
Mutual exclusion

Fundamental problem in concurrent programming:

Ensure co-ordinated access to shared resources

Ensure that a process is not interrupted by its peers during a critical section.

Examples:

Avoid data races (two processes reading and incrementing a value)

Logical reasons (e.g., device can only execute one job at a time)

Time-critical operations (communication with hardware)

Complex transactions (multiple changes must be made at once to maintain
consistency)

1



Critical section

Abstract model:

A collection of processes, each with a critical section that is accessed from
time to time.

Requirement: No more than one process may be in a critical section at any
given moment.

Variant: No more than k processes may enter a critical section.

Processes are distinguished by some identifier.

2



Environment

Mutual exclusion happens in different environments:

inter-thread/process communication

single-core vs multi-core

processes running on different computers

Many algorithms and mechanisms and mechanisms exists to deal with different
assumptions:

Interleaved vs true concurrency

Which actions are atomic (uninterruptible)?

Means of communication: synchronous, asynchronous, bounded delay

3



Mechanisms

Some means of implementing mutual exclusion on a single machine:

Shared memory (synchronous). Problem: atomicity, data races

Inside the CPU: interrupt masks (but only kernel may use it)

Software solutions: Semaphores (or: Flags/Monitors/Locks)

4



Semaphores

A semaphore is a data structure with the following atomic operations:

Init(n), where n = number of allowable concurrent accesses;
inits counter to n

Wait: if counter positive, decrease it and return;
otherwise wait until it becomes positive

Post: increase the counter

5



Example

Typical use case for critical sections with semaphore:

Init(1);

while (1) {
...;

Wait();

Critical1();

Signal();

...;

}

while (1) {
...;

Wait();

Critical2();

Post();

...;

}

Every access to a critical section is surrounded by Wait and Post.

6



Semaphores in Unix

Semaphore support at the OS level, see sem overview(7):

SystemV semaphores: semget etc, older interface, no longer recommended

Posix locks (demo)

Unnamed semaphores (between related threads/processes):
sem init, sem wait, sem post

Named semaphores (system-wide):
sem open, sem unlink

7



Implementing a Semaphore

Naı̈ve:

Init(n) { ctr = n; }

Wait() { while (ctr == 0); ctr = ctr-1; }

Signal() { ctr = ctr+1; }

Two problems:

Atomicity: no interruption must occur between reading and updating the value
of ctr!

Waiting: active waiting or block/wakeup?

8



For POSIX semaphores, atomicity is ensured by blocking interrupts during Wait
and Post (not available to normal user code!).

Passive waiting: block process until counter reaches non-zero state

requires OS-level support (for re-activating the process)

liberates CPU for other tasks (including doing nothing and saving energy)

but: necessitates at least two (costly) context switches

solution of choice for long waits, or on single-core CPU

9



Spinlocks

So-called spinlocks use active waiting: periodically (or continuously) query
counter state

burns CPU time; blocks other processes from executing

effective in true concurrency setting (e.g. multi-core CPU) if wait is
guaranteed to be (very) short.

See also: pthread spin lock

10



Producer-Consumer Problem

Two processes, a producer (left) and a consumer (right).

The consumer uses up what the producer creates (data, requests, . . . ).

put and get are used to insert objects into a shared buffer of size N.

11



Solution I: Active waiting

Init: counter = 0;

while (1) {
produce(&object);
while (counter == N);
put(object);
counter = counter+1;

}

while (1) {
while (counter == 0);
counter = counter-1;
get(&object);
consume(object);

}

Note that this solution also requires atomic increment/decrement on counter.

12



Producer/consumer using semaphors

Init(empty,N); Init(full,0);

while (1) {
produce(&object);
Wait(empty);
put(object);
Signal(full);

}

while (1) {
Wait(full);
get(&object);
Signal(empty);
consume(object);

}

Two sempaphores necessary to deal with both ends of the range 0..N.

13


