Tree Automata and Applications

M1 course, 2023/2024

Organization

Timetable

- Exercises: Thursday 8:30-10:30 (Luc Lapointe)
- Course: Thursday 10:45-12:45 (Stefan Schwoon)

Exams

- DM or CC (to be specified by Luc)
- Final Exam: 2h, 11 January
- First session: DM/CC + Exam (50/50)
- Second session: DM/CC + Repeat Exam (50/50)

Course materials

- Website: lecturer's homepage + Wiki MPRI, course 1-18 (exercise sheets, slides, former exams)
- Hubert Comon et al.

Tree Automata Techniques and Applications. http://tata.gforge.inria.fr/

Motivations

(1) Natural extension of formal-language notions (automata, logic, ...)
(2) Treatment of tree-like data structures: parse tree, XML documents (XPath, CSS selectors)
(3) Applications e.g. in compiler construction, formal verification

Trees

We consider finite ordered ranked trees.

- ordered: internal nodes have children $1 \ldots n$
- ranked : number of children fixed by node's label

Let N denote the set of positive integers.
Nodes (positions) of a tree are associated with elements of N^{*} :

Definition: Tree
A (finite, ordered) tree is a non-empty, finite, prefix-closed set Pos $\subseteq N^{*}$ such that $w(i+1) \in$ Pos implies $w i \in \operatorname{Pos}$ for all $w \in N^{*}, i \in N$.

Ranked Trees

Ranked symbols

Let $\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots$ be disjoint sets of symbols of arity $0,1, \ldots$
We note $\mathcal{F}:=\bigcup_{i} \mathcal{F}_{i}$.

- Notation (example): $\mathcal{F}=\{f(2), g(1), a, b\}$

Let \mathcal{X} denote a set of variables (disjoint from the other symbols).
Definition: Ranked tree
A ranked tree is a mapping $t: \operatorname{Pos} \rightarrow(\mathcal{F} \cup \mathcal{X})$ satisfying:

- Pos is a tree;
- for all $p \in \operatorname{Pos}$, if $t(p) \in \mathcal{F}_{n}, n \geq 1$ then $\operatorname{Pos} \cap p N=\{p 1, \ldots, p n\}$;
- for all $p \in \operatorname{Pos}$, if $t(p) \in \mathcal{X} \cup \mathcal{F}_{0}$ then $\operatorname{Pos} \cap p N=\emptyset$.

Trees and Terms

Definition: Terms

The set of terms $T(\mathcal{F}, \mathcal{X})$ is the smallest set satisfying:

- $\mathcal{X} \cup \mathcal{F}_{0} \subseteq T(\mathcal{F}, \mathcal{X})$;
- if $t_{1}, \ldots, t_{n} \in T(\mathcal{F}, \mathcal{X})$ and $f \in \mathcal{F}_{n}$, then $f\left(t_{1}, \ldots, t_{n}\right) \in T(\mathcal{F}, \mathcal{X})$.

We note $T(\mathcal{F}):=T(\mathcal{F}, \emptyset)$. A term in $T(\mathcal{F})$ is called ground term.
A term of $T(\mathcal{F}, \mathcal{X})$ is linear if every variable occurs at most once.
Example: $\mathcal{F}=\{f(2), g(1), a, b\}, \mathcal{X}=\{x, y\}$

- $f(g(a), b) \in T(\mathcal{F})$;
- $f(x, f(b, y)) \in T(\mathcal{F}, \mathcal{X})$ is linear;
- $f(x, x) \in T(\mathcal{F}, \mathcal{X})$ is non-linear.

We confuse terms and trees in the obvious manner.

Height and size

Definition

Let $t \in T(\mathcal{F}, \mathcal{X})$. We note $\mathcal{H}(t)$ the height of t and $|t|$ the size of t.

- if $t \in \mathcal{X}$, then $\mathcal{H}(t):=0$ and $|t|:=0 ; \quad$ (for notational convenience)
- if $t \in \mathcal{F}_{0}$, then $\mathcal{H}(t):=1$ and $|t|:=1$;
- if $t=f\left(t_{1}, \ldots, t_{n}\right)$, then $\mathcal{H}(t):=1+\max \left\{\mathcal{H}\left(t_{1}\right), \ldots, \mathcal{H}\left(t_{n}\right)\right\}$ and $|t|:=1+\left|t_{1}\right|+\cdots+\left|t_{n}\right|$.

Subterms / subtrees

Definition: Subtree

Let $t, u \in T(\mathcal{F}, \mathcal{X})$ and p a position. Then $\left.t\right|_{p}: \operatorname{Pos}_{p} \rightarrow T(\mathcal{F}, \mathcal{X})$ is the ranked tree defined by

- Pos $_{p}:=\{q \mid p q \in \operatorname{Pos}\} ;$
- $\left.t\right|_{p}(q):=t(p q)$.

Moreover, $t[u]_{p}$ is the tree obtained by replacing $\left.t\right|_{p}$ by u in t. $t \unrhd t^{\prime}\left(\right.$ resp. $\left.t \triangleright t^{\prime}\right)$ denotes that t^{\prime} is a (proper) subtree of t.

Substitutions and Context

Definition: Substitution

- (Ground) substitution σ : mapping from \mathcal{X} to $T(\mathcal{F}, \mathcal{X})$ resp. $T(\mathcal{F})$
- Notation: $\sigma:=\left\{x_{1} \leftarrow t_{1}, \ldots, x_{n} \leftarrow t_{n}\right\}$, with $\sigma(x):=x$ for all $x \in \mathcal{X} \backslash\left\{x_{1}, \ldots, x_{n}\right\}$
- Extension to terms: for all $f \in \mathcal{F}_{m}$ and $t_{1}^{\prime}, \ldots, t_{m}^{\prime} \in T(\mathcal{F}, \mathcal{X})$

$$
\sigma\left(f\left(t_{1}^{\prime}, \ldots, t_{m}^{\prime}\right)\right)=f\left(\sigma\left(t_{1}^{\prime}\right), \ldots, \sigma\left(t_{m}^{\prime}\right)\right)
$$

- Notation: $t \sigma$ for $\sigma(t)$

Definition: Context

A context is a linear term $C \in T(\mathcal{F}, \mathcal{X})$ with variables x_{1}, \ldots, x_{n}. We note $C\left[t_{1}, \ldots, t_{n}\right]:=C\left\{x_{1} \leftarrow t_{1}, \ldots, x_{n} \leftarrow t_{n}\right\}$.
$\mathcal{C}^{n}(\mathcal{F})$ denotes the contexts with n variables and $\mathcal{C}(\mathcal{F}):=\mathcal{C}^{1}(\mathcal{F})$. Let $C \in \mathcal{C}(\mathcal{F})$. We note $C^{0}:=x_{1}$ and $C^{n+1}=C^{n}[C]$ for $n \geq 0$.

Tree automata

Basic idea: Extension of finite automata from words to trees
Direct extension of automata theory when words seen as unary terms:

$$
a b c \widehat{=} a(b(c(\$)))
$$

Finite automaton: labels every prefix of a word with a state. Tree automaton: labels every position/subtree of a tree with a state. Two variants: bottom-up vs top-down labelling

Basic results (preview)

- Non-deterministic bottom-up and top-down are equally powerful
- Deterministic bottom-up equally powerful
- Deterministic top-down less powerful

Bottom-up automata

Definition: (Bottom-up tree automata)

A (finite bottom-up) tree automaton (NFTA) is a tuple $\mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle$, where:

- Q is a finite set of states;
- \mathcal{F} a finite ranked alphabet;
- $G \subseteq Q$ are the final states;
- Δ is a finite set of rules of the form

$$
f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q
$$

for $f \in \mathcal{F}_{n}$ and $q, q_{1}, \ldots, q_{n} \in Q$.
Example: $Q:=\left\{q_{0}, q_{1}, q_{f}\right\}, \mathcal{F}=\{f(2), g(1), a\}, G:=\left\{q_{f}\right\}$, and rules

$$
a \rightarrow q_{0} \quad g\left(q_{0}\right) \rightarrow q_{1} \quad g\left(q_{1}\right) \rightarrow q_{1} \quad f\left(q_{1}, q_{1}\right) \rightarrow q_{f}
$$

Move relation and computation tree

Move relation
Let $t, t^{\prime} \in T(\mathcal{F}, Q)$. We write $t \rightarrow_{\mathcal{A}} t^{\prime}$ if the following are satisfied:

- $t=C\left[f\left(q_{1}, \ldots, q_{n}\right)\right]$ for some context C;
- $t^{\prime}=C[q]$ for some rule $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$ of \mathcal{A}.

Idea: successively reduce t to a single state, starting from the leaves. As usual, we write $\rightarrow_{\mathcal{A}}^{*}$ for the transitive and reflexive closure of $\rightarrow_{\mathcal{A}}$.

Computation
Let t : Pos $\rightarrow \mathcal{F}$ a ground tree. A run or computation of \mathcal{A} on t is a labelling $t^{\prime}: \operatorname{Pos} \rightarrow Q$ compatible with Δ, i.e.:

- for all $p \in \operatorname{Pos}$, if $t(p)=f \in \mathcal{F}_{n}, t^{\prime}(p)=q$, and $t^{\prime}(p j)=q_{j}$ for all $p j \in P o s \cap p N$, then $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta$

Regular tree languages

A tree t is accepted by \mathcal{A} iff $t \rightarrow_{\mathcal{A}}^{*} q$ for some $q \in G$.
$\mathcal{L}(\mathcal{A})$ denotes the set of trees accepted by \mathcal{A}.
L is regular/recognizable iff $L:=\mathcal{L}(\mathcal{A})$ for some NFTA \mathcal{A}.

Two NFTAs \mathcal{A}_{1} and \mathcal{A}_{2} are equivalent iff $\mathcal{L}\left(\mathcal{A}_{1}\right)=\mathcal{L}\left(\mathcal{A}_{2}\right)$.

NFTA with ε-moves

Definition:

An ε-NFTA is an NFTA $\mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle$, where Δ can additionally contain rules of the form $q \rightarrow q^{\prime}$, with $q, q^{\prime} \in Q$.

Semantics: Allow to re-label a position from q to q^{\prime}.

Equivalence of ε-NFTA
For every ε-NFTA \mathcal{A} there exists an equivalent NFTA \mathcal{A}^{\prime}.
Proof (sketch): Construct the rules of \mathcal{A}^{\prime} by a saturation procedure.

Deterministic, complete, and reduced NFTA

An NFTA is deterministic if no two rules have the same left-hand side. An NFTA is complete if for every $f \in \mathcal{F}_{n}$ and $q_{1}, \ldots, q_{n} \in Q$, there exists at least one rule $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta$.

As usual, a DFTA has at most one run per tree.
A DCFTA as exactly one run per tree.

A state q of \mathcal{A} is accessible if there exists a tree t s.t. $t \rightarrow_{\mathcal{A}}^{*} q$.
\mathcal{A} is said to be reduced if all its states are accessible.

