not every regular language can be defined by a deterministic RE.

78/81

Parsing deterministic RE

Parsing det. RE

Let e be a deterministic RE. A DFA for e can be constructed in polynomial
(linear) time. [Brüggemann-Klein 1993, Groz et al 2012]

Proof (sketch): Construction of Glushkov automaton from e.

Expressivity of det. RE

Not every regular language can be defined by a deterministic RE.

79/81

XML Schema

XML Schema can define more expressive XML languages.
Example:

<xsd:complexType name="track">

<xsd:sequence minOccurs="1" maxOccurs="unbounded">

<xsd:choice>

<xsd:element name="invSession" type="invSession"

minOccurs="1" maxOccurs="1"/>

<xsd:element name="conSession" type="conSession"

minOccurs="1" maxOccurs="1"/>

</xsd:choice>

<xsd:element name="break" type="xsd:string"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

80/81

XML Schema and Hedge Automata

XML Schema = NHA

XML Schema (restricted to occurrence and nesting conditions) correspond
to the class of hedge-recognizable languages.

Moreover, XML Schema also permit non-hedge-recognizable features:

I constraints on data types in attributes and pcdata

I consistency constraints (e.g., unique keys)

81/81

XSL Transformation

I XSLT allows to transform XML documents into other documents (incl.
non XML)

I XQuery used to specify nodes on which to apply a transformation

Example (from Wikipedia):

<xsl:template match="//title">

<xsl:apply-templates/>

</xsl:template>

<xsl:for-each select="book">

<xsl:sort select="price" order="ascending" />

</xsl:for-each>

