
Architecture et Système

Stefan Schwoon

Cours L3, 2015/16, ENS Cachan
December 14, 2015



Memory

Hardware / architecture aspects:

different types of memory

physical realization of memory access

Software / systems aspects:

sharing / security aspects

hide physical details from user / programmer

2



Memory: Programmer’s view

main
memory

CPU

registers

Registers: small memory for manipulating data

Main memory: big memory for storage

Inspired by earliest computer models (IAS etc)

3



Memory: Modern architecture

registers

CPU
L1

cache

main IC

L2
cache

main
memory memory

secondary

Registers + main memory: directly adressable by programmer

Cache: fast memory types for speed-up, managed by hardware

Secondary memory: to extend memory, managed by operating system

4



Types of memory

registers

CPU
L1

cache

main IC

L2
cache

main
memory memory

secondary

Typical laws:

faster access = memory that is more costly to produce/takes more space

→ faster memory types have smaller capacity

Goals: Speed up memory access + maximize available memory + minimize cost

5



Memory characteristics

Access time (to make memory contents available to processor):

depends on physical characteristics and distance to CPU (signal runtime)

Access mode:

read-write / read-only access

random / serial / blockwise access

Volatility:

memory contents are lost / preserved when power goes off

6



Example: SRAM

SRAM (static random-access memory):

realized, e.g., by D-latches or similar

fast access, depends on runtime of signals

several transistors per bit

typically used to realize fast memories (caches)

7



Example: DRAM

DRAM (dynamic RAM):

realized by one transistor + one capacitor; charged transitor = “1”

activating the access line permits to charge capacitor via data line (or transfer
capacitor charge to data line)

reading operation is destructive – restore value after reading

more compact than SRAM but slower; typically used for main memory

T

C

access

data

8



Organization of a RAM

SRAM and DRAM are examples of volatile, read-write, random-access memory

One-/two-dimensional addressing:

...

...

data i/oaddress

address data i/o

m

de
co

de
r a1

a0

a2m−1

de
co

de
r

decoder

Two-dimensional addressing cheaper to realise.

9



Organization of a RAM

Space constraints limit the storage capacity of individual chips

Memory therefore distributed over several chips

Interleaving adressing: with n chips, chip i stores addresses a where a ≡ i
(mod n); allows to recover n subsequent addresses at once.

10



Example: Hard drive

can store huge amount of data

permanent storage, non-volatile

access (relatively) slow

block access:

one hard drive may consist of several disks, on top of one another;

each disk subdivided into tracks

each track subdivided into sectors

one sector may contain, e.g., 1K or 4K of data

read/write accesses to one sector at a time

used to realize secondary memory

11



Caching

registers

CPU
L1

cache

main IC

L2
cache

main
memory memory

secondary

Idea: keep memory that is currently used often in the faster types of memory

Done transparently: Programmer refers to an address in main memory,
the actual content is there or in one of the caches

Based on locality assumption on code and data

12



Caching: Address decomposition

For caching, the memory is subdivided into blocks (so-called pages) of, say, 4
kilobytes.

In this case, an address A can be (in binary) written as B.D, where D comprises
the lowermost 12 bits.

B then identifies the block (page), D the deplacement within that block.

The cache memorizes which main-memory pages are currently in cache. For
any access to B.D, one first checks whether B is currently in cache; main
memory is consulted only when necessary.

Caching algorithms: discussed later

13



Memory management in simple (single-task) systems

Flat memory model, direct memory access (programs specify physical main
memory addresses they want to access).

Operating system tells programs which parts of memory are available.

Proper memory usage depends on discipline/goodwill of the programmers; the
OS has no actual control over usage.

→ every program can crash the entire system.

14



Advanced memory management

Meaningful multi-user, multi-tasking systems require CPU architectures that
support privileges and virtual memory.

General principle: memory partitioned into segments of equal size (e.g., several
kB per segment)

Privileges: assigned to memory segments

p.ex., only code in “privileged” memory can execute certain assembly
instructions (communicated with hardware, other critical instructions)

privileges can be changed, but only by provileged code

possibly multiple levels of privileges, p.ex. for kernel and device drivers

15



Virtual memory: put processes into a “sandbox”

memory accesses are to virtual addresses, which the hardware translates into
physical addresses.

the mapping from virtual to physical addresses is such that the process can only
access data or code it is meant to have access to.

virtual memory segments can have additional properties, e.g. read-only

advantage: OS does not intervene, except in special cases (e.g., illegal address,
swapping)

16



Virtual memory

Virtual (left) and real memory (right):

CODE

TAS

PILE

cache

0..FF

PARTITION SWAP

CODE
TAS

PILE

RAM

0..777

777...FFF

FFF7...FFFF

17



Virtual memory

Different processes in the system can live in different virtual memories.