A pumping lemma for tree languages

Lemma

Let L be recognizable. Then there exists a constant k such that for all $t \in L$ with $\mathcal{H}(t)>k$ there exist contexts $C, D \in \mathcal{C}(\mathcal{F})$ and $u \in T(\mathcal{F})$ satisfying:

- D is non-trivial (i.e. not just a variable);
- $t=C[D[u]]$;
- for all $n \geq 0$, we have $C\left[D^{n}[u]\right] \in L$.

Proof: Let k be the number of states of an NFTA \mathcal{A} recognizing L.
Then an accepting run for t has positions $p, p p^{\prime}\left(p^{\prime} \neq \varepsilon\right)$ labelled with the same state q. Let $C:=t[x]_{p}, D:=\left.t\right|_{p}[x]_{p^{\prime}}$, and $u:=\left.t\right|_{p p^{\prime}}$. We have $t=C[D[u]] \in L, D[u] \rightarrow_{\mathcal{A}}^{*} q$, and $u \rightarrow_{\mathcal{A}}^{*} q$, hence the accepting run of t implies $D[q] \rightarrow_{\mathcal{A}}^{*} q$ and $C[q] \rightarrow_{\mathcal{A}}^{*} q_{f}$, for some final q_{f}. Therefore, $C[u] \rightarrow_{\mathcal{A}}^{*} q_{f}$ and for any $n \geq 0$, (by induction)

$$
C\left[D^{n+1}[u]\right] \rightarrow_{\mathcal{A}}^{*} C\left[D^{n}[D[q]]\right] \rightarrow_{\mathcal{A}}^{*} C\left[D^{n}[q]\right] \rightarrow_{\mathcal{A}}^{*} C[q] \rightarrow_{\mathcal{A}}^{*} q_{f}
$$

Illustration of pumping lemma

Let $L=\left\{f\left(g^{i}(a), g^{i}(a)\right) \mid i \geq 0\right\}$ for $\mathcal{F}=\{f(2), g(1), a\}$.
Suppose (by contradiction) that L is recognizable by NFTA \mathcal{A} with k states. Let $t=f\left(g^{k}(a), g^{k}(a)\right)$.

Pumping D creates trees outside $L \Rightarrow L$ not recognizable.

Top-down tree automata

Definition

A top-down tree automaton (T-NFTA) is a tuple $\mathcal{A}=\langle Q, \mathcal{F}, I, \Delta\rangle$, where Q, \mathcal{F} are as in NFTA, $I \subseteq Q$ is a set of initial states, and Δ contains rules of the form

$$
q(f) \rightarrow\left(q_{1}, \ldots, q_{n}\right)
$$

for $f \in \mathcal{F}_{n}$ and $q, q_{1}, \ldots, q_{n} \in Q$.
Move relation: $t \rightarrow_{\mathcal{A}} t^{\prime}$ iff

- $t=C\left[q\left(f\left(t_{1}, \ldots, t_{n}\right)\right)\right]$ for some context $C, f \in \mathcal{F}_{n}$, and $t_{1}, \ldots, t_{n} \in T(\mathcal{F})$;
- $t^{\prime}=C\left[f\left(q_{1}\left(t_{1}\right), \ldots, q_{n}\left(t_{n}\right)\right)\right]$ for some rule $q(f) \rightarrow\left(q_{1}, \ldots, q_{n}\right)$.
t is accepted by \mathcal{A} if $q(t) \rightarrow_{\mathcal{A}}^{*} t$ for some $q \in I$.

From top-down to bottom-up

Theorem (T-NFTA = NFTA)

L is recognizable by an NFTA iff it is recognizable by a T-NFTA.
Claim: L is accepted by NFTA $\mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle$ iff it is accepted by T-NFTA $\mathcal{A}^{\prime}=\left\langle Q, \mathcal{F}, G, \Delta^{\prime}\right\rangle$, with

$$
\Delta^{\prime}:=\left\{q(f) \rightarrow\left(q_{1}, \ldots, q_{n}\right) \mid f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta\right\}
$$

Proof: Let $t \in T(\mathcal{F})$. We show $t \rightarrow_{\mathcal{A}}^{*} q$ iff $q(t) \rightarrow_{\mathcal{A}^{\prime}}^{*} t$.

- Base: $t=a$ (for some $a \in \mathcal{F}_{0}$)

$$
t=a \rightarrow_{\mathcal{A}}^{*} q \Longleftrightarrow a \rightarrow_{\Delta} q \Longleftrightarrow q(a) \rightarrow_{\Delta^{\prime}} \varepsilon \Longleftrightarrow q(a) \rightarrow_{\mathcal{A}^{\prime}}^{*} a
$$

- Induction: $t=f\left(t_{1}, \ldots, t_{n}\right)$, hypothesis holds for t_{1}, \ldots, t_{n}

$$
\begin{gathered}
f\left(t_{1}, \ldots, t_{n}\right) \rightarrow_{\mathcal{A}}^{*} q \Longleftrightarrow \exists q_{1}, \ldots q_{n}: f\left(q_{1}, \ldots, q_{n}\right) \rightarrow_{\Delta} q \wedge \forall i: t_{i} \rightarrow_{\mathcal{A}}^{*} q_{i} \\
\Longleftrightarrow \exists q_{1}, \ldots, q_{n}: q(f) \rightarrow_{\Delta^{\prime}}\left(q_{1}, \ldots, q_{n}\right) \wedge \forall i: q_{i}\left(t_{i}\right) \rightarrow_{\mathcal{A}^{\prime}}^{*} t_{i} \\
\Longleftrightarrow q\left(f\left(t_{1}, \ldots, t_{n}\right)\right) \rightarrow_{\mathcal{A}^{\prime}} f\left(q_{1}\left(t_{1}\right), \ldots, q_{n}\left(t_{n}\right)\right) \rightarrow_{\mathcal{A}^{\prime}}^{*} f\left(t_{1}, \ldots, t_{n}\right)
\end{gathered}
$$

From NFTA to DFTA

Theorem (NFTA=DFTA)

If L is recognizable by an NFTA, then it is recognizable by a DFTA.
Claim (subset construct.): Let $\mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle$ an NFTA recognizing L. The following DCFTA $\mathcal{A}^{\prime}=\left\langle 2^{Q}, \mathcal{F}, G^{\prime}, \Delta^{\prime}\right\rangle$ also recognizes L :

- $G^{\prime}=\{S \subseteq Q \mid S \cap G \neq \emptyset\}$
- for every $f \in \mathcal{F}_{n}$ and $S_{1}, \ldots, S_{n} \subseteq Q$, let $f\left(S_{1}, \ldots, S_{n}\right) \rightarrow S \in \Delta^{\prime}$, where $S=\left\{q \in Q \mid \exists q_{1} \in S_{1}, \ldots, q_{n} \in S_{n}: f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta\right\}$

Proof: For $t \in T(\mathcal{F})$, show $t \rightarrow_{\mathcal{A}^{\prime}}^{*}\left\{q \mid t \rightarrow_{\mathcal{A}}^{*} q\right\}$, by structural induction.
DFTA with accessible states
In practice, the construction of \mathcal{A}^{\prime} can be restricted to accessible states:
Start with transitions $a \rightarrow S$, then saturate.
Deterministic top-down are less powerful
E.g., $L=\{f(a, b), f(b, a)\}$ can be recognized by DFTA but not by T-DFTA.

Closure properties

Theorem (Boolean closure)
Recognizable tree languages are closed under Boolean operations.
Negation (invert accepting states)
Let $\langle Q, \mathcal{F}, G, \Delta\rangle$ be a DCFTA recognizing L.
Then $\langle Q, \mathcal{F}, Q \backslash G, \Delta\rangle$ recognizes $T(\mathcal{F}) \backslash L$.
Union (juxtapose)
Let $\left\langle Q_{i}, \mathcal{F}, G_{i}, \Delta_{i}\right\rangle$ be NFTA recognizing L_{i}, for $i=1,2$.
Then $\left\langle Q_{1} \uplus Q_{2}, \mathcal{F}, G_{1} \cup G_{2}, \Delta_{1} \cup \Delta_{2}\right\rangle$ recognizes $L_{1} \cup L_{2}$.

Cross-product construction

Direct intersection
Let $\mathcal{A}_{i}=\left\langle Q_{i}, \mathcal{F}, G_{i}, \Delta_{i}\right\rangle$ be NFTA recognizing L_{i}, for $i=1,2$.
Then $\mathcal{A}=\left\langle Q_{1} \times Q_{2}, \mathcal{F}, G_{1} \times G_{2}, \Delta\right\rangle$ recognizes $L_{1} \cap L_{2}$, where

$$
\frac{f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q \in \Delta_{1} \quad f\left(q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right) \rightarrow q^{\prime} \in \Delta_{2}}{f\left(\left\langle q_{1}, q_{1}^{\prime}\right\rangle, \ldots,\left\langle q_{n}, q_{n}^{\prime}\right\rangle\right) \rightarrow\left\langle q, q^{\prime}\right\rangle \in \Delta}
$$

Remarks:

- If $\mathcal{A}_{1}, \mathcal{A}_{2}$ are $\mathrm{D}(\mathrm{C}) \mathrm{FTA}$, then so is \mathcal{A}.
- If $\mathcal{A}_{1}, \mathcal{A}_{2}$ are complete, replace $G_{1} \times G_{2}$ with $\left(G_{1} \times Q_{2}\right) \cup\left(Q_{1} \times G_{2}\right)$ to recognize $L_{1} \cup L_{2}$.

Tree languages and context-free languages

Front

Let t be a ground tree. Then $\operatorname{fr}(t) \in \mathcal{F}_{0}^{*}$ denotes the word obtained from reading the leaves from left to right (in increasing lexicographical order of their positions).

Example: $t=f(a, g(b, a), c), f r(t)=a b a c$
Leaf languages

- Let L be a recognizable tree language. Then $f r(L)$ is context-free.
- Let L be a context-free language that does not contain the empty word. Then there exists an NFTA \mathcal{A} with $L=\operatorname{fr}(\mathcal{L}(\mathcal{A}))$.

Proof (idea):

- Given a T-NFTA recognizing L, construct a CFG from it.
- L is generated by a CFG using productions of the form $A \rightarrow B C \mid a$ only. Replace $A \rightarrow B C$ by $A \rightarrow A_{2}$ and $A_{2} \rightarrow B C$, construct a T-NFTA from the result.

Visibly pushdown automata

Visibly pushdown automaton
Let $\mathcal{A}=\left\langle Q, \Sigma, \Gamma, T, q_{0} z_{0}, F\right\rangle$ be a pushdown automaton.
\mathcal{A} is called visibly pushdown (VPA) if there exist $\Sigma_{0}, \Sigma_{1}, \Sigma_{2}$ such that

- $\Sigma=\Sigma_{0} \uplus \Sigma_{1} \uplus \Sigma_{2}$
- $T \subseteq \bigcup_{i=0}^{2}(Q \times \Gamma) \times \Sigma_{i} \times\left(Q \times \Gamma^{i}\right)$

Closure properties
Languages accepted by VPA are closed under boolean operations.
VPA and tree languages
Let $L \subseteq T(\mathcal{F})$ be a recognizable tree language.
Then L, seen as a word language of terms, is accepted by a VPA.

