Tree Languages and Applications

Sample solutions for the Exam, January 12, 2023

1 Residuals

(a) Each leaf guesses whether it is on a path of length n (and goes to q_{1}), or on some other path. Formally, our NFTA is $\left\langle\left\{q, q_{1}, \ldots, q_{n}\right\}, \mathcal{F},\left\{q_{n}\right\}, \Delta\right\rangle$, where Δ contains, for all $i=1, \ldots, n-1$:

$$
a \rightarrow q \quad a \rightarrow q_{1} \quad f(q, q) \rightarrow q \quad f\left(q_{i}, q\right) \rightarrow q_{i+1} \quad f\left(q, q_{i}\right) \rightarrow q_{i+1}
$$

Alternative solution : It is possible to push the non-determinism into the f-transitions instead, with an automaton $\left\langle\left\{q_{1}, \ldots, q_{n}, q_{n+1}\right\}, \mathcal{F},\left\{q_{n}\right\}, \Delta\right\rangle$ and, for all $i=1, \ldots, n$ and $j=1, \ldots, n+1$,

$$
a \rightarrow q_{1} \quad f\left(q_{i}, q_{j}\right) \rightarrow q_{i+1} \quad f\left(q_{j}, q_{i}\right) \rightarrow q_{i+1} \quad f\left(q_{n+1}, q_{n+1}\right) \rightarrow q_{n+1}
$$

The last transition here is important to prevent the automaton from blocking when all branches of some sub-tree are longer than n.
(b) The result certainly holds for $n=1$ since one needs at least one state to accept any tree. For the rest, let $n>1$.
Let $K:=\{2, \ldots, n\}$. For each $I \subseteq K$ we can construct a tree t_{I} such that, for any $i \in K, t_{I}$ has a branch of length i iff $i \in I$. Indeed, fix $t_{I}:=t_{I}^{(2)}$, and

$$
t_{I}^{(i)}= \begin{cases}f\left(a, t_{I}^{(i+1)}\right) & \text { if } i \in I \\ f\left(t_{I}^{(i+1)}, t_{I}^{(i+1)}\right) & \text { if } i \in K \backslash I \\ f(a, a) & \text { otherwise }\end{cases}
$$

Suppose that we have a DFTA \mathcal{A} accepting L_{n} with fewer than 2^{n-1} states. Then there must exist two different sets $I, J \subseteq K$ and a state q of \mathcal{A} such that $t_{I} \rightarrow_{\mathcal{A}}^{*} q$ and $t_{J} \rightarrow_{\mathcal{A}}^{*} q$. Let i be the maximal index in the symmetric difference of I and J, and w.l.o.g. suppose that $i \in I \backslash J$.

We now consider the family of contexts $C_{0}=x_{1}$ and $C_{k+1}=f\left(t_{\emptyset}, C_{k}\right)$, for $k \geq 0$. Then $C_{n-i}\left[t_{I}\right] \in L_{n}$ but $C_{n-i}\left[t_{J}\right] \notin L_{n}$. However, they are either both accepted or both rejected by \mathcal{A}, a contradiction.
(c) If L is recognizable, let $\mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle$ be a DFTA with n states accepting L, and let $L_{q}=\left\{t \in T(\mathcal{F}) \mid t \rightarrow_{\mathcal{A}}^{*} q\right\}$. For $C \in \mathcal{C}(\mathcal{F})$, let $Q_{C}=\left\{q \in Q \mid \exists q^{\prime} \in G\right.$: $\left.C[q] \rightarrow_{\mathcal{A}}^{*} q^{\prime}\right\}$. Then $C^{-1} L=\bigcup_{q \in Q_{C}} L_{q}$. Since $C^{-1} L$ is entirely determined by Q_{C}, we have $|R(L)| \leq 2^{|Q|}$.
(d) For $n \geq 2$, let $C \in \mathcal{C}(\mathcal{F})$ be a context whose variable position is p :

- If \bar{C} contains a branch of length n (other than to p), then $C^{-1} L_{n}=T(\mathcal{F})$.
- If C contains no such branch and $0 \leq|p|<n$, then $C^{-1} L_{n}=L_{n-|p|}$.
- Otherwise, $C^{-1} L_{n}=\emptyset$.

Clearly, these $n+2$ residuals are all pairwise different. If $n=1$, then the first case is not applicable, and there are only two residuals - this was a bug in the question, my apologies. (Unless one considers $C=a$ as a context, which stretches the definition.)

