Algorithmic Aspects of WQO (Well-Quasi-Ordering) Theory Part I: Basics of WQO Theory

Sylvain Schmitz \& Philippe Schnoebelen

LSV, CNRS \& ENS Cachan

ESSLLI 2012, Opole, Aug 6-15, 2012

Lecture notes \& exercices available at http://tinyurl.com/esslli12wqo

Motivations for the course

- Well-quasi-orderings (wqo's) proved to be a powerful tool for decidability/termination in logic, AI, program verification, etc. NB: they can be seen as a version of well-founded orderings with more flexibility
- In program verification, wqo's are prominent in well-structured transition systems (WSTS's), a generic framework for infinite-state systems with good decidability properties.

Analysing the complexity of wqo-based algorithms is still one of the dark arts

Purposes of these lectures = to disseminate the basic concepts and tools one uses for the complexity analysis of wqo-based algorithms.

Motivations for the course

- Well-quasi-orderings (wqo's) proved to be a powerful tool for decidability/termination in logic, AI, program verification, etc. NB: they can be seen as a version of well-founded orderings with more flexibility
- In program verification, wqo's are prominent in well-structured transition systems (WSTS's), a generic framework for infinite-state systems with good decidability properties.
- Analysing the complexity of wqo-based algorithms is still one of the dark arts ...
- Purposes of these lectures = to disseminate the basic concepts and tools one uses for the complexity analysis of wqo-based algorithms.

Outline of the course

- (This) Lecture 1 = Basics of Wqo's. Rather basic material: explaining and illustrating the definition of wqo's. Building new wqo's from simpler ones.
- Lecture 2 = Algorithmic Applications of Wqo's. Well-Structured Transition Systems, Program Termination, Relevance Logic, etc.
- Lecture 3 = Complexity Classes for Wqo's. Fast-growing complexity. Working with subrecursive hierarchies.
- Lecture 4 = Proving Complexity Lower Bounds. Simulating fast-growing functions with weak/unreliable computation models.
- Lecture 5 = Proving Complexity Upper Bounds. Bounding the length of bad sequences (for Dickson's and Higman's Lemmas).

(Recalls) Ordered Sets

Def. A non-empty (X, \leqslant) is a quasi-ordering (qo) $\stackrel{\text { def }}{\stackrel{y}{f} \leqslant \text { is a reflexive }}$ and transitive relation.
(\approx a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. (\mathbb{N}, \leqslant), also $(\mathbb{R}, \leqslant),(\mathbb{N} \cup\{\omega\}, \leqslant), \ldots$
divisibility: $\left(\mathbb{Z},_{-} \mid{ }_{-}\right)$where $x \mid y \stackrel{\text { def }}{\Leftrightarrow} \exists a: a . x=y$
tuples: $\left(\mathbb{N}^{3}, \leqslant\right.$ prod $)$, or simply $\left(\mathbb{N}^{3}, \leqslant x\right)$, where $(0,1,2)<_{x}(10,1,5)$ and $(1,2,3) \# \times(3,1,2)$. words: $\left(\Sigma^{*}, s_{\text {pref }}\right)$ for some alphabet $\Sigma=\{a, b, \ldots\}$ and $a b<_{\text {pref }} a b b a$. $\left(\Sigma^{*}, \leqslant l e x\right)$ with e.g. abba \leqslant lex $a b c$ (NB: this assumes Σ is linearly ordered: $a<b<c$) $\left(\Sigma^{*}, \leqslant_{\text {subword }}\right)$, or simply $\left(\Sigma^{*}, \leqslant_{*}\right)$, with aba \leqslant_{*} baabbaa.