From TA to VPA

Let $\mathcal{A}=\langle Q, \mathcal{F}, I, \Delta\rangle$ be a T-NFTA accepting L.
For convenience, assume $I=\left\{q_{0}\right\}$ is a singleton (closure under union). We construct a single-state VPA $\mathcal{B}=\left\langle\Sigma, \Gamma, T, q_{0}\right\rangle$ accepting by empty stack and recognizing the terms of L (can be converted into a normal VPA).

- $\left.\Sigma_{0}=\mathcal{F}_{0} \cup\{)\right\}, \Sigma_{1}=\mathcal{F} \backslash \mathcal{F}_{0}, \Sigma_{2}=\{,,(\}$
- $\Gamma=Q \cup\left\{r_{i} \mid r \in \Delta, r=q(f) \rightarrow\left(q_{1}, \ldots, q_{n}\right), n \geq 1,0 \leq i \leq n\right\}$
- $T=\bigcup_{r \in \Delta} T_{r}$
- for $r=q(a) \rightarrow \varepsilon$, we have $T_{r}=\{\langle q, a, \varepsilon\rangle\}$;
- for $r=q(f) \rightarrow\left(q_{1}, \ldots, q_{n}\right), n \geq 1$, we have

$$
\begin{aligned}
T_{r} & =\left\{\left\langle q, f, r_{0}\right\rangle,\left\langle r_{0},\left(, q_{1} r_{1}\right\rangle,\left\langle r_{n},\right), \varepsilon\right\rangle\right\} \\
& \cup\left\{\left\langle r_{i},,, q_{i+1} r_{i+1}\right\rangle \mid 1 \leq i<n\right\}
\end{aligned}
$$

Idea: $q \xrightarrow{t}_{\mathcal{B}}^{*} \varepsilon$ iff $q(t) \rightarrow_{\mathcal{A}}^{*} t$

From TA to VPA: Example

Consider a T-NFTA $\langle Q, \mathcal{F}, I, \Delta\rangle$ accepting $L=\left\{f\left(g^{i}(a)\right) \mid i \geq 0\right\}$:

- $Q=\left\{q_{0}, q_{1}, q_{f}\right\}, \mathcal{F}=\{f(2), g(1), a\}, I=\left\{q_{f}\right\}$;
- $\Delta:=\left\{\alpha: q_{0}(a) \rightarrow \varepsilon, \quad \beta: q_{1}(g) \rightarrow q_{0}, \quad \gamma: q_{1}(g) \rightarrow q_{1}, \quad \delta: q_{f}(f) \rightarrow\right.$ $\left.\left(q_{1}, q_{1}\right)\right\}$.
We construct the single-state VPA $\left\langle\Sigma, \Gamma, T, q_{f}\right\rangle$, where:
- $\left.\Sigma_{0}=\{a),\right\}, \Sigma_{1}=\{f, g\}, \Sigma_{2}=\{,(\} ;$
- 「 $=Q \cup\left\{\beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}, \delta_{0}, \delta_{1}, \delta_{2}\right\}$;
- $T_{\alpha}=\left\{\left\langle q_{0}, a, \varepsilon\right\rangle\right\}$;
- $T_{\beta}=\left\{\left\langle q_{1}, g, \beta_{0}\right\rangle,\left\langle\beta_{0},\left(, q_{0} \beta_{1}\right\rangle,\left\langle\beta_{1},\right) \varepsilon\right\rangle\right\} ;$
- $T_{\gamma}=\left\{\left\langle q_{1}, g, \gamma_{0}\right\rangle,\left\langle\gamma_{0},\left(, q_{1} \gamma_{1}\right\rangle,\left\langle\gamma_{1},\right) \varepsilon\right\rangle\right\} ;$
- $T_{\delta}=\left\{\left\langle\boldsymbol{q}_{f}, f, \delta_{0}\right\rangle,\left\langle\delta_{0},\left(, q_{1} \delta_{1}\right\rangle,\left\langle\delta_{1},,, q_{1} \delta_{2}\right\rangle,\left\langle\delta_{2},\right) \varepsilon\right\rangle\right\}$.

Run on $f(g(a), g(g(a)))$:
$q_{f} \xrightarrow{f} \delta_{0} \xrightarrow{(} q_{1} \delta_{1} \xrightarrow{g} \beta_{0} \delta_{1} \xrightarrow{(} q_{0} \beta_{1} \delta_{1} \xrightarrow{a} \beta_{1} \delta_{1} \xrightarrow{)} \delta_{1} \xrightarrow{?} q_{1} \delta_{2} \xrightarrow{g} \gamma_{0} \delta_{2} \xrightarrow{(} q_{1} \gamma_{1} \delta_{2}$

$$
\xrightarrow{g} \beta_{0} \gamma_{1} \delta_{2} \xrightarrow{(} q_{0} \beta_{1} \gamma_{1} \delta_{2} \xrightarrow{a} \beta_{1} \gamma_{1} \delta_{2} \xrightarrow{)} \gamma_{1} \delta_{2} \xrightarrow{\text { l }} \delta_{2} \xrightarrow{)} \varepsilon
$$

Tree homomorphism

Definition

Let $\mathcal{X}_{n}:=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\mathcal{F}, \mathcal{F}^{\prime}$ ranked alphabets. A tree homomorphism is a mapping $h: \mathcal{F} \rightarrow T\left(\mathcal{F}^{\prime}, \mathcal{X}\right)$, with $h(f) \in T\left(\mathcal{F}, \mathcal{X}_{n}\right)$ if $f \in \mathcal{F}_{n}$.

Extension of h to trees $\left(T(\mathcal{F}) \rightarrow T\left(\mathcal{F}^{\prime}\right)\right)$:

- $h\left(f\left(t_{1}, \ldots, t_{n}\right)\right)=h(f)\left\{x_{1} \leftarrow h\left(t_{1}\right), \ldots, x_{n} \leftarrow h\left(t_{n}\right)\right\}$

Intuition:

- $h(f)$ "explodes" f-positions into trees
- reorders/copies/deletes subtrees.

Examples

Example

- $\mathcal{F}=\{f(2), g(1), a\}, \mathcal{F}^{\prime}=\left\{f^{\prime}(1), g^{\prime}(2), c, d\right\}$
- $h(f)=f^{\prime}\left(g^{\prime}\left(x_{2}, d\right)\right), h(g)=g^{\prime}\left(x_{1}, c\right), h(a)=g^{\prime}(c, d)$

Example (ternary to binary tree)

- $\mathcal{F}=\{f(3), a, b\}, \mathcal{F}^{\prime}=\{g(2), a, b\}$
- $h_{32}(f)=g\left(x_{1}, g\left(x_{2}, x_{3}\right)\right), h_{32}(a)=a, h_{32}(b)=b$

Properties of homomorphisms

A homomorphism h is

- linear if $h(f)$ linear for all f;
- non-erasing if $\mathcal{H}(h(f))>0$ for all f;
- flat if $\mathcal{H}(h(f))=1$ for all f;
- complete if $f \in \mathcal{F}_{n}$ implies that $h(f)$ contains all of \mathcal{X}_{n};
- permuting if h is complete, linear, and flat;
- alphabetic if $h(f)$ has the form $g\left(x_{1}, \ldots, x_{n}\right)$ for all f.

Example: h_{32} is linear, non-erasing, and complete.
Non-linear homomorphisms do not preserve recognizability

- Example: $h(f)=f^{\prime}\left(x_{1}, x_{1}\right), h(g)=g\left(x_{1}\right), h(a)=a$
- $L=\left\{f\left(g^{i}(a)\right) \mid i \geq 0\right\}$ (recognizable)
- $h(L)=\left\{f^{\prime}\left(g^{i}(a), g^{i}(a)\right) \mid i \geq 0\right\}$ (not recognizable)

Linear homomorphisms

Theorem: Linear homomorphisms preserve recognizability
Let $L \subseteq T(\mathcal{F})$ be recognizable and $h: \mathcal{F} \rightarrow \mathcal{F}^{\prime}$ a linear tree homomorphism. Then $h(L)$ is recognizable.

Illustrating example:

- $\mathcal{F}=\{f(2), g(1), a\}, \mathcal{F}^{\prime}=\left\{f^{\prime}(1), g^{\prime}(2), c, d\right\}$
- $h(f)=f^{\prime}\left(g^{\prime}\left(x_{2}, d\right)\right), h(g)=g^{\prime}\left(x_{1}, c\right), h(a)=g^{\prime}(c, d)$
- $L=\left\{f\left(g^{i}(a), g^{k}(a)\right) \mid i, k \geq 0\right\}$
- $\mathcal{A}=\left\langle\left\{q_{0}, q_{1}, q_{f}\right\}, \mathcal{F},\left\{q_{f}\right\}, \Delta\right\rangle$ recognizes L with $\Delta:=\left\{\alpha: a \rightarrow q_{0}, \quad \beta: g\left(q_{0}\right) \rightarrow q_{1}, \quad \gamma: g\left(q_{1}\right) \rightarrow q_{1}, \quad \delta: f\left(q_{1}, q_{1}\right) \rightarrow q_{f}\right\}$

Run on \mathcal{A}
Rules used to produce states

Construct automaton for $h(L)$ preserving state labels from \mathcal{A} $+$ Guess the rules.

Automaton construction for $h(L)$

Given a reduced NFTA $\mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle$ for L, construct NFTA $\mathcal{A}^{\prime}=\left\langle Q^{\prime}, \mathcal{F}^{\prime}, G, \Delta^{\prime}\right\rangle$ for $h(L)$.

- $Q^{\prime}:=Q \cup\left\{\langle r, p\rangle \mid r \in \Delta, \exists f \in \mathcal{F}: r=f(\ldots) \rightarrow \ldots, p \in \operatorname{Pos}_{h(f)}\right\}$;
- Δ^{\prime} contains, for each transition $r: f\left(s_{1}, \ldots, s_{n}\right) \rightarrow s$ in Δ and $p \in \operatorname{Pos}_{h(f)}$:
- $f^{\prime}(\langle r, p 1\rangle, \ldots,\langle r, p k\rangle) \rightarrow\langle r, p\rangle$ if $h(f)(p)=f^{\prime} \in \mathcal{F}_{k}^{\prime}$
- $s_{i} \rightarrow\langle r, p\rangle$ if $h(f)(p)=x_{i}$
- $\langle r, \varepsilon\rangle \rightarrow s$

Correctness

To prove: \mathcal{A}^{\prime} accepts $h(L)$.

