Tree Languages and Applications

Sample solutions for the Exam, January 12, 2023

1 Residuals

(a) Each leaf guesses whether it is on a path of length n (and goes to q_1), or on some other path. Formally, our NFTA is $\langle \{q, q_1, \ldots, q_n\}, \mathcal{F}, \{q_n\}, \Delta \rangle$, where Δ contains, for all $i = 1, \ldots, n-1$:

$$a \to q$$
 $a \to q_1$ $f(q,q) \to q$ $f(q_i,q) \to q_{i+1}$ $f(q,q_i) \to q_{i+1}$

Alternative solution : It is possible to push the non-determinism into the f-transitions instead, with an automaton $\langle \{q_1, \ldots, q_n, q_{n+1}\}, \mathcal{F}, \{q_n\}, \Delta \rangle$ and, for all $i = 1, \ldots, n$ and $j = 1, \ldots, n+1$,

$$a \to q_1 \qquad f(q_i, q_j) \to q_{i+1} \qquad f(q_j, q_i) \to q_{i+1} \qquad f(q_{n+1}, q_{n+1}) \to q_{n+1}$$

The last transition here is important to prevent the automaton from blocking when all branches of some sub-tree are longer than n.

(b) The result certainly holds for n = 1 since one needs at least one state to accept any tree. For the rest, let n > 1.

Let $K := \{2, \ldots, n\}$. For each $I \subseteq K$ we can construct a tree t_I such that, for any $i \in K$, t_I has a branch of length i iff $i \in I$. Indeed, fix $t_I := t_I^{(2)}$, and

$$t_{I}^{(i)} = \begin{cases} f(a, t_{I}^{(i+1)}) & \text{if } i \in I \\ f(t_{I}^{(i+1)}, t_{I}^{(i+1)}) & \text{if } i \in K \setminus I \\ f(a, a) & \text{otherwise} \end{cases}$$

Suppose that we have a DFTA \mathcal{A} accepting L_n with fewer than 2^{n-1} states. Then there must exist two different sets $I, J \subseteq K$ and a state q of \mathcal{A} such that $t_I \to_{\mathcal{A}}^* q$ and $t_J \to_{\mathcal{A}}^* q$. Let i be the maximal index in the symmetric difference of I and J, and w.l.o.g. suppose that $i \in I \setminus J$.

We now consider the family of contexts $C_0 = x_1$ and $C_{k+1} = f(t_{\emptyset}, C_k)$, for $k \ge 0$. Then $C_{n-i}[t_I] \in L_n$ but $C_{n-i}[t_J] \notin L_n$. However, they are either both accepted or both rejected by \mathcal{A} , a contradiction.

- (c) If L is recognizable, let $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ be a DFTA with n states accepting L, and let $L_q = \{t \in T(\mathcal{F}) \mid t \to_{\mathcal{A}}^* q\}$. For $C \in \mathcal{C}(\mathcal{F})$, let $Q_C = \{q \in Q \mid \exists q' \in G : C[q] \to_{\mathcal{A}}^* q'\}$. Then $C^{-1}L = \bigcup_{q \in Q_C} L_q$. Since $C^{-1}L$ is entirely determined by Q_C , we have $|R(L)| \leq 2^{|Q|}$.
- (d) For $n \geq 2$, let $C \in \mathcal{C}(\mathcal{F})$ be a context whose variable position is p: — If C contains a branch of length n (other than to p), then $C^{-1}L_n = T(\mathcal{F})$. — If C contains no such branch and $0 \leq |p| < n$, then $C^{-1}L_n = L_{n-|p|}$. — Otherwise, $C^{-1}L_n = \emptyset$.

Clearly, these n + 2 residuals are all pairwise different. If n = 1, then the first case is not applicable, and there are only two residuals – this was a bug in the question, my apologies. (Unless one considers C = a as a context, which stretches the definition.)

2 Prime decompositions

- (a) We can construct a top-down automaton that mimicks the usual addition with carry, with just some extra checks to ensure that the right format is respected. For $i, j, k \in \{0, 1\}$, let us denote $[ijk]_s = (i + j + k) \mod 2$ (the sum modulo 2) and $[ijk]_c = \lfloor (i + j + k)/2 \rfloor$ (the carry). Our T-NFTA is $\langle \{q, 0, 1\}, \mathcal{F}, \{q\}, \Delta \rangle$, with the following transitions, for all $i, j, k \in \{0, 1\}$:
 - $q(j,k,[0,j,k]_s) \rightarrow [0,j,k]_c;$
 - $i(j,k,[i,j,k]_s) \to [i,j,k]_c;$
 - $i(\bot, k, [i, 0, k]_s) \to [i, 0, k]_c \text{ and } i(j, \bot, [i, j, 0]_s) \to [i, j, 0]_c;$
 - $-1(\bot,\bot,1) \to 0 \text{ and } \underset{\sim}{0}(\bot,\bot,\bot) \to \varepsilon.$

The accepting run on $\langle 6, 3, 9 \rangle$ is as follows (parentheses omitted for readability) :