(Recalls) Ordered Sets

Def. A non-empty (X, \leqslant) is a quasi-ordering (qo) $\stackrel{\text { def }}{\Leftrightarrow} \leqslant$ is a reflexive and transitive relation.
(\approx a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. (\mathbb{N}, \leqslant), also $(\mathbb{R}, \leqslant),(\mathbb{N} \cup\{\omega\}, \leqslant), \ldots$ divisibility: $\left(\mathbb{Z},\left.\right|_{-}\right)$where $x \mid y \stackrel{\text { def }}{\Leftrightarrow} \exists a: a . x=y$

(Recalls) Ordered Sets

Def. A non-empty (X, \leqslant) is a quasi-ordering (qo) $\stackrel{\text { def }}{\Leftrightarrow} \leqslant$ is a reflexive and transitive relation.
(\approx a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. (\mathbb{N}, \leqslant), also $(\mathbb{R}, \leqslant),(\mathbb{N} \cup\{\omega\}, \leqslant), \ldots$
divisibility: $\left(\mathbb{Z},\left.\right|_{-}\right)$where $x \mid y \stackrel{\text { def }}{\Leftrightarrow} \exists a: a . x=y$
tuples: $\left(\mathbb{N}^{3}, \leqslant\right.$ prod $)$, or simply $\left(\mathbb{N}^{3}, \leqslant x\right)$, where $(0,1,2)<x(10,1,5)$ and $(1,2,3) \#_{\times}(3,1,2)$.

(Recalls) Ordered Sets

Def. A non-empty (X, \leqslant) is a quasi-ordering (qo) $\stackrel{\text { def }}{\Leftrightarrow} \leqslant$ is a reflexive and transitive relation.
(\approx a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. (\mathbb{N}, \leqslant), also $(\mathbb{R}, \leqslant),(\mathbb{N} \cup\{\omega\}, \leqslant), \ldots$
divisibility: $\left(\mathbb{Z},\left.\right|_{-}\right)$where $x \mid y \stackrel{\text { def }}{\Leftrightarrow} \exists a: a . x=y$
tuples: $\left(\mathbb{N}^{3}, \leqslant\right.$ prod $)$, or simply $\left(\mathbb{N}^{3}, \leqslant x\right)$, where $(0,1,2)<x(10,1,5)$ and ($1,2,3$) $\#_{\times}(3,1,2)$.
words: $\left(\Sigma^{*}, \leqslant\right.$ pref $)$ for some alphabet $\Sigma=\{a, b, \ldots\}$ and $a b<$ pref $a b b a$.

(Recalls) Ordered Sets

Def. A non-empty (X, \leqslant) is a quasi-ordering (qo) $\stackrel{\text { def }}{\Leftrightarrow} \leqslant$ is a reflexive and transitive relation.
(\approx a partial ordering without requiring antisymmetry, technically simpler but essentially equivalent)

Examples. (\mathbb{N}, \leqslant), also $(\mathbb{R}, \leqslant),(\mathbb{N} \cup\{\omega\}, \leqslant), \ldots$
divisibility: $\left(\mathbb{Z},\left.\right|_{-}\right)$where $x \mid y \stackrel{\text { def }}{\Leftrightarrow} \exists a: a . x=y$
tuples: $\left(\mathbb{N}^{3}, \leqslant\right.$ prod $)$, or simply $\left(\mathbb{N}^{3}, \leqslant x\right)$, where $(0,1,2)<x(10,1,5)$ and $(1,2,3) \#_{\times}(3,1,2)$.
words: $\left(\Sigma^{*}, \leqslant\right.$ pref $)$ for some alphabet $\Sigma=\{a, b, \ldots\}$ and $a b<$ pref $a b b a$. $\left(\Sigma^{*}, \leqslant_{\text {lex }}\right)$ with e.g. $a b b a \leqslant_{\text {lex }} a b c$ (NB: this assumes Σ is linearly ordered: $a<b<c$)
$\left(\Sigma^{*}, \leqslant\right.$ subword $)$, or simply $\left(\Sigma^{*}, \leqslant_{*}\right)$, with $a b a \leqslant_{*}$ bagabbbaa.

(Recalls) Ordered sets

Def. (X, \leqslant) is linear if for any $x, y \in X$ either $x \leqslant y$ or $y \leqslant x$. (l.e., there is no $x \# y$.)
Def. (X, \leqslant) is well-founded if there is no infinite strictly decreasing sequence $x_{0}>x_{1}>x_{2}>\cdots$

	linear?	well-founded?
\mathbb{N}, \leqslant		
\mathbb{Z}, \mid		
$\mathbb{N} \cup\{\omega\}, \leqslant$		
$\mathbb{N}^{3}, \leqslant \times$		
Σ^{*}, \leqslant pref		
Σ^{*}, \leqslant lex		
$\Sigma^{*}, \leqslant_{*}$		