- $h(L) \subseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right)$:

For $t \in T(\mathcal{F})$, prove that $t \rightarrow_{\mathcal{A}}^{*} q$ implies $h(t) \rightarrow_{\mathcal{A}^{\prime}}^{*} q$, by structural induction over t.

- $h(L) \supseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right)$:

For $t^{\prime} \in T\left(\mathcal{F}^{\prime}\right)$, prove that if $t^{\prime} \rightarrow_{\mathcal{A}^{\prime}}^{*} q \in Q$, then there exists $t \in T(\mathcal{F}) \cap h^{-1}\left(t^{\prime}\right)$ with $t \rightarrow_{\mathcal{A}}^{*} q$, by induction on number of states (of Q) in the computation $t^{\prime} \rightarrow{ }_{\mathcal{A}^{\prime}}^{*} q$.

Inverse tree homomorphisms

Theorem: Inverse homomorphisms preserve recognizability
Let $L \subseteq T\left(\mathcal{F}^{\prime}\right)$ be recognizable and $h: \mathcal{F} \rightarrow \mathcal{F}^{\prime}$ a tree homomorphism (not necessarily linear). Then $h^{-1}(L)$ is recognizable.

Given an NFTA $\mathcal{A}^{\prime}=\left\langle Q, \mathcal{F}^{\prime}, G, \Delta^{\prime}\right\rangle$ for L, construct NFTA $\mathcal{A}=\langle Q \uplus\{!\}, \mathcal{F}, G, \Delta\rangle$ for $h^{-1}(L)$.
For all $n \geq 0$ and $f \in \mathcal{F}_{n}$, and $p_{1}, \ldots, p_{n} \in Q$,

- add $f(!, \ldots,!) \rightarrow$! to Δ;
- if $h(f)\left\{x_{1} \leftarrow p_{1}, \ldots, x_{n} \leftarrow p_{n}\right\} \rightarrow_{\mathcal{A}^{\prime}}^{*} q$, add $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$ to Δ, with:

$$
q_{i}= \begin{cases}p_{i} & \text { if } x_{i} \text { appears in } h(f) \\ ! & \text { otherwise }\end{cases}
$$

Proof: Show $t \rightarrow_{\mathcal{A}}^{*} q$ iff $h(t) \rightarrow_{\mathcal{A}^{\prime}}^{*} q$, for all $t \in T(\mathcal{F})$.

Intersection problem

Theorem

The following problem is EXPTIME-complete:
Given tree automata $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$, is $\mathcal{L}\left(\mathcal{A}_{1}\right) \cap \cdots \cap \mathcal{L}\left(\mathcal{A}_{n}\right) \neq \emptyset$?
Proof (sketch):

- Hardness: Simulate an linear-space ATM \mathcal{M} with input of length n. If \mathcal{M} accepts the input, there is an accepting run.
Encode the run of \mathcal{M} as a tree. Construct \mathcal{A}_{i}, for $i=1, \ldots, n$, to check:
(1) if \mathcal{M} starts with the correct configuration;
(2) if all configurations in the run are of length n;
(3) if all final configurations are accepting;
(9) if the part of the configurations around the i-th symbol are coherent.
- Membership: Compute the productive tuples of states in $\mathcal{A}_{1} \times \cdots \times \mathcal{A}_{n}$.

Detailed proof: Veanes, 1997

Congruences on trees

Definition: Congruence

Let \equiv be an equivalence relation on $T(\mathcal{F})$.

- \equiv is called a congruence if for any $n \geq 0$ and $f \in \mathcal{F}_{n}, u_{1} \equiv v_{1}, \ldots, u_{n} \equiv v_{n}$ we have

$$
f\left(u_{1}, \ldots, u_{n}\right) \equiv f\left(v_{1}, \ldots, v_{n}\right)
$$

- \equiv saturates L if $u \equiv v$ implies $u \in L \Longleftrightarrow v \in L$.

For $L \subseteq T(\mathcal{F})$, write $u \equiv_{L} v$ if

$$
\forall C \in \mathcal{C}(\mathcal{F}): C[u] \in L \Leftrightarrow C[v] \in L
$$

Myhill-Nerode Theorem for trees
The following are equivalent:
(1) $L \subseteq T(\mathcal{F})$ is recognizable.
(2) L is saturated by some congruence of finite index.
(3) \equiv_{L} is of finite index.

Myhill-Nerode Theorem

Application:
Consider $L=\left\{f\left(g^{i}(a), g^{i}(a)\right) \mid i \geq 0\right\}$.
For any pair $i \neq k$, consider $C=f\left(x, g^{i}(a)\right)$.
Then $C\left[g^{i}(a)\right] \in L$ but $C\left[g^{k}(a)\right] \notin L \Rightarrow g^{i}(a) \not \equiv L g^{k}(a)$
Therefore \equiv_{L} is not of finite index, and L is not recognizable.
Proof of the theorem (sketch):

- $1 \rightarrow 2$: Let \mathcal{A} be DCFTA and let $u \equiv v$ iff $u \rightarrow_{\mathcal{A}}^{*} q_{\mathcal{A}}^{*} \leftarrow v$. Then \equiv is of finite index and saturates L.
- $2 \rightarrow 3$: Let \equiv be a saturating congruence, $u \equiv v$ implies $u \equiv\llcorner v$ (prove $u \equiv v$ implies $C[u] \equiv C[v]$ for all C, by recurrence over height of position of x in C).
- $3 \rightarrow 1$: Let $\mathcal{A}=\langle T(\mathcal{F}) / \equiv\llcorner, \mathcal{F}, L / \equiv\llcorner, \Delta\rangle$, with

$$
f\left(\left[u_{1}\right], \ldots,\left[u_{n}\right]\right) \rightarrow\left[f\left(u_{1}, \ldots, u_{n}\right)\right]
$$

for all $n \geq 0, f \in \mathcal{F}_{n}, u_{1}, \ldots, u_{n} \in T(\mathcal{F})$, where $[u]$ is the equivalence class of $u \in T(\mathcal{F})$;
Remark: This can be shown to be the canonical minimal DCFTA

Path languages

Path languages

Let $t \in T(\mathcal{F})$. The path language $\pi(t)$ is defined as follows:

- if $t=a \in \mathcal{F}_{0}$, then $\pi(t)=\{a\}$;
- if $t=f\left(t_{1}, \ldots, t_{n}\right)$, for $f \in \mathcal{F}_{n}$, then $\pi(t)=\left\{\right.$ fiw $\left.\mid w \in \pi\left(t_{i}\right)\right\}$. We write $\pi(L)=\bigcup\{\pi(t) \mid t \in L\}$ for $L \subseteq T(\mathcal{F})$.

Example: $L=\{f(a, b), f(b, a)\}, \pi(L)=\{f 1 a, f 2 b, f 1 b, f 2 a\}$.

Path closure

Let $L \subseteq T(\mathcal{F})$ be a tree language.

- The path closure of L is $p c(L)=\{t \mid \pi(t) \subseteq \pi(L)\} \supseteq L$.
- L is called path-closed if $L=p c(L)$.

Example: $p c(L)=\{f(a, a), f(a, b), f(b, a), f(b, b)\}$, so L is not path-closed.

Path closure and T-NFTA

Lemma

Let $L \subseteq T(\mathcal{F})$ be a recognizable tree language. Then:

- $\pi(L)$ is a recognizable word language.
- $p c(L)$ is a recognizable tree language.

Proof: Let $\mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle$ be a reduced T-NFTA for L.

- Construct a finite (word) automaton out of \mathcal{A}.
(Easy, but does require \mathcal{A} to be reduced!)
- Construct $\mathcal{A}^{\prime}=\left\langle Q, \mathcal{F}, G, \Delta^{\prime}\right\rangle$ for $p c(L)$ as follows: for all $a \in \mathcal{F}_{0}$:

$$
q(a) \rightarrow_{\Delta} \varepsilon \quad \rightarrow \quad q(a) \rightarrow_{\Delta^{\prime}} \varepsilon
$$

for all $n \geq 1, f \in \mathcal{F}_{n}$:

$$
\forall i: q(f) \rightarrow_{\Delta}\left(q_{i, 1}, \ldots, q_{n, 1}\right) \rightarrow q(f) \rightarrow_{\Delta^{\prime}}\left(q_{1,1}, \ldots, q_{n, n}\right)
$$

Let $L_{q}=\mathcal{L}(\langle Q, \mathcal{F},\{q\}, \Delta\rangle)$ and $L_{q}^{\prime}=\mathcal{L}\left(\left\langle Q, \mathcal{F},\{q\}, \Delta^{\prime}\right\rangle\right)$.
Prove $t \in L_{q}^{\prime} \Leftrightarrow \pi(t) \subseteq \pi\left(L_{q}\right)$ for all $q \in Q, t \in T(\mathcal{F})$ by induction.

Path closure and T-NFTA

Corollary

It is decidable whether a recognizable tree language is path-closed.

Theorem

Let $L \subseteq T(\mathcal{F})$ be a recognizable tree language. L is path-closed iff it is recognized by a T-DFTA.

Proof:

- " \rightarrow ":

$$
\text { Let } \mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle \text { be a reduced T-NFTA for } L \text {. }
$$

$$
\text { Construct a T-DFTA } \mathcal{A}^{\prime}=\left\langle 2^{Q}, \mathcal{F}, G, \Delta^{\prime}\right\rangle \text { as follows: }
$$

$$
\text { for all } a \in \mathcal{F}_{0}, S(a) \rightarrow_{\Delta^{\prime}} \varepsilon \text { if } \exists q \in S, q(a) \rightarrow_{\Delta} \varepsilon \text {; }
$$

$$
\text { for all } n \geq 1, f \in \mathcal{F}_{n}, S(f) \rightarrow_{\Delta^{\prime}}\left(S_{1}, \ldots, S_{n}\right)
$$

$$
\text { where } S_{i}=\left\{q_{i} \mid \exists q \in S, q(f) \rightarrow \Delta\left(q_{1}, \ldots, q_{n}\right)\right\}
$$

- " \leftarrow ":

Let \mathcal{A} be a complete T-DFTA for L, define L_{q} as before.
Prove that $\pi(t) \subseteq \pi\left(L_{q}\right)$ implies $t \in L_{q}$, for all $q \in Q, t \in T(\mathcal{F})$.

Logic over trees

Alternative specification for sets of trees
E.g., to describe valid HTML documents:

- A p tag may only appear inside a body tag.
- A dl tag must contain pairs of dt and dd tags.

Roadmap

- We shall define a logic that defines such properties of trees.
- The sets of trees definable in that language will be recognizable.

