Tree Languages and Applications M1 Informatique - ENS Paris-Saclay
 Exam, January 12, 2023

Time : two hours. All answers must come with a justification. Results from the course can of course be used without proof.

1 Residuals

For $\mathcal{F}=\{f(2), a(0)\}$ and $n>0$, let L_{n} be the language of trees that have at least one branch of length exactly n, i.e.

$$
L_{n}=\{t \in T(\mathcal{F})|\exists p \in \operatorname{Pos}(t):|p|=n-1 \wedge t(p)=a\} .
$$

E.g., $f(a, f(a, f(a, a))) \in L_{3}$ because it contains one branch of length 3 (as well as one of length 2 and two of length 4).
(a) Give a (bottom-up) NFTA for L_{n} with $n+1$ states.
(b) Show that the minimal DFTA for L_{n} has at least 2^{n-1} states.

Let $L \subseteq T(\mathcal{F})$ be a language of trees and $\mathcal{C} \in \mathcal{C}(\mathcal{F})$ a context. The residual of L by C is defined as $C^{-1} L:=\{t \in T(\mathcal{F}) \mid C[t] \in L\}$. We define $R(L)=\left\{C^{-1} L \mid C \in \mathcal{C}(\mathcal{F})\right\}$ as the set of residuals of L.
(c) Show that if L is recognizable, then $|R(L)|$ is finite.
(d) Show that for L_{n} as above, $\left|R\left(L_{n}\right)\right|=n+2$.

2 Prime decompositions

Let $\mathcal{F}=\{0(1), 1(1), \underset{\widetilde{1}}{\perp}(0)\}$. For $n \in \mathbb{N}$, its encoding \widetilde{n} is defined as:
$-\widetilde{0}=0(\perp)$ and $\widetilde{1}=1(\perp)$;

- if $n=2 m>0$, then $\widetilde{n}=0(\widetilde{m})$;
- if $n=2 m+1>1$, then $\widetilde{n}=1(\widetilde{m})$.

In other words, \widetilde{n} is the (reverse) binary encoding of n, without leading zeros.
Moreover, let $\mathcal{F}^{\prime}=\left\{\langle f, g, h\rangle(k) \mid f \in \mathcal{F}_{m}, g \in \mathcal{F}_{n}, h \in \mathcal{F}_{\ell}, k=\max \{m, n, \ell\}\right\}$. A tree over \mathcal{F}^{\prime} encodes a triple of natural numbers, with \perp filling unused positions, e.g., $\langle\widetilde{2}, \widetilde{1}, \widetilde{5}\rangle=$ $\langle 011\rangle(\langle 1 \perp 0\rangle(\langle\perp \perp 1\rangle(\langle\perp \perp \perp\rangle)))$.
(a) Show that $L=\{\langle\widetilde{n}, \widetilde{m}, \widetilde{n+m}\rangle \mid n, m \in \mathbb{N}\}$ is recognizable. Give an accepting run of your automaton on $\langle\widetilde{6}, \widetilde{3}, \widetilde{9}\rangle$.

We now consider another encoding \bar{n} for $n \in \mathbb{N}$, using trees over $\mathcal{G}=\{0(1), 1(1), \perp(0), f(2)\}$. If $n>1$, let p_{1}, \ldots, p_{k} be the (unique) increasing sequence of prime numbers up to p_{k}, where p_{k} is the largest prime factor of n. There are n_{1}, \ldots, n_{k} such that $n=\prod_{i=1}^{k} p_{i}^{n_{i}}$. Then we let $\bar{n}=1\left(f\left(\widetilde{n_{1}}, f\left(\widetilde{n_{2}}, \ldots, f\left(\widetilde{n_{k}}, \perp\right) \ldots\right)\right)\right.$. Moreover, define $\overline{0}=0(\perp)$ and $\overline{1}=1(\perp)$. E.g., $\overline{20}$ is shown below, given that $20=2^{2} \cdot 3^{0} \cdot 5^{1}$:

(b) Show that $\{\bar{n} \mid n \in \mathbb{N}\}$ is recognizable.
(c) Show that $\{\langle\bar{n}, \bar{m}, \overline{n \times m}\rangle \mid n, m \in \mathbb{N}\}$ is recognizable.

3 Closures

Let $\mathcal{F}=\{f(2)\} \cup \Sigma$, where $\Sigma=\{a, b\}$. For $t \in T(\mathcal{F})$, let $f r(t) \in \Sigma^{*}$ denote the word obtained from reading the leaves of t from left to right, i.e. in increasing lexicographical order of their positions.

We call $L \subseteq T(\mathcal{F})$ closed under commutativity if $C\left[f\left(t, t^{\prime}\right)\right] \in L$ implies $C\left[f\left(t^{\prime}, t\right)\right] \in L$, for any context $C \in \mathcal{C}(\mathcal{F})$ and trees $t, t^{\prime} \in T(\mathcal{F})$. We call L closed under associativity if $C\left[f\left(t, f\left(t^{\prime}, t^{\prime \prime}\right)\right)\right] \in L$ implies $C\left[f\left(f\left(t, t^{\prime}\right), t^{\prime \prime}\right)\right] \in L$ and vice versa. The closure of some $L \subseteq T(\mathcal{F})$ under commutativity/associativity is the least tree language containing L and closed under commutativity/associativity.
(a) Let $L_{1} \subseteq T(\mathcal{F})$ be the language of trees having the same number of a-leaves as b-leaves. Is L_{1} recognizable?
(b) Let $L_{2} \subseteq T(\mathcal{F})$ be the least set of trees containing $f(a, b)$ and such that $t \in L_{2}$ implies $f(f(a, t), b)) \in L_{2}$. Is L_{2} recognizable?
(c) Let $L \subseteq \Sigma^{*}$ be a regular word language. Is the tree language $\{t \in T(\mathcal{F}) \mid f r(t) \in L\}$ recognizable in general?
(d) Let $L \subseteq T(\mathcal{F})$ recognizable. Is the associative closure of L recognizable in general ?
(e) Let $L \subseteq T(\mathcal{F})$ recognizable. Is the associative and commutative closure of L recognizable in general?
(f) Let $L \subseteq T(\mathcal{F})$ recognizable. Is the commutative closure of L recognizable in general?