(Recalls) Ordered sets

Def. (X, \leqslant) is linear if for any $x, y \in X$ either $x \leqslant y$ or $y \leqslant x$. (I.e., there is no $x \# y$.)
Def. (X, \leqslant) is well-founded if there is no infinite strictly decreasing sequence $x_{0}>x_{1}>x_{2}>\cdots$

	linear?	well-founded?
\mathbb{N}, \leqslant	\checkmark	
\mathbf{Z}, \mid	\times	
$\mathbb{N} \cup\{\boldsymbol{\omega}\}, \leqslant$	\checkmark	
$\mathbb{N}^{3}, \leqslant \times$	\times	
$\Sigma^{*}, \leqslant_{\text {pref }}$	\times	
$\Sigma^{*}, \leqslant_{\text {lex }}$	\checkmark	
$\Sigma^{*}, \leqslant_{*}$	\times	

(Recalls) Ordered sets

Def. (X, \leqslant) is linear if for any $x, y \in X$ either $x \leqslant y$ or $y \leqslant x$. (I.e., there is no $x \# y$.)
Def. (X, \leqslant) is well-founded if there is no infinite strictly decreasing sequence $x_{0}>x_{1}>x_{2}>\cdots$

	linear?	well-founded?
\mathbb{N}, \leqslant	\checkmark	\checkmark
\mathbf{Z}, \mid	\times	\checkmark
$\mathbb{N} \cup\{\boldsymbol{\omega}\}, \leqslant$	\checkmark	\checkmark
$\mathbb{N}^{3}, \leqslant \times$	\times	\checkmark
Σ^{*}, \leqslant pref	\times	\checkmark
$\Sigma^{*}, \leqslant_{\text {lex }}$	\checkmark	\times
$\Sigma^{*}, \leqslant_{*}$	\times	\checkmark

Well-quasi-ordering (wQo)

Def1. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ any infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ contains an increasing pair: $x_{i} \leqslant x_{j}$ for some $i<j$.
Def2. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ any infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ contains an infinite increasing subsequence: $x_{n_{0}} \leqslant x_{n_{1}} \leqslant x_{n_{2}} \leqslant \ldots$
Def3. (X, \leqslant) is a wao $\stackrel{\text { def }}{\Longleftrightarrow}$ there is no infinite strictly decreasing sequence $x_{0}>x_{1}>x_{2}>\ldots$-i.e., (X, \leqslant) is well-founded- and no infinite set $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ of mutually incomparable elements $x_{i} \# x_{j}$ when $i \neq j$-we say " (X, \leqslant) has no infinite antichain"-.

Fact. These three definitions are equivalent.
Clearly, Def2 \Rightarrow Def1 and Def1 \Rightarrow Def3 (think contrapositively). But the reverse implications are non-trivial.
Recall Infinite Ramsey Theorem: "Let X be some countably infinite set and colour the elements of $X^{(n)}$ (the subsets of X of size n) in c different colours. Then there exists some infinite subset M of X s.t. the size n subsets of M all have the same colour."

Well-quasi-ordering (wQo)

Def1. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ any infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ contains an increasing pair: $x_{i} \leqslant x_{j}$ for some $i<j$.
Def2. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ any infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ contains an infinite increasing subsequence: $x_{n_{0}} \leqslant x_{n_{1}} \leqslant x_{n_{2}} \leqslant \ldots$

Def3. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ there is no infinite strictly decreasing
sequence $x_{0}>x_{1}>x_{2}>\ldots$-i.e., (X, \leqslant) is well-founded- and no
infinite set $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ of mutually incomparable elements $x_{i} \# x_{j}$ when
$i \neq j$-we say " (X, \leqslant) has no infinite antichain"-.
Fact. These three definitions are equivalent.
Clearly, Def2 \Rightarrow Def1 and Def1 \Rightarrow Def3 (think contrapositively). But
the reverse implications are non-trivial.
Recall Infinite Ramsey Theorem: "Let X be some countably infinite set and colour the elements of $X^{(n)}$ (the subsets of X of size n) in c different colours. Then there exists some infinite subset M of X s.t. the size n subsets of M all have the same colour."