Recall: First-/second-order logic

First-order logic (FO)
Let $\sigma=\left(\left(R_{i}\right)_{1 \leq i \leq n}\right)$ be a relation signature and $\mathcal{X}_{1}=\left\{x_{1}, x_{2}, \ldots\right\}$ a set of variables. The first-order formulas $F O(\sigma)$ are:

$$
R_{i}\left(x_{j_{1}}, \ldots, x_{j_{i}}\right)\left|x=x^{\prime}\right| \neg \phi\left|\phi \wedge \phi^{\prime}\right| \exists x . \phi
$$

Second-order logic: allow quantifying over relations Monadic: only quantify over sets
Monadic second-order logic (MSO)
Let σ as before and $\mathcal{X}_{1}=\left\{x_{1}, x_{2}, \ldots\right\}, \mathcal{X}_{2}=\left\{X_{1}, X_{2}, \ldots\right\}$ sets of first$/$ second-order variables. The set of $\operatorname{MSO}(\sigma)$ formulae are:

$$
R_{i}\left(x_{j_{1}}, \ldots, x_{j_{i}}\right)\left|x=x^{\prime}\right| x \in X|\neg \phi| \phi \wedge \phi^{\prime}|\exists x . \phi| \exists X . \phi
$$

Weak second-order: only quantify over finite sets
WSkS (weak MSO over with k successors)
WSkS $=\mathrm{MSO}\left(<_{1}, \ldots,<_{k}\right)$

Semantics of MSO

Definition

Let \mathfrak{M} a domain, σ a signature, ν a valuation with

- $\nu(x) \in \mathfrak{M}$ for $x \in \mathcal{X}_{1}$
- $\nu(X) \subseteq \mathfrak{M}$ for $X \in \mathcal{X}_{2}$

$$
\begin{array}{lll}
\mathfrak{M}, \sigma, \nu \models R_{i}\left(x_{j_{1}}, \ldots, x_{j_{i}}\right) & \text { if } & \left(\nu\left(x_{j_{1}}\right), \ldots, \nu\left(x_{j_{i}}\right)\right) \in R_{i} \\
\mathfrak{M}, \sigma, \nu \models x=x^{\prime} & \text { if } & \nu(x)=\nu\left(x^{\prime}\right) \\
\mathfrak{M}, \sigma, \nu \models x \in X & \text { if } & \nu(x) \in \nu(X) \\
\mathfrak{M}, \sigma, \nu \models \neg \phi & \text { if } & \mathfrak{M}, \sigma, \nu \not \models \phi \\
\mathfrak{M}, \sigma, \nu \models \phi \wedge \phi^{\prime} & \text { if } & \mathfrak{M}, \sigma, \nu \models \phi \wedge \mathfrak{M}, \sigma, \nu \models \phi^{\prime} \\
\mathfrak{M}, \sigma, \nu \models \exists x \cdot \phi & \text { if } & \exists m \in \mathfrak{M} . \mathfrak{M}, \sigma, \nu[x \mapsto m] \models \phi \\
\mathfrak{M}, \sigma, \nu \models \exists X . \phi & \text { if } & \exists M \subseteq \mathfrak{M} . \mathfrak{M}, \sigma, \nu[X \mapsto \mathcal{M}] \models \phi
\end{array}
$$

We omit \mathfrak{M}, σ when clear from context.

Recall: Common abbreviations

- $\forall x, \forall X, \vee$, etc can be expressed in the usual way.
- $X \subseteq Y$:

$$
\forall x .(x \in X \rightarrow x \in Y)
$$

- $Z=X \cup Y$:

$$
\forall x .(x \in Z \leftrightarrow x \in X \vee x \in Y)
$$

- Partition $\left(X, X_{1}, \ldots, X_{m}\right)$:

$$
\left(\forall x .\left(x \in X \leftrightarrow \bigvee_{i=1}^{m} x \in X_{i}\right)\right) \wedge\left(\bigwedge_{i=1}^{m} \bigwedge_{j \neq i} \forall x \cdot\left(x \notin X_{i} \vee x \notin X_{j}\right)\right)
$$

- Similarly, $X=\emptyset, X=\{x\}, X=Y, \ldots$

WS k S and trees

Let $\mathfrak{M}=N^{*}$, we fix $<_{i}$ to be the relation $<_{i}=\left\{\left\langle p, p i p^{\prime}\right\rangle \mid p, p^{\prime} \in N^{*}\right\}$. We define $<=\bigcup_{i=1}^{k}<_{i}$ and \leq as usual, and ε for the minimal element. We write $x i$ to denote the least q s.t. $\nu(x)<_{i} q$.

Coding of a tree

Let $t \in T(\mathcal{F})$ and k the maximal arity in \mathcal{F}.
As a shorthand, define $S_{\mathcal{F}}:=\left(S_{f}\right)_{f \in \mathcal{F}}$.
We note $C(t):=\left(S, S_{\mathcal{F}}\right)$, where:

- $S=\bigcup_{f \in \mathcal{F}} S_{f}$;
- for all $f \in \mathcal{F}, S_{f}=\left\{p \in\right.$ Pos $\left._{t} \mid t(p)=f\right\}$.
$\left(S, S_{\mathcal{F}}\right)$ encodes a tree if $\operatorname{Tree}\left(S, S_{\mathcal{F}}\right)$ holds:

$$
\begin{aligned}
\operatorname{Tree}\left(S, S_{\mathcal{F}}\right):= & S \neq \emptyset \wedge \operatorname{Partition}\left(S, S_{\mathcal{F}}\right) \\
& \wedge \forall x . \forall y \cdot(x \in S \wedge y<x) \rightarrow y \in S \\
& \wedge \bigwedge_{n=1}^{k} \bigwedge_{f \in \mathcal{F}_{n}} \bigwedge_{i=1}^{n}\left(x \in S_{f} \rightarrow x i \in S\right) \\
& \wedge \bigwedge_{n=1}^{k} \bigwedge_{f \in \mathcal{F}_{n}} \bigwedge_{i=n+1}^{k}\left(x \in S_{f} \rightarrow x i \notin S\right)
\end{aligned}
$$

Semantics of WSkS on trees

Coded valuation

Let $\mathcal{F}^{\prime}:=\mathcal{F} \times 2^{\mathcal{X}_{1} \cup \mathcal{X}_{2}}$. The arity of (f, τ) is n if $f \in \mathcal{F}_{n}$. Let $t \in T(\mathcal{F})$ and ν a valuation. The tuple $\langle t, \nu\rangle$ is coded by a tree $t^{\prime} \in$ $T\left(\mathcal{F}^{\prime}\right)$, as follows, for all $p \in$ Pos and $t^{\prime}(p)=\langle f, \tau\rangle$:

- if $x \in \mathcal{X}_{1}$ then $\tau(x)=1$ iff $p=\nu(x)$;
- if $X \in \mathcal{X}_{2}$ then $\tau(X)=1$ iff $p \in \nu(X)$.

A tree $t^{\prime} \in T\left(\mathcal{F}^{\prime}\right)$ is valid $\left(t^{\prime} \in T_{v}\left(\mathcal{F}^{\prime}\right)\right)$ if it codes some $\langle t, \nu\rangle$.

Semantics of WSkS

Let ϕ be a formula of WSkS and $V \subseteq\left(\mathcal{X}_{1} \cup \mathcal{X}_{2}\right) \uplus\left(\{S\} \cup S_{\mathcal{F}}\right)$ its free variables.

$$
\mathcal{L}(\phi):=\left\{\langle t, \nu\rangle \in T_{v}\left(\mathcal{F}^{\prime}\right) \mid \nu\left[\left(S, S_{\mathcal{F}}\right) \mapsto C(t)\right] \models \phi\right\}
$$

Examples

- Let $t=f(g(a), a)$.

Left: $\langle t, \nu\rangle$ with $\nu(x)=\varepsilon, \nu(y)=11$, and $\nu(Z)=\{\varepsilon, 11,2\}$. Right: $\left\langle t, \nu^{\prime}\right\rangle$ with $\nu^{\prime}(x)=1$

- We have $C(t)=\left(S, S_{f}, S_{g}, S_{a}\right)$ with $S=\{\varepsilon, 1,11,2\}$,
$S_{f}=\{\varepsilon\}, S_{g}=\{1\}, S_{a}=\{11,2\}$.
- $\nu^{\prime}\left[\left(S, S_{\mathcal{F}}\right) \mapsto C(t)\right] \models x \in S_{g}$, thus $\left\langle t, \nu^{\prime}\right\rangle \in \mathcal{L}\left(x \in S_{g}\right)$
- $t \in \mathcal{L}\left(\exists x . x \in S_{g}\right)$

WSkS and recognizability

Theorem

A tree language $L \subseteq T(\mathcal{F})$ is recognizable iff $L=\mathcal{L}(\phi)$ for some formula $\phi\left(S, S_{\mathcal{F}}\right)$ of WSkS.

Proof: (sketch)

- DCFTA $\mathcal{A} \rightarrow$ WSkS: Construct formula ϕ that
(i) verifies that the structure is a tree;
(ii) guesses a computation of \mathcal{A}, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;
(iv) verifies that the root is labelled by an accepting state.
- WSkS $\phi \rightarrow$ NFTA \mathcal{A} : Proceed by recurrence on ϕ, show that all subformulae of ϕ are recognizable.

Example: DCFTA \rightarrow WSkS

- Let $Q:=\left\{q_{0}, q_{1}, q_{f}\right\}, \mathcal{F}=\{f(2), g(1), a\}, G:=\left\{q_{f}\right\}$, and rules

$$
a \rightarrow q_{0} \quad g\left(q_{0}\right) \rightarrow q_{1} \quad g\left(q_{1}\right) \rightarrow q_{1} \quad f\left(q_{1}, q_{1}\right) \rightarrow q_{f}
$$

(automate à compléter !)

- Corresponding formula:

$$
\begin{aligned}
\phi= & \operatorname{Tree}\left(S, S_{\mathcal{F}}\right) \\
& \wedge \exists Q_{0}, Q_{1}, Q_{f} . \operatorname{Partition}\left(S, Q_{0}, Q_{1}, Q_{f}\right) \\
& \wedge \forall x \cdot\left(x \in S_{a} \rightarrow x \in Q_{0}\right) \\
& \wedge \forall x \cdot\left(\left(x \in S_{g} \wedge x 1 \in Q_{0}\right) \rightarrow x \in Q_{1}\right) \\
& \wedge \forall x \cdot\left(\left(x \in S_{g} \wedge x 1 \in Q_{1}\right) \rightarrow x \in Q_{1}\right) \\
& \wedge \forall x \cdot\left(\left(x \in S_{f} \wedge x 1 \in Q_{1} \wedge x 2 \in Q_{1}\right) \rightarrow x \in Q_{f}\right) \\
& \wedge \cdots \\
& \wedge \varepsilon \in Q_{f}
\end{aligned}
$$

Example: WSkS \rightarrow NFTA

Consider $\mathcal{F}=\{f(2), g(1), a\}$.

