Architecture et Systeme

Stefan Schwoon

Cours L3, 2015/16, ENS Cachan
January 5, 2016



Sharing and copy-on-write

Virtual memory isolates each process, which can therefore not influence other
processes.

Sometimes, shared memory is still desirable, e.g. libraries used by multiple
processes: OS can make several virtual pages point to the same real page.

Copy-on-write: multiple virtual pages with the same content: multiple virtual
pages point to the same real page. When one of the pages is written to, the page
will be duplicated in real memory and the virtual memory translation adapted.
Applications: fork, calloc, ...



Swap space

Virtual memory may be bigger than real memory (in fact, it usually is...)

Combined memory usage of all processes may exceed available real memory.

Solution: store “rarely” used pages on hard-drive, mark virtual page entries
appropriately.

Access to a “swapped” page results in an interrupt/exception handled by the OS,
which ensures that the page will be loaded.



Swapping

Conclusion from previous slides: Memory access is not “constant-time”!
Multiple levels of caching: L1, L2 (in the CPU), TLB (in the MMU), copy-on-write,
swapping, ...

——=> caching algorithms important on multiple levels.

Problem in general: store “frequently used” objects (from a large set) in limited
space.

Algorithms: FIFO (bad!), Second Chance, NRU, LRU, ...



FIFO caching

Assume a fixed number of slots available for storing pages.

When a page is requested that is already in the cache, return it directly.

Otherwise, load the requested page from (slower) memory, and replace the
oldest slot in the cache by the newly requested page. (page fault)

Suffers from Belady’s anomaly: More slots can mean more page faults.

Example: Try the sequence 3210324 3210 4 with three, then with
four slots.



Second chance / Clock

Second chance: Modification/improvement of FIFO: Equip each slot with a
“reference” bit that is set to 1 each time the page is requested.

On page fault: Throw out the oldest page if its reference bit is 0. Otherwise, set
its reference bit to 0 and move it to the end of the list.

If all pages have been referenced, the oldest version will still get thrown out.

Clock: Implementation variant of Second Chance with circular list, with pointer to
next free slot / oldest page.



LRU / NRU

Least recently used: Keep time of last access, on page fault throw out the page
that was not accessed for the longest time.

Certain optimality results in terms of page fault ratio, but expensive.

Not recently used: Keep two bits with each page (referenced/modified);
referenced bit is reset periodically.

Four classes of pages: 00 = not referenced/not modified, 01 = not
referenced/modified etc, on page fault throw out a page from the lowest class
possible.

Compromise between optimality and performance (w.r.t. LRU).



Shared memory

Unix provides a shared-memory mechanism, i.e. processes may share a
segment of their memory with other processes.

Two steps (see example program):

Set up shared memory segment (using shmget).
Interface similar to file system, key acts as identifier.

Integrate the shared segment into virtual memory of the process (using
shmat).



Communication over network



Network Communication: Crash course

We shall briefly discuss an example how to establish a TCP/IP connection over
the network.

Model: Client/server structure

server establishes a services at a given port, waits for clients

(multiple) clients can connect to the port and communicate with the server

10



Adressing in IP: ports

In the IP protocol, an Internet address consists of a machine address and a port.

A port can be thought of as fine-grained addressing:
each machine can have 216 of them.

Ports 0..1023 reserved for special use, certain ports pre-defined.

E.g., 80 for HTTP protocol.

11



Server

The server makes the following steps (see example program):
1. Create a TCP socket (using socket call).

2. Connect the socket to an IP port (using bind).
Note: The port can be freely chosen, but numbers up to 1024 are usually
reserved for system services. The client must know which port to connect to.

3. Switch the socket to listen mode (using 1isten).

4. Wait for a client to connect (using accept).
Note: accept returns a file descriptor used for exchanging data with that client.

Note that step 4 can be repeated to accept multiple clients. For each client, a
separate file descriptor is created.

12



Client

The client makes the following steps:

1. Create a TCP socket (like the server).

2. Connect the socket to the correct port on the machine where the server is
running (using connect).

Connect returns a file descriptor for exchanging data with the server.

13



Serving multiple clients

How can a server communicating with several clients at a time?

Problem: The server does not know in advance which client will send the next
piece of data.

read waits patiently till the next piece of data arrives - but the server will
block if nothing arrives from that client!

Solutions:

Create a child process (or thread) for each client.

Use the select system call to find a file descriptor where data is available.

14