When the OS switches between processes, it exchanges the mapping from
virtual to real addresses (the page directory ).

Multiple pages in virtual memory may point to the same real memory page;
e.g., used for sharing libraries.

A process can tell the system how much (virtual) heap memory it wishes to use
(via the brk(2) system call) – low-level interface, not normally used by
programmers.

18



System calls

POSIX standard does not specify details of memory management; judged too
machine-dependent.

Still, to handle the virtual memory of a process, Unixes usually provide two
functions:

brk(2) sets the size of the heap – in the virtual memory.
Direct interaction with the system, not normally used by the programmer.

malloc(3) (and similar routines) – process-level code that finds free space
in the currently allocated heap space, will call brk if necessary.

19



Note: The OS only cares about the amount of memory requested by brk, which
typically happens in large chunks.

How that requested memory is organized, is up to the user. Typically, malloc
and co take over this organization and take care of fine-grained allocations of up
to a few bytes. This is “invisible” on the system level.

We first regard how memory allocators work.

20



Memory management: Malloc

A memory allocator manages the dynamic allocation of memory in the heap.

main operations: malloc (allocate n bytes), free

user-level code contained in the standard library

uses brk to increase virtual memory when necessary

Other operations:

calloc (allocate and initialize to zero)

realloc (change size of allocation, moving if necessary)

mmap (map file contents into memory)

21



Conflicting goals:

minimize time (operations should be fast)

minimize space (fragmentation, overhead)

maximize locality (improve cache performance)

work well in all use cases

Error detection (catching problems caused by incorrect usage):

very limited

use memory beyond allocated limits (→ crash)

double free (→ crash)

crashes may occur thousands of lines later→ nightmare to debug

22



Memory blocks

Memory allocators like malloc typically divide memory into chunks that are free
or occupied (allocated).

Simple approach: fixed-size chunks with bitmask (0=free, 1=occupied).
However, fixed-size chunks are impractical.

Better: chunks of variable size

mark beginning and end of chunks with its size, user data in between

enables quick jump to the next chunks

neighbouring free chunks can be easily joined

Caution: byte alignment must be respected (pointers to words must be
multiple of 4 or 8, depending on the CPU)

23



Time/space considerations

How to find a free chunks (of a given minimal size n)?

Walk all chunks. . .

Walk the free chunks (requires storing additional pointers inside the free
chunks, increases speed but also overhead). . .

Which free chunks to take?

The first chunks found with size ≥ n (first-fit).

Similar, but continue searching where the last search stopped (next-fit).

The minimal free chunks with size ≥ n (best-fit).

24



Multiple bins

Compromise used in malloc:

Multiple bins for free blocks of fixed sizes, e.g. 16, 24, 32, . . .

When requesting n bytes, look at the smallest non-empty appropriate bin and
take free block from there.

Next-fit: aims to preserve locality but is observed to lead to bad fragmentation;
used only in specific cases.

Description of more implementation details:
http://g.oswego.edu/dl/html/malloc.html

25



Virtual memory

We now discuss the organisation of memory on the level of the hardware and the
system.

Modern machines employ a memory management unit (MMU), a part of the CPU
that is consulted for each memory access.

The MMU implements a paging mechanism:

Memory is divided into pages of a fixed size, which is a power of two.

For each process, there exists a page table, which contains, for every (used)
entry in virtual memory, a descriptor.

That descriptor contains information where the virtual page is stored
physically. (In the easiest case, a physical memory address.)

26



Visiualization of virtual and real address space:

X

X

X

7

X

5

X

X

X

3

4

X

6

1

2

page virtuelle

MEMOIRE 
VIRTUELLE

MEMOIRE 
VIVE

cadre de page

0k-4k

4k-8k

8k-16k

16k-20k

20k-24k

24k-28k

28k-32k

32k-36k

36k-40k

40k-44k

44k-48k

48k-52k

52k-56k

56k-60k

60k-64k

0k-4k

4k-8k

8k-16k

16k-20k

20k-24k

24k-28k

32k-36k

27



Paging

Basic idea:

At each memory access, the MMU is consulted, which uses the page table of
the current process.

Each memory address is divided into its (virtual) page and its offset.

If the page currently is valid and resides in real memory, the virtual page is
replaced by the real page, and memory access continues.

If the page is not currently in real memory, operation is suspended and the
operating system is invoked to charge it.

28



Page size affects granularity of memory allocation and size of page table!
(conflicting goals; reasonable compromise 4 to 32 K)

Problem no.1: Page tables too big to hold in MMU’s own memory – store in main
memory.

Problem no.2: Even main memory is not enough for naı̈ve implementation – use
tricks, e.g. several levels of indirection.

Problem no.3: Naive implementation means that every memory access is slowed
down – MMU-internal TLB (translation lookaside buffer) as cache.

29