- $\phi=x \in S_{g}$
$\mathcal{A}_{\phi}=\left\langle\left\{q, q^{\prime}\right\}, \mathcal{F} \times 2^{\{x\}},\left\{q^{\prime}\right\}, \Delta\right\rangle$ with transitions

$$
\begin{array}{lll}
\langle a, 0\rangle \rightarrow q & & \\
\langle g, 1\rangle(q) \rightarrow q^{\prime} & \langle g, 0\rangle(q) \rightarrow q & \langle g, 0\rangle\left(q^{\prime}\right) \rightarrow q^{\prime} \\
\langle f, 0\rangle(q, q) \rightarrow q & \langle f, 0\rangle\left(q, q^{\prime}\right) \rightarrow q^{\prime} & \langle f, 0\rangle\left(q^{\prime}, q\right) \rightarrow q^{\prime}
\end{array}
$$

accepts $\mathcal{L}\left(x \in S_{g}\right)$ (scans for a single g-position with $\tau(x)=1$).

- $\phi^{\prime}=\exists x . \phi$

Obtain $\mathcal{A}_{\phi^{\prime}}$ from \mathcal{A}_{ϕ} by stripping $\tau(x)$:
$\mathcal{A}_{\phi^{\prime}}=\left\langle\left\{q, q^{\prime}\right\}, \mathcal{F},\left\{q^{\prime}\right\}, \Delta\right\rangle$
$a \rightarrow q$
$g(q) \rightarrow q^{\prime} \quad g(q) \rightarrow q \quad g\left(q^{\prime}\right) \rightarrow q^{\prime}$
$f(q, q) \rightarrow q \quad f\left(q, q^{\prime}\right) \rightarrow q^{\prime} \quad f\left(q^{\prime}, q\right) \rightarrow q^{\prime}$

Unranked trees

We now consider finite ordered unranked trees.

- ordered: internal nodes have children $1 \ldots n$
- unranked : nodes may have an arbitrary number of children

Motivation: e.g., XML documents

- "A html tag contains an optional head and an obligatory body."
- "A div tag contains an unlimited number of p , ol, ul, ...tags."

Definition: Tree (recall)

A (finite, ordered) tree is a non-empty, finite, prefix-closed set $\operatorname{Pos} \subseteq N^{*}$.

Hedge automata

Definition: (Bottom-up) hedge automaton
A hedge automaton (NHA) is a tuple $\mathcal{A}=\langle Q, \Sigma, G, \Delta\rangle$, where:

- Q is a finite set of states;
- Σ a finite alphabet;
- $G \subseteq Q$ are the final states;
- Δ is a finite set of rules of the form

$$
a(R) \rightarrow q
$$

for $a \in \Sigma, q \in Q$, and R a regular (word) language over Q.
Example: $Q:=\left\{q_{x}, q_{h}, q_{b}, q_{p}\right\}, \Sigma=\{x, h, b, p\}, G:=\left\{q_{x}\right\}$, and rules

$$
x\left(q_{h}^{?} q_{b}\right) \rightarrow q_{x} \quad h(\varepsilon) \rightarrow q_{h} \quad b\left(q_{p}^{*}\right) \rightarrow q_{b} \quad p(\varepsilon) \rightarrow q_{p}
$$

This accepts trees of the form $x(h, b(p, \ldots, p))$ and $x(b(p, \ldots, p))$.

Semantics of hedge automata

Remark:

- The R in $a(R) \rightarrow q$ are called horizontal languages.
- They are (finitely) represented by regular expressions or finite automata.

Computation of NHA
Let $t \in T(\Sigma)$ be a tree. A run or computation of \mathcal{A} on t is a tree $t^{\prime} \in T(Q)$, i.e. for all $p \in \operatorname{Pos}$:

- if $t(p)=a \in \Sigma, t^{\prime}(p)=q \in Q$, and $\operatorname{Pos} \cap p N=\{p 1, \ldots, p n\}$, there exists $a(R) \rightarrow q \in \Delta$ such that $t^{\prime}(p 1) \cdots t^{\prime}(p n) \in R$.
Acceptance condition: $t^{\prime}(\varepsilon) \in G$
$L \subseteq T(\Sigma)$ is called hedge-recognizable if $L=\mathcal{L}(\mathcal{A})$ for some NHA \mathcal{A}.

Complete / normalized / deterministic HA

An NHA is ...

- complete if for all $t \in T(\Sigma), t \rightarrow_{\mathcal{A}}^{*} q$ for some q;
- full if for all $a \in \Sigma, q \in Q$, there is some $a(R) \rightarrow q$;
- reduced if $a\left(R_{1}\right) \rightarrow q, a\left(R_{2}\right) \rightarrow q \in \Delta$ implies $R_{1}=R_{2}$;
- deterministic (DHA) if $a\left(R_{1}\right) \rightarrow q_{1}, a\left(R_{2}\right) \rightarrow q_{2} \in \Delta$ implies $R_{1} \cap R_{2}=\emptyset$ or $q_{1}=q_{2}$.

Any NHA has an equivalent complete / full / reduced / deterministic NHA.

- complete: add garbage state, as usual
- full: add rules $a(\emptyset) \rightarrow q$ where necessary
- reduced: replace $a\left(R_{1}\right) \rightarrow q$ and $a\left(R_{2}\right) \rightarrow q$ with $a\left(R_{1} \cup R_{2}\right) \rightarrow q$ where necessary

Determinization

Determinization of NHA

Let $\mathcal{A}=\langle Q, \Sigma, G, \Delta\rangle$ be a complete, full, reduced NHA. The complete, full, reduced DHA $\mathcal{A}^{\prime}=\left\langle 2^{Q}, \Sigma, G^{\prime}, \Delta^{\prime}\right\rangle$ is equivalent to \mathcal{A} where:

- $G^{\prime}=\{S \subseteq Q \mid S \cap G \neq \emptyset\} ;$
- let $R_{a, q}$ denote the (unique) language s.t. $a\left(R_{a, q}\right) \rightarrow q \in \Delta$;
- $R_{a, q}^{\prime}:=R_{a, q}\left[q^{\prime} \rightarrow\left(S \cup\left\{q^{\prime}\right\}\right) \mid q^{\prime} \in Q, S \subseteq Q\right]$
- for all $a \in \Sigma, S \subseteq Q$, we have $a\left(R_{a, S}\right) \rightarrow S \in \Delta^{\prime}$;

$$
R_{a, S}:=\left(\bigcap_{q \in S} R_{a, q}^{\prime}\right) \backslash\left(\bigcup_{q \notin S} R_{a, q}^{\prime}\right)
$$

Encoding unranked trees

Bijective encoding of unranked into ranked trees

- Let Σ an alphabet; $\mathcal{F}_{\Sigma}:=\{@(2)\} \cup\{a(0) \mid a \in \Sigma\}$.
- Define the coding $C_{@}(t) \in T\left(\mathcal{F}_{\Sigma}\right)$ of $t \in T(\Sigma)$ as

$$
C_{@}\left(a\left(t_{1}, \ldots, t_{n}\right)\right)=\underbrace{@(@(\ldots(@}_{n}\left(a, C_{@}\left(t_{1}\right)\right), C_{@}\left(t_{2}\right)), \ldots), C_{@}\left(t_{n}\right))
$$

Example:

Recognizing encoded trees

Theorem

A language $L \subseteq T(\Sigma)$ is hedge-recognizable iff $C_{\varrho}(L)$ is recognizable.

- NHA \rightarrow NFTA:

Let $\mathcal{A}=\langle Q, \Sigma, G, \Delta\rangle$ an NHA; $\Delta=\left\{a_{1}\left(R_{1}\right) \rightarrow q_{1}, \ldots, a_{n}\left(R_{n}\right) \rightarrow q_{n}\right\}$; R_{i} represented by det.compl. FA $\mathcal{A}_{i}=\left\langle S_{i}, Q, s_{0}^{(i)}, F_{i}, \delta_{i}\right\rangle$.

Construct NFTA $\mathcal{A}^{\prime}=\left\langle Q^{\prime}, \mathcal{F}_{\Sigma}, G, \Delta^{\prime}\right\rangle$, where:

- $Q^{\prime}=Q \cup \biguplus_{i=1}^{n} S_{i}$
- $\Delta^{\prime}=\bigcup_{i=1}^{n}\left(\Delta_{1}^{i} \cup \Delta_{2}^{i} \cup \Delta_{3}^{i}\right)$

$$
\begin{aligned}
& \Delta_{1}^{i}=\left\{a_{i} \rightarrow s_{0}^{(i)}\right\} \\
& \Delta_{2}^{i}=\left\{@(s, q) \rightarrow \delta_{i}(s, q) \mid s \in S_{i}, q \in Q\right\} \\
& \Delta_{3}^{i}=\left\{s_{f} \rightarrow q_{i} \mid s_{f} \in F_{i}\right\}
\end{aligned}
$$

Example: NHA \rightarrow NFTA

- $Q:=\left\{q_{x}, q_{h}, q_{b}, q_{p}\right\}, \Sigma=\{x, h, b, p\}, G:=\left\{q_{x}\right\}$, and rules

$$
x\left(q_{h}^{?} q_{b}\right) \rightarrow q_{x} \quad h(\varepsilon) \rightarrow q_{h} \quad b\left(q_{p}^{*}\right) \rightarrow q_{b} \quad p(\varepsilon) \rightarrow q_{p}
$$

- Automaton for first rule:

- Single-state automata with s_{h}, s_{b}, s_{p} for the other rules

Recognizing encoded trees

Theorem
A language $L \subseteq T(\Sigma)$ is hedge-recognizable iff $C_{\varrho}(L)$ is recognizable.

- NFTA \rightarrow NHA:

Let $\mathcal{A}=\left\langle Q, \mathcal{F}_{\Sigma}, G, \Delta\right\rangle$ an NFTA (without ε-moves).
Define $\Delta_{R}:=\left\{\left\langle q_{0}, q_{1}, q_{2}\right\rangle \mid @\left(q_{0}, q_{1}\right) \rightarrow_{\Delta} q_{2}\right\}$ and Out $:=G \cup\left\{q \mid \exists q^{\prime}, q^{\prime \prime}: @\left(q^{\prime}, q\right) \rightarrow_{\Delta} q^{\prime \prime}\right\}$.
For $q \in Q, q^{\prime} \in$ Out, let $A_{q, q^{\prime}}:=\left\langle Q, Q, q,\left\{q^{\prime}\right\}, \Delta_{R}\right\rangle$ a word automaton.

Construct NHA $\mathcal{A}^{\prime}:=\left\langle Q, \Sigma, G, \Delta^{\prime}\right\rangle$, where

$$
\Delta^{\prime}=\left\{a\left(\mathcal{L}\left(\mathcal{A}_{q, q^{\prime}}\right)\right) \rightarrow q^{\prime} \mid a \rightarrow_{\Delta} q, q^{\prime} \in \text { Out }\right\}
$$

Corollary

Hedge-recognizable languages are closed under boolean operations.