2 Prime decompositions

(a) We can construct a top-down automaton that mimicks the usual addition with carry, with just some extra checks to ensure that the right format is respected. For $i, j, k \in$ $\{0,1\}$, let us denote $[i j k]_{s}=(i+j+k) \bmod 2($ the sum modulo 2$)$ and $[i j k]_{c}=$ $\lfloor(i+j+k) / 2\rfloor$ (the carry). Our T-NFTA is $\langle\{q, 0,1\}, \mathcal{F},\{q\}, \Delta\rangle$, with the following transitions, for all $i, j, k \in\{0,1\}$:
$-q\left(j, k,[0, j, k]_{s}\right) \rightarrow[0, j, k]_{c} ;$
$-i\left(j, k,[i, j, k]_{s}\right) \rightarrow[i, j, k]_{c}$;
$-i\left(\perp, k,[i, 0, k]_{s}\right) \rightarrow[i, 0, k]_{c}$ and $i\left(j, \perp,[i, j, 0]_{s}\right) \rightarrow[i, j, 0]_{c} ;$
$-1(\perp, \perp, 1) \rightarrow 0$ and $0(\perp, \perp, \perp) \rightarrow \varepsilon$.
The accepting run on $\langle\widetilde{6}, \widetilde{3}, \widetilde{9}\rangle$ is as follows (parentheses omitted for readability) :

$$
\begin{array}{ll}
& \mathbf{q}\langle 011\rangle\langle 110\rangle\langle 1 \perp 0\rangle\langle\perp \perp 1\rangle\langle\perp \perp \perp\rangle \\
\rightarrow & \langle 011\rangle \mathbf{0}\langle 110\rangle\langle 1 \perp 0\rangle\langle\perp \perp 1\rangle\langle\perp \perp \perp\rangle \\
\rightarrow & \langle 011\rangle\langle 110\rangle \mathbf{1}\langle 1 \perp 0\rangle\langle\perp \perp 1\rangle\langle\perp \perp \perp\rangle \\
\rightarrow & \langle 011\rangle\langle 110\rangle\langle 1 \perp 0\rangle \mathbf{1}\langle\perp \perp 1\rangle\langle\perp \perp \perp\rangle \\
\rightarrow & \langle 011\rangle\langle 110\rangle\langle 1 \perp 0\rangle\langle\perp \perp 1\rangle \mathbf{0}\langle\perp \perp \perp\rangle \\
\rightarrow & \langle 011\rangle\langle 110\rangle\langle 1 \perp 0\rangle\langle\perp \perp 1\rangle\langle\perp \perp \perp\rangle
\end{array}
$$

(b) The following bottom-up automaton will do : $\left\langle\left\{q_{\perp}, q_{0}, q_{1}, q_{f}, q_{+}, q_{*}\right\}, \mathcal{F},\left\{q_{0}, q_{1}, q_{+}\right\}, \Delta\right\rangle$, and Δ contains :

$$
\left.\left.\begin{array}{c}
\perp \rightarrow q_{\perp} \quad 0\left(q_{\perp}\right) \rightarrow q_{0} \\
f\left(q_{*}, q_{\perp}\right) \rightarrow q_{f}
\end{array} \quad 1\left(q_{\perp}\right) \rightarrow q_{1} \quad q_{1} \rightarrow q_{*} \quad 0\left(q_{*}, q_{f}\right) \rightarrow q_{f}\right) \rightarrow q_{*} \quad 1\left(q_{*}\right) \rightarrow q_{*} . f\left(q_{0}, q_{f}\right) \rightarrow q_{f} \quad 1\left(q_{f}\right) \rightarrow q_{+}\right)
$$

Here, q_{0}, q_{1} recognize the encodings $\overline{0}, \overline{1}$, respectively, and q_{+}recognizes the encodings of all other integers. In the prime factors, q_{*} recognizes \tilde{n}, for any $n \geq 1$. The rules for f ensure that the highest prime factor has a non-zero multiple.
(c) In the following, for $a \in \mathcal{F}$, let $\Pi(a)=\{\langle a, \perp\rangle,\langle\perp, a\rangle,\langle a, a\rangle\}$.