Well-quasi-ordering (wQo)

Def1. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ any infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ contains an increasing pair: $x_{i} \leqslant x_{j}$ for some $i<j$.
Def2. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ any infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ contains an infinite increasing subsequence: $x_{n_{0}} \leqslant x_{n_{1}} \leqslant x_{n_{2}} \leqslant \ldots$
Def3. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_{0}>x_{1}>x_{2}>\ldots$-i.e., (X, \leqslant) is well-founded- and no infinite set $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ of mutually incomparable elements $x_{i} \# x_{j}$ when $i \neq j$-we say " (X, \leqslant) has no infinite antichain"-.

Fact. These three definitions are equivalent.
Clearly, Def2 \Rightarrow Def1 and Def1 \Rightarrow Def3 (think contrapositively). But
the reverse implications are non-trivial.
Recall Infinite Ramsey Theorem: "Let X be some countably infinite set and colour the elements of $X^{(n)}$ (the subsets of X of size n) in c different colours. Then there exists some infinite subset M of X s.t. the size n subsets of M all have the same colour."

WELL-QUASI-ORDERING (WQO)

Def1. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ any infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ contains an increasing pair: $x_{i} \leqslant x_{j}$ for some $i<j$.
Def2. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ any infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ contains an infinite increasing subsequence: $x_{n_{0}} \leqslant x_{n_{1}} \leqslant x_{n_{2}} \leqslant \ldots$
Def3. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_{0}>x_{1}>x_{2}>\ldots$-i.e., (X, \leqslant) is well-founded- and no infinite set $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ of mutually incomparable elements $x_{i} \# x_{j}$ when $i \neq j$-we say " (X, \leqslant) has no infinite antichain"-.

Fact. These three definitions are equivalent.
Clearly, Def2 \Rightarrow Def1 and Def1 \Rightarrow Def3 (think contrapositively). But the reverse implications are non-trivial.
set and colour the elements of $X^{(n)}$ (the subsets of X of size n) in c different colours. Then there exists some infinite subset M of X s.t. the size n subsets of M all have the same colour."

WELL-QUASI-ORDERING (WQO)

Def1. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ any infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ contains an increasing pair: $x_{i} \leqslant x_{j}$ for some $i<j$.
Def2. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ any infinite sequence $x_{0}, x_{1}, x_{2}, \ldots$ contains an infinite increasing subsequence: $x_{n_{0}} \leqslant x_{n_{1}} \leqslant x_{n_{2}} \leqslant \ldots$
Def3. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ there is no infinite strictly decreasing sequence $x_{0}>x_{1}>x_{2}>\ldots$-i.e., (X, \leqslant) is well-founded- and no infinite set $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ of mutually incomparable elements $x_{i} \# x_{j}$ when $i \neq j$-we say " (X, \leqslant) has no infinite antichain"-.

Fact. These three definitions are equivalent.
Clearly, Def2 \Rightarrow Def1 and Def1 \Rightarrow Def3 (think contrapositively). But the reverse implications are non-trivial.
Recall Infinite Ramsey Theorem: "Let X be some countably infinite set and colour the elements of $X^{(n)}$ (the subsets of X of size n) in c different colours. Then there exists some infinite subset M of X s.t. the size n subsets of M all have the same colour."

SPOT THE WQO'S

	linear?	well-founded?	wqo?
\mathbb{N}, \leqslant	\checkmark	\checkmark	
\mathbb{Z}, \mid	\times	\checkmark	
$\mathbb{N} \cup\{\boldsymbol{\omega}\}, \leqslant$	\checkmark	\checkmark	
$\mathbb{N}^{3}, \leqslant \times$	\times	\checkmark	
$\Sigma^{*}, \leqslant_{\text {pref }}$	\times	\checkmark	
$\Sigma^{*}, \leqslant_{\text {lex }}$	\checkmark	\times	
$\Sigma^{*}, \leqslant_{*}$	\times	\checkmark	