Unranked trees and logic

UTL $=$ weak MSO (child, next) interpreted over $\mathfrak{M}=N^{*}$, where

- child (x, y) iff $y=x i$ for some $i \in N$
- next (x, y) iff $\exists z, i: x=z i \wedge y=z(i+1)$

Further predicates can be defined from this:

- $\operatorname{right}(x, y)=" y$ is a right sibling of $x "$
- $\operatorname{desc}(x, y)=" y$ is a descendant of $x "=" x \leq y "$

Notions like $\mathcal{L}(\phi)$ are defined in analogy with WSkS.
Theorem: UTL $=$ NHA
A language $L \subseteq T(\Sigma)$ is hedge-recognizable iff $L=\mathcal{L}(\phi)$ for some formula $\phi\left(S, S_{\Sigma}\right)$ of UTL.

UTL = NHA: Proof sketch

- UTL \rightarrow NHA:

Let ϕ be an UTL formula. Define ϕ^{\prime} of WS2S s.t. $\mathcal{L}\left(\phi^{\prime}\right)=C_{@}(\mathcal{L}(\phi))$.
Define leftmost (x, y) as
$\forall X: \quad\left(x \in X \wedge \forall z, z^{\prime}:\left(z \in X \wedge z^{\prime}=z 1 \rightarrow z^{\prime} \in X\right)\right.$

$$
\begin{aligned}
& \left.\wedge \forall z:\left(z \in X \rightarrow z=x \vee\left(\exists z^{\prime}: z^{\prime} \in X \wedge z=z^{\prime} 1\right)\right)\right) \\
\rightarrow & (y \in X \wedge \forall z: z \in X \rightarrow z \leq y)
\end{aligned}
$$

(" y is the maximal position in $x 1^{* "}$)
Then child and next can be translated as follows:
$\operatorname{child}(x, y):=\exists z: \operatorname{leftmost}(z, x) \wedge \operatorname{leftmost}(z 2, y)$
$\operatorname{next}(x, y):=\exists z: \operatorname{leftmost}(z 12, x) \wedge \operatorname{leftmost}(z 2, y)$

UTL = NHA: Proof sketch

- NHA \rightarrow UTL:

Let \mathcal{A} be a complete, full, normalized, deterministic NHA.
Construct formula $\phi\left(S, S_{\Sigma}\right)$ of UTL that
(i) verifies that the structure is a tree;
(ii) guesses a computation of \mathcal{A}, i.e. partitioning of S onto states;
(iii) verifies that the computation is locally correct;
(iv) verifies that the root is labelled by an accepting state.

The major difference with the NFTA \rightarrow WSkS construction is (iii): (iii): whenever the computation puts q on an a-labelled position p, guess a run of the automaton for $R_{a, q}$ over p and its children

Tuples of trees

Let $t_{1}, t_{2} \in T(\mathcal{F})$ ranked trees. Add a fresh symbol - to \mathcal{F}_{0} and let

$$
\mathcal{F}^{\prime}:=\left\{\langle f, g\rangle(k) \mid f \in \mathcal{F}_{m}, g \in \mathcal{F}_{n}, k=\max \{m, n\}\right\}
$$

$\left\langle t_{1}, t_{2}\right\rangle$ denotes the ranked tree $t \in T\left(\mathcal{F}^{\prime}\right)$ as follows:

- Pos $_{t}=$ Pos $_{t_{1}} \cup$ Pos $_{t_{2}}$
- for all $p \in$ Pos $_{t}$,

$$
t(p)= \begin{cases}\langle f, g\rangle & \text { if } t \in \operatorname{Pos}_{t_{1}} \cap \operatorname{Pos}_{t_{2}}, t_{1}(p)=f, t_{2}(p)=g \\ \langle f,-\rangle & \text { if } t \in \operatorname{Pos}_{t_{1}} \backslash \operatorname{Pos}_{t_{2}}, t_{1}(p)=f \\ \langle-, g\rangle & \text { if } t \in \operatorname{Pos}_{t_{2}} \backslash \operatorname{Pos}_{t_{1}}, t_{2}(p)=g\end{cases}
$$

Example:

Tree relations

We consider (binary) relations $R \subseteq T(\mathcal{F})^{2}$.

- Let \Re_{2} be the class of recognizable relations (= recognizable languages over \mathcal{F}^{\prime}).
- Let \mathfrak{X}_{2} be the class of finite unions of cross products $R \in \mathfrak{X}_{2}$ iff $R=\bigcup_{i=1}^{n}\left(L_{1}^{(i)} \times L_{2}^{(i)}\right)$, for some $n \geq 0$ and $L_{1}^{(i)}, L_{2}^{(i)}$ recognizable for all i
- Let \mathfrak{T}_{2} be the class of relations recognizable by GTT.

Definition: Ground Tree Transducer

A ground tree transducer (GTT) is pair $\mathcal{G}=\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}\right\rangle$ of bottom-up NFTA over \mathcal{F}. (The states of \mathcal{A}_{1} and \mathcal{A}_{2} may overlap.)
The relation accepted by \mathcal{G} is

$$
\begin{aligned}
&\left\{\langle t, u\rangle \quad \mid \quad \exists n \geq 0, C \in \mathcal{C}^{n}(\mathcal{F}),\right. \\
& t_{1}, \ldots, t_{n} \in T(\mathcal{F}), u_{1}, \ldots, u_{n} \in T(\mathcal{F}), q_{1}, \ldots, q_{n}: \\
& t= C\left[t_{1}, \ldots, t_{n}\right] \wedge u=C\left[u_{1}, \ldots, u_{n}\right] \\
&\left.\wedge \forall i: t_{i} \rightarrow_{\mathcal{A}_{1}}^{*} q_{i} \mathcal{A}_{2}^{*} \leftarrow u_{i}\right\}
\end{aligned}
$$

Relations between $\mathfrak{R}_{2}, \mathfrak{X}_{2}, \mathfrak{T}_{2}$

Propositions
(1) $\mathfrak{R}_{2} \nsubseteq \mathfrak{X}_{2}$ and $\mathfrak{T}_{2} \nsubseteq \mathfrak{X}_{2}$
(2) $\mathfrak{R}_{2} \nsubseteq \mathfrak{T}_{2}$ and $\mathfrak{X}_{2} \nsubseteq \mathfrak{T}_{2}$
(3) $\mathfrak{X}_{2} \subseteq \mathfrak{R}_{2}$
(1) $\mathfrak{T}_{2} \subseteq \mathfrak{R}_{2}$
(6) $\mathfrak{X}_{2} \cup \mathfrak{T}_{2} \subsetneq \mathfrak{R}_{2}$

Proofs:
(1) $\{\langle t, t\rangle \mid t \in T(\mathcal{F})\}$ is in $\mathfrak{T}_{2} \cap \mathfrak{R}_{2}$ but not \mathfrak{X}_{2}
(2) \emptyset is in $\mathfrak{X}_{2} \cap \mathfrak{R}_{2}$ but not \mathfrak{T}_{2}
(3) see next slides
(0) see next slides
(5) see next slides

Proof of $\mathfrak{X}_{2} \subseteq \mathfrak{R}_{2}$

(3) Let $A_{i}=\left\langle Q_{i}, \mathcal{F}, G_{i}, \Delta_{i}\right\rangle($ for $i=1,2)$ be NFTA and let $R=\mathcal{L}\left(\mathcal{A}_{1}\right) \times \mathcal{L}\left(\mathcal{A}_{2}\right) \in \mathfrak{X}_{2}$.

Construct NFTA $\mathcal{A}=\left\langle Q, \mathcal{F}^{\prime}, G_{1} \times G_{2}, \Delta\right\rangle$ with $\mathcal{L}(\mathcal{A})=R$:

- $Q=\left(Q_{1} \cup\{-\}\right) \times\left(Q_{2} \cup\{-\}\right)$
- for every $f \in \mathcal{F}_{m}, g \in \mathcal{F}_{n}, m \geq n, \neg(f=g=-)$
Δ contains
$-\langle f, g\rangle\left(\left\langle q_{1}, q_{1}^{\prime}\right\rangle, \ldots,\left\langle q_{n}, q_{n}^{\prime}\right\rangle,\left\langle q_{n+1},-\right\rangle, \ldots,\left\langle q_{m},-\right\rangle\right) \rightarrow\left\langle q, q^{\prime}\right\rangle$ if
$f\left(q_{1}, \ldots, q_{m}\right) \rightarrow q \in \Delta_{1}$ and $g\left(q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right) \rightarrow q^{\prime} \in \Delta_{2}$
- $\langle g, f\rangle\left(\left\langle q_{1}, q_{1}^{\prime}\right\rangle, \ldots,\left\langle q_{n}, q_{n}^{\prime}\right\rangle,\left\langle-, q_{n+1}^{\prime}\right\rangle, \ldots,\left\langle-, q_{m}\right\rangle\right) \rightarrow\left\langle q, q^{\prime}\right\rangle$ if $f\left(q_{1}^{\prime}, \ldots, q_{m}^{\prime}\right) \rightarrow q \in \Delta_{2}$ and $g\left(q_{1}, \ldots, q_{n}\right) \rightarrow q^{\prime} \in \Delta_{1}$
(reminder: we assume that - is a fresh symbol in \mathcal{F}_{0})
Intuition: Modified cross-product construction.

Proof of $\mathfrak{T}_{2} \subseteq \mathfrak{R}_{2}$

(9) Let $\mathcal{G}=\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}\right\rangle, A_{i}=\left\langle Q_{i}, \mathcal{F}, G_{i}, \Delta_{i}\right\rangle($ for $i=1,2)$. We construct NFTA $\mathcal{A}^{\prime}=\left\langle Q^{\prime}, \mathcal{F}^{\prime},\left\{q_{f}\right\}, \Delta^{\prime}\right\rangle$ with $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\mathcal{L}(\mathcal{G})$.

Construct NFTA $\mathcal{A}=\left\langle Q, \mathcal{F}^{\prime}, G, \Delta\right\rangle$ from $\mathcal{A}_{1}, \mathcal{A}_{2}$ as in previous proof. Then:

- $Q^{\prime}=Q \uplus\left\{q_{f}\right\}$
- $\Delta^{\prime}=\Delta \cup \Delta_{1} \cup \Delta_{2}$

$$
\Delta_{1}=\left\{\langle q, q\rangle \rightarrow q_{f} \mid q \in Q_{1} \cap Q_{2}\right\}
$$

$$
\Delta_{2}=\left\{\langle f, f\rangle\left(q_{f}, \ldots, q_{f}\right) \rightarrow q_{f} \mid f \in \mathcal{F}_{n}, f \neq-\right\}
$$

Intuition:
Δ reads pairs of trees from $\mathcal{A}_{1}, \mathcal{A}_{2}$;
Δ_{1} allows to plug pairs of subtrees into some context C;
Δ_{2} reads the remaining context C.

Proof of $\mathfrak{X}_{2} \cup \mathfrak{T}_{2} \subsetneq \mathfrak{R}_{2}$

- Let $\mathcal{F}=\{f(1), g(1), a\}$.

Let $R=\left\{\left\langle t_{1}, t_{2}\right\rangle \mid \exists C \in \mathcal{C}(\mathcal{F}), t \in T(\mathcal{F}): t_{1}=C[t] \wedge t_{2}=C[f(t)]\right\}$.