When reading a tree encoding $\langle\bar{n}, \bar{m}, \bar{k}\rangle$, the main idea is of course to check that the prime multiples of k are the sums of those of n and m. The rest follows from the results in (a) and (b). There are some tedious technicalities to take care of :

- From (a), one can assume that there exists an DFTA that that reduces $\langle\widetilde{0}, \widetilde{0}, \widetilde{0}\rangle$ to q_{0}, and any other pair $\left\langle\widetilde{n^{\prime}}, \widetilde{m^{\prime}}, \widetilde{n^{\prime}+m^{\prime}}\right\rangle$ to q_{*}.
- Also, it is trivial to modify this DFTA to additionally treat an all- \perp representation of either summand (but not both) as zero (in case where the maximal prime factor of n and m is different).
- We add the following transitions, for $\left\langle f_{1}, f_{2}\right\rangle \in \Pi(f)$, where q_{+}is accepting :

$$
\left.\begin{array}{rl}
\langle\perp \perp \perp\rangle \rightarrow q_{\perp} & \left\langle f_{1} f_{2} f\right\rangle\left(q_{*}, q_{\perp}\right) \rightarrow q_{f}
\end{array} \quad\left\langle f_{1} f_{2} f\right\rangle\left(q_{*}, q_{f}\right) \rightarrow q_{f}\right)
$$

- Also, one needs to handle the cases where n and m are both at most 1 . This requires to recognize a finite number of additional trees, so can clearly be handled by an NFTA.
- Finally, the resulting automaton ought to be intersected with one verifying that all three projections are valid representations of some natural number, using (b).

3 Closures

(a) L_{1} is not recognizable. To see this, consider the language L_{3} of trees where a occurs to the left of the root and b to its right. L_{3} is recognized by $\left\langle\left\{q_{a}, q_{b}, q_{f}\right\}, \mathcal{F},\left\{q_{f}\right\}, \Delta\right\rangle$ with

$$
a \rightarrow q_{a} \quad f\left(q_{a}, q_{a}\right) \rightarrow q_{a} \quad b \rightarrow q_{b} \quad f\left(q_{b}, q_{b}\right) \rightarrow q_{b} \quad f\left(q_{a}, q_{b}\right) \rightarrow q_{f}
$$

If L_{1} was recognizable, then so would $L_{4}:=L_{1} \cap L_{3}$ be. But L_{4} contains

$$
f(\underbrace{f(f(\cdots(f}_{i}(a, a), \ldots), a), a), \underbrace{f(f(\cdots(f(b, b), \ldots), b), b))}_{i}
$$

for every $i \geq 0$. It is now trivial to apply the pumping lemma to show that L_{4} is not recognizable. But then neither is L_{1}.
(b) L_{2} is recognizable by an NFTA $\left\langle\left\{q_{a}, q_{b}, q_{f}, q_{r}\right\}, \mathcal{F},\left\{q_{f}\right\}, \Delta\right\rangle$ with the following rules :

$$
a \rightarrow q_{a} \quad b \rightarrow q_{b} \quad f\left(q_{a}, q_{b}\right) \rightarrow q_{f} \quad f\left(q_{a}, q_{f}\right) \rightarrow q_{r} \quad f\left(q_{r}, q_{b}\right) \rightarrow q_{f}
$$

(c) If L is a recognizable word language, then it is recognized by a morphism ϕ from monoid $\langle M, \cdot\rangle$. The tree language in question is recognized by the DFTA $\langle M, \mathcal{F}, \phi(L), \Delta\rangle$, where Δ contains $a \rightarrow \phi(a), b \rightarrow \phi(b)$, and $f\left(m, m^{\prime}\right) \rightarrow m \cdot m^{\prime}$ for all $m, m^{\prime} \in M$.
(d) No. Let L_{3} and L_{4} as in the proof of (a). Again, L_{2} is recognizable, but the associative closure of L_{2} intersected with L_{3} is L_{4}, which is not recognizable.
(e) No. L_{2} is recognizable. The commutative and associative closure of L_{2} is L_{1}, which is not recognizable.
(f) Yes. Let $\mathcal{A}=\langle Q, \mathcal{F}, G, \Delta\rangle$ an NFTA recognizing L. Then $\mathcal{A}^{\prime}=\left\langle Q, \mathcal{F}, G, \Delta \cup \Delta^{\prime}\right\rangle$ recognizes its commutative closure with $\Delta^{\prime}=\left\{f\left(q, q^{\prime}\right) \rightarrow q^{\prime \prime} \mid f\left(q^{\prime}, q\right) \rightarrow q^{\prime \prime} \in \Delta\right\}$.