SPOT THE WQO'S

	linear?	well-founded?	wqo?
\mathbb{N}, \leqslant	\checkmark	\checkmark	\checkmark
\mathbb{Z}, \mid	\times	\checkmark	
$\mathbb{N} \cup\{\boldsymbol{\omega}\}, \leqslant$	\checkmark	\checkmark	
$\mathbb{N}^{3}, \leqslant \times$	\times	\checkmark	
Σ^{*}, \leqslant pref	\times	\checkmark	
$\Sigma^{*}, \leqslant_{\text {lex }}$	\checkmark	\times	
$\Sigma^{*}, \leqslant_{*}$	\times	\checkmark	

SPOT THE WQO'S

	linear?	well-founded?	wqo?
\mathbb{N}, \leqslant	\checkmark	\checkmark	\checkmark
\mathbb{Z}, \mid	\times	\checkmark	
$\mathbb{N} \cup\{\omega\}, \leqslant$	\checkmark	\checkmark	\checkmark
$\mathbb{N}^{3}, \leqslant \times$	\times	\checkmark	
$\Sigma^{*}, \leqslant_{\text {pref }}$	\times	\checkmark	
Σ^{*}, \leqslant lex	\checkmark	\times	
$\Sigma^{*}, \leqslant_{*}$	\times	\checkmark	

More generally
Fact. For linear qo's: well-founded \Leftrightarrow wqo.
Cor. Any ordinal is wqo.

SPOT THE WQO'S

	linear?	well-founded?	wqo?
\mathbb{N}, \leqslant	\checkmark	\checkmark	\checkmark
\mathbb{Z}, \mid	\times	\checkmark	\times
$\mathbb{N} \cup\{\omega\}, \leqslant$	\checkmark	\checkmark	\checkmark
$\mathbb{N}^{3}, \leqslant \times$	\times	\checkmark	
$\Sigma^{*}, \leqslant_{\text {pref }}$	\times	\checkmark	
Σ^{*}, \leqslant lex	\checkmark	\times	
$\Sigma^{*}, \leqslant_{*}$	\times	\checkmark	

(\mathbb{Z}, \mid) : The prime numbers $\{2,3,5,7,11, \ldots\}$ are an infinite antichain.

SPOT THE WQO'S

	linear?	well-founded?	wqo?
\mathbb{N}, \leqslant	\checkmark	\checkmark	\checkmark
\mathbb{Z}, \mid	\times	\checkmark	\times
$\mathbb{N} \cup\{\omega\}, \leqslant$	\checkmark	\checkmark	\checkmark
$\mathbb{N}^{3}, \leqslant \times$	\times	\checkmark	\checkmark
$\Sigma^{*}, \leqslant_{\text {pref }}$	\times	\checkmark	
Σ^{*}, \leqslant lex	\checkmark	\times	
$\Sigma^{*}, \leqslant_{*}$	\times	\checkmark	

More generally
(Generalized) Dickson's lemma. If $\left(X_{1}, \leqslant_{1}\right), \ldots,\left(X_{n}, \leqslant_{n}\right)$'s are wqo's, then $\prod_{i=1}^{n} X_{i}, \leqslant x$ is wqo.
Proof. Easy with Def2. Otherwise, an application of the Infinite Ramsey Theorem.
(Usual) Dickson's Lemma. $\left(\mathbb{N}^{k}, \leqslant x\right)$ is wqo for any k.

SPOT THE WQO'S

	linear?	well-founded?	wqo?
\mathbb{N}, \leqslant	\checkmark	\checkmark	\checkmark
\mathbb{Z}, \mid	\times	\checkmark	\times
$\mathbb{N} \cup\{\omega\}, \leqslant$	\checkmark	\checkmark	\checkmark
$\mathbb{N}^{3}, \leqslant \times$	\times	\checkmark	\checkmark
$\Sigma^{*}, \leqslant_{\text {pref }}$	\times	\checkmark	\times
$\Sigma^{*}, \leqslant_{\text {lex }}$	\checkmark	\times	\times
$\Sigma^{*}, \leqslant_{*}$	\times	\checkmark	

(Σ^{*}, \leqslant pref $)$ has an infinite antichain

$$
b b, b a b, b a a b, b a a a b, \ldots
$$

$\left(\Sigma^{*}, \leqslant\right.$ lex $)$ is not well-founded:

$$
b>_{\text {lex }} a b>_{\text {lex }} a a b>_{\text {lex }} a a a b>_{\text {lex }} \cdots
$$