- $R \notin \mathfrak{X}_{2}$:

By pigeonhole principle using $\left\langle f^{i}(a), f^{i+1}(a)\right\rangle, i \geq 0$.

- $R \notin \mathfrak{T}_{2}$:

Suppose that R is accepted by $\operatorname{GTT}\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}\right\rangle$ with n states in common.
For all $i \geq 0$, let q_{i} such that $g^{i}(a) \rightarrow_{\mathcal{A}_{1}}^{*} q_{i}$ and $f\left(g^{i}(a)\right) \rightarrow_{\mathcal{A}_{2}}^{*} q_{i}$.
Contradiction follows from pigeon-hole principle.

- $R \in \mathfrak{R}_{2}$:

Let $\mathcal{A}=\left\langle\left\{q_{a}, q_{f}, q_{g}, q\right\}, \mathcal{F}^{\prime},\{q\}, \Delta\right\rangle$ with:

$$
\langle-, a\rangle \rightarrow q_{a} \quad\langle x, y\rangle\left(q_{x}\right) \rightarrow q_{y} \quad q_{f} \rightarrow q \quad\langle x, x\rangle(q) \rightarrow q
$$

for $x, y \in\{f, g, a\}$

Closure properties

Boolean closure

\mathfrak{X}_{2} and \mathfrak{R}_{2} are closed under boolean operations.

Transitive closure
If $R \in \mathfrak{T}_{2}$, then $R^{*} \in \mathfrak{T}_{2}$.
Proof: Let $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}\right\rangle$ with states Q_{1}, Q_{2} a GTT accepting R. We construct $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}\right\rangle$ accepting R^{*} by adding transitions to \mathcal{A}_{1} and \mathcal{A}_{2} using the following saturation rule:

- For $i \neq j$ and all $q \in Q_{1} \cap Q_{2}, q^{\prime} \in Q_{j}$, if there exists a tree t s.t.

$$
t \rightarrow{\underset{\mathcal{B}}{i}}_{*} q \quad \text { and } \quad t \rightarrow_{\mathcal{B}_{j}}^{*} q^{\prime}
$$

then add $q \rightarrow q^{\prime}$ to \mathcal{B}_{j}.

Transitive closure: Intuition

Suppose that $\langle t, v\rangle,\langle v, u\rangle \in R$. The interesting case is illustrated below:

Suppose that $\langle t, v\rangle$ differ in a position p and $\langle v, u\rangle$ in positions $p p_{1}, \ldots, p p_{n}$.
Then in \mathcal{A}_{2} we want the subtrees of u at $p p_{1}, \ldots, p p_{n}$ to be substitutable for the corresponding subtrees in v.

Transitive closure: Intuition

Consider the runs of t, v, u in $\left\langle\mathcal{A}_{1}, \mathcal{A}_{2}\right\rangle$:

Adding $q_{i} \rightarrow q_{i}^{\prime}$ to the right-hand side automaton achieves the objective.

Transitive closure: $R^{*} \subseteq \mathcal{L}\left(\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}\right\rangle\right)$

Proof by induction: Let $\langle t, u\rangle \in R^{i}$, for $i \geq 0$.

- $i=0$: trivial
- $i \rightarrow i+1$: Let v s.t. $\langle t, v\rangle \in R^{i}$ and $\langle v, u\rangle \in R$.

Then (by induction) $\langle t, v\rangle$ is accepted by $\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}\right\rangle$.
Let P be the positions in which $\langle t, v\rangle$ differ and P^{\prime} be the positions in which $\langle v, u\rangle$ differ. All incomparable pairs in $P \times P^{\prime}$ are handled by the definition of GTT. For $p \in P$ and $p p 1, \ldots, p p_{n} \in P^{\prime}$ consider the previous drawings.
The case $p p 1, \ldots, p p_{n} \in P$ and $p \in P^{\prime}$ is symmetric.

Transitive closure: $R^{*} \supseteq \mathcal{L}\left(\left\langle\mathcal{B}_{1}, \mathcal{B}_{2}\right\rangle\right)$

Let $\left\langle\mathcal{B}_{1}^{i}, \mathcal{B}_{2}^{i}\right\rangle$ denote the GTT after adding i transitions and show that its language is included in R^{*}.

- $i=0$: trivial
- $i \rightarrow i+1$: Let $q \rightarrow q^{\prime}$ be the transition added in the ($i+1$)-th step (to \mathcal{B}_{1}, say) and let $q \rightarrow q^{\prime}$ be used j times in accepting some $\langle t, u\rangle$. If $j=0$, then $\langle t, u\rangle \in R^{*}$ by induction hypothesis. Otherwise:
(1) there exist $n \geq 0, C \in \mathcal{C}^{n}(\mathcal{F})$ etc such that $t=C\left[t_{1}, \ldots, t_{n}\right]$, $u=C\left[u_{1}, \ldots, u_{n}\right]$ and $\forall k: t_{k} \rightarrow_{\mathcal{B}_{1}^{i+1}}^{*} q_{k} \mathcal{B}_{2}^{i+1} \leftarrow u_{k}$.
(2) Suppose $t_{k}=C^{\prime}\left[t^{\prime}\right] \rightarrow_{\mathcal{B}_{1}^{i+1}}^{*} C^{\prime}[q] \rightarrow C^{\prime}\left[q^{\prime}\right] \rightarrow_{\mathcal{B}_{1}^{i+1}}^{*} q_{k}$ for some $k, C^{\prime}, t^{\prime}$.
(3) There must be some $v \in T(\mathcal{F})$ with $v \rightarrow_{\mathcal{B}_{2}^{i}}^{*} q$ and $v \rightarrow_{\mathcal{B}_{1}^{i}}^{*} q^{\prime}$.
(9) From (2) et (3) we have $C^{\prime}[v] \rightarrow_{\mathcal{B}_{1}^{+1}}^{*} q_{k}$.
(5) Replacing t_{k} by $C^{\prime}[v]$ in (1) we get $\left\langle t\left[t^{\prime} / v\right], u\right\rangle \in \mathcal{L}\left(\left\langle\mathcal{B}_{1}^{i+1}, \mathcal{B}_{2}^{i+1}\right\rangle\right)$ with fewer than j times $q \rightarrow q^{\prime}$, thus by ind.hyp. $\left\langle t\left[t^{\prime} \mid v\right], u\right\rangle \in R^{*}$.
(0) From (2) and (3), $t^{\prime} \rightarrow{\mathcal{\mathcal { B } _ { 1 } ^ { i + 1 }}}_{*}^{*} q_{\mathcal{B}_{2}^{\prime}}^{*} \leftarrow v$, with fewer than j times $q \rightarrow q^{\prime}$.
(3) From (6) by ind.hyp. $\left\langle t, t\left[t^{\prime} / v\right]\right\rangle \in R^{*}$.

Application: XML

XML = Extensible Markup Language

- Conceived for platform-independent exchange of structured data
- An XML document consists of tags with attributes and text (parsed character data, pcdata)

Example:
<html><head><meta charset="UTF-8"/>
<title>My web page</title></head>
<body><p>Bonne ann\ée !</p></body></html>

- A well-formed XML document forms a tree (balanced tags, one single root tag)
- Testing for validity / generating tree from document: visibly pushdown automaton, LL/LR parser

Valid XML documents

- Languages of XML documents defined by schemas (DTD, XML Schema, Relax NG)
- Schemas define permissible tag (+attributes) and their nesting
- Examples of XML languages: HTML, SVG, KML, ...
- Valid XML document: well-formed document satisfying a schema
- Example: XML-Schema for KML

DTD for XML

DTD $=$ Document Type Definition

DTD define a (restricted) subclass of XML languages.
Essentially, defines a regular language of child tags for each tag type.
Example (from Wikipedia):
<!ELEMENT html (head,body)>
<!ELEMENT hr EMPTY>
<!ELEMENT div (\#PCDATA | p | ul | | table | pre | hr | h1|h2|h3|h4|h5|h6 | blockquote | ...)*>
<!ELEMENT dl (dt|dd)+>
Validity checking of DTD
The language of XML documents defined by DTD is accepted by NHA.

Restrictions on DTD

Expressivity of DTD

There are hedge-recognizable languages that cannot be defined by DTD.
Example: $\left\{f(g(a)), f^{\prime}(g(b))\right\}$

DTD contain another restriction:
It is an error if the content model allows an element to match more than one occurrence of an element type in the content model.
E.g., $(a b \mid a c)$ is not allowed (but $a(b \mid c)$ is).

Deterministic regular expressions

Definition: Marked RE

Let e be a RE over Σ. The marked RE \bar{e} is a RE over $\Sigma \times \mathbb{N}$ obtained by adding a unique subscript to each letter in e.
Example: $e=(a b \mid a c)$, then $\bar{e}=\left(a_{1} b_{2} \mid a_{3} c_{4}\right)$

Definition: Deterministic RE
Let e a RE over Σ. We call e deterministic if \bar{e} satisfies the following: for all $u, v, w \in(\Sigma \times \mathbb{N})^{*}$ and $a \in \Sigma$, if $u a_{i} v, u a_{j} w \in L(\bar{e})$ then $i=j$.

Example: $e=(a b \mid a c), \bar{e}=\left(a_{1} b_{2} \mid a_{3} c_{4}\right)$, not deterministic because $a_{1} b_{2}, a_{3} c_{4} \in L(\bar{e})$

Parsing deterministic RE

Parsing det. RE

Let e be a deterministic RE. A DFA for e can be constructed in polynomial (linear) time. [Brüggemann-Klein 1993, Groz et al 2012]

Proof (sketch): Construction of Glushkov automaton from e.

Expressivity of det. RE
Not every regular language can be defined by a deterministic RE.

XML Schema

XML Schema can define more expressive XML languages.
Example:

```
<xsd:complexType name="track">
    <xsd:sequence minOccurs="1" maxOccurs="unbounded">
    <xsd:choice>
        <xsd:element name="invSession" type="invSession"
        minOccurs="1" maxOccurs="1"/>
        <xsd:element name="conSession" type="conSession"
        minOccurs="1" maxOccurs="1"/>
        </xsd:choice>
        <xsd:element name="break" type="xsd:string"
        minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
```


XML Schema and Hedge Automata

XML Schema = NHA
XML Schema (restricted to occurrence and nesting conditions) correspond to the class of hedge-recognizable languages.

Moreover, XML Schema also permit non-hedge-recognizable features:

- constraints on data types in attributes and pcdata
- consistency constraints (e.g., unique keys)

XSL Transformation

- XSLT allows to transform XML documents into other documents (incl. non XML)
- XQuery used to specify nodes on which to apply a transformation

Example (from Wikipedia):

```
<xsl:template match="//title">
    <em>
        <xsl:apply-templates/>
    </em>
</xsl:template>
<xsl:for-each select="book">
    <xsl:sort select="price" order="ascending" />
</xsl:for-each>
```