- $\mathbf{q}\langle 011\rangle\langle 110\rangle\langle 1\perp 0\rangle\langle \perp\perp 1\rangle\langle \perp\perp \perp\rangle$
- $\rightarrow \langle 011 \rangle \mathbf{0} \langle 110 \rangle \langle 1 \bot 0 \rangle \langle \bot \bot 1 \rangle \langle \bot \bot \bot \rangle$
- $\rightarrow \langle 011 \rangle \langle 110 \rangle \mathbf{1} \langle 1 \perp 0 \rangle \langle \perp \perp 1 \rangle \langle \perp \perp \perp \rangle$
- $\rightarrow \langle 011 \rangle \langle 110 \rangle \langle 1 \bot 0 \rangle \mathbf{1} \langle \bot \bot 1 \rangle \langle \bot \bot \bot \rangle$
- $\rightarrow \quad \langle 011 \rangle \langle 110 \rangle \langle 1 \bot 0 \rangle \langle \bot \bot 1 \rangle \mathbf{0} \langle \bot \bot \bot \rangle$
- $\rightarrow \quad \langle 011 \rangle \langle 110 \rangle \langle 1 \bot 0 \rangle \langle \bot \bot 1 \rangle \langle \bot \bot \bot \rangle$
- (b) The following bottom-up automaton will do : $\langle \{q_{\perp}, q_0, q_1, q_f, q_+, q_*\}, \mathcal{F}, \{q_0, q_1, q_+\}, \Delta \rangle$, and Δ contains :
 - $$\begin{split} \bot \to q_{\bot} & 0(q_{\bot}) \to q_0 & 1(q_{\bot}) \to q_1 & q_1 \to q_* & 0(q_*) \to q_* & 1(q_*) \to q_* \\ f(q_*, q_{\bot}) \to q_f & f(q_*, q_f) \to q_f & f(q_0, q_f) \to q_f & 1(q_f) \to q_+ \end{split}$$

Here, q_0, q_1 recognize the encodings $\overline{0}, \overline{1}$, respectively, and q_+ recognizes the encodings of all other integers. In the prime factors, q_* recognizes \widetilde{n} , for any $n \ge 1$. The rules for f ensure that the highest prime factor has a non-zero multiple.

(c) In the following, for $a \in \mathcal{F}$, let $\Pi(a) = \{ \langle a, \bot \rangle, \langle \bot, a \rangle, \langle a, a \rangle \}.$

When reading a tree encoding $\langle \overline{n}, \overline{m}, \overline{k} \rangle$, the main idea is of course to check that the prime multiples of k are the sums of those of n and m. The rest follows from the results in (a) and (b). There are some tedious technicalities to take care of :

- From (a), one can assume that there exists an DFTA that that reduces (0,0,0) to q_0 , and any other pair $\langle \widetilde{n'}, \widetilde{m'}, \widetilde{n'} + m' \rangle$ to q_* .
- Also, it is trivial to modify this DFTA to additionally treat an all- \perp representation of either summand (but not both) as zero (in case where the maximal prime factor of n and m is different).
- We add the following transitions, for $\langle f_1, f_2 \rangle \in \Pi(f)$, where q_+ is accepting :

$$\langle \bot \bot \bot \rangle \to q_{\bot} \qquad \langle f_1 f_2 f \rangle(q_*, q_{\bot}) \to q_f \qquad \langle f_1 f_2 f \rangle(q_*, q_f) \to q_f$$

$$\langle f_1 f_2 f \rangle(q_0, q_f) \to q_f \qquad \langle 111 \rangle(q_f) \to q_+ \qquad \langle 010 \rangle(q_f) \to q_+ \qquad \langle 100 \rangle(q_f) \to q_+$$

- Also, one needs to handle the cases where n and m are both at most 1. This requires to recognize a finite number of additional trees, so can clearly be handled by an NFTA.
- Finally, the resulting automaton ought to be intersected with one verifying that all three projections are valid representations of some natural number, using (b).

3 Closures

(a) L_1 is not recognizable. To see this, consider the language L_3 of trees where *a* occurs to the left of the root and *b* to its right. L_3 is recognized by $\langle \{q_a, q_b, q_f\}, \mathcal{F}, \{q_f\}, \Delta \rangle$ with

$$a \to q_a$$
 $f(q_a, q_a) \to q_a$ $b \to q_b$ $f(q_b, q_b) \to q_b$ $f(q_a, q_b) \to q_f$

If L_1 was recognizable, then so would $L_4 := L_1 \cap L_3$ be. But L_4 contains

$$f(\underbrace{f(f(\cdots(f(a,a),\ldots),a),a),\underbrace{f(f(\cdots(f(b,b),\ldots),b),b))}_{i}$$

for every $i \ge 0$. It is now trivial to apply the pumping lemma to show that L_4 is not recognizable. But then neither is L_1 .

(b) L_2 is recognizable by an NFTA $\langle \{q_a, q_b, q_f, q_r\}, \mathcal{F}, \{q_f\}, \Delta \rangle$ with the following rules :

$$a \to q_a$$
 $b \to q_b$ $f(q_a, q_b) \to q_f$ $f(q_a, q_f) \to q_r$ $f(q_r, q_b) \to q_f$

- (c) If L is a recognizable word language, then it is recognized by a morphism ϕ from monoid $\langle M, \cdot \rangle$. The tree language in question is recognized by the DFTA $\langle M, \mathcal{F}, \phi(L), \Delta \rangle$, where Δ contains $a \to \phi(a), b \to \phi(b)$, and $f(m, m') \to m \cdot m'$ for all $m, m' \in M$.
- (d) No. Let L_3 and L_4 as in the proof of (a). Again, L_2 is recognizable, but the associative closure of L_2 intersected with L_3 is L_4 , which is not recognizable.
- (e) No. L_2 is recognizable. The commutative and associative closure of L_2 is L_1 , which is not recognizable.
- (f) Yes. Let $\mathcal{A} = \langle Q, \mathcal{F}, G, \Delta \rangle$ an NFTA recognizing L. Then $\mathcal{A}' = \langle Q, \mathcal{F}, G, \Delta \cup \Delta' \rangle$ recognizes its commutative closure with $\Delta' = \{ f(q, q') \to q'' \mid f(q', q) \to q'' \in \Delta \}.$