Spot the wqo's

	linear?	well-founded?	wqo?
\mathbb{N}, \leqslant	\checkmark	\checkmark	\checkmark
\mathbb{Z}, \mid	\times	\checkmark	\times
$\mathbb{N} \cup\{\boldsymbol{\omega}\}, \leqslant$	\checkmark	\checkmark	\checkmark
$\mathbb{N}^{3}, \leqslant \times$	\times	\checkmark	\checkmark
Σ^{*}, \leqslant pref	\times	\checkmark	\times
Σ^{*}, \leqslant lex	\checkmark	\times	\times
$\Sigma^{*}, \leqslant_{*}$	\times	\checkmark	\checkmark

($\left.\Sigma^{*}, \Sigma_{*}\right)$ is wqo by Higman's Lemma (see next slide).
We can get some feeling by trying to build a bad sequence, i.e., some $w_{0}, w_{1}, w_{2}, \ldots$ without an increasing pair $w_{i} \leqslant * w_{j}$.

Higman's Lemma

Def. The sequence extension of a qo (X, \leqslant) is the qo $\left(X^{*}, \leqslant_{*}\right)$ of finite sequences over X ordered by embedding:

$$
\begin{aligned}
w=x_{1} \ldots x_{n} \leqslant * y_{1} \ldots y_{m}=v & \stackrel{\text { def }}{\Leftrightarrow} x_{1} \leqslant y_{l_{1}} \wedge \ldots \wedge x_{n} \leqslant y_{l_{n}} \\
& \text { for some } 1 \leqslant l_{1}<l_{2}<\ldots<l_{n} \leqslant m \\
& \stackrel{\text { def }}{\Leftrightarrow} w \leqslant \times v^{\prime} \text { for a length- } n \text { subsequence } v^{\prime} \text { of } v
\end{aligned}
$$

Higman's Lemma. (X^{*}, \leqslant_{*}) is a wqo iff (X, \leqslant) is.
With $\left(\Sigma^{*}, \Sigma_{*}\right)$, we are considering the sequence extension of $(\Sigma,=)$ which is finite, hence necessarily wqo.

Later we'll consider the sequence extension of more complex wqo's, e.g., \mathbb{N}^{2} :

$$
\left.\left.\left.\right|_{1} ^{0}\right|_{0} ^{2}\right|_{2} ^{0} \leqslant\left.\left.\left.\left.\left. * ?| |_{0}^{2}\right|_{2} ^{0}\right|_{2} ^{0}\right|_{2} ^{2}\right|_{0} ^{2}\right|_{1} ^{0}
$$

Higman's Lemma

Def. The sequence extension of a qo (X, \leqslant) is the qo $\left(X^{*}, \leqslant_{*}\right)$ of finite sequences over X ordered by embedding:

$$
\begin{aligned}
& w=x_{1} \ldots x_{n} \leqslant * y_{1} \ldots y_{m}=v \stackrel{\text { def }}{\Leftrightarrow} \\
& x_{1} \leqslant y_{l_{1}} \wedge \ldots \wedge x_{n} \leqslant y_{l_{n}} \\
& \text { for some } 1 \leqslant l_{1}<l_{2}<\ldots<l_{n} \leqslant m
\end{aligned}
$$

Higman's Lemma. (X^{*}, \leqslant_{*}) is a wqo iff (X, \leqslant) is.
With ($\Sigma^{*}, \leqslant_{*}$), we are considering the sequence extension of $(\Sigma,=)$ which is finite, hence necessarily wqo.

Later we'll consider the sequence extension of more complex wqo's, e.g., \mathbb{N}^{2} :

$$
\left.\left.\left.\right|_{1} ^{0}\right|_{0} ^{2}\right|_{2} ^{0} \leqslant\left.\left.\left.\left.\left.\left. * ?\right|_{0} ^{2}\right|_{2} ^{0}\right|_{2} ^{0}\right|_{2} ^{2}\right|_{0} ^{2}\right|_{1} ^{0}
$$

Proof of Higman's Lemma

Let (X, \leqslant) be wqo and assume by way of contradiction that (X^{*}, \leqslant_{*}) admits bad sequences (sequences with no increasing pairs).
Let $w_{0} \in X^{*}$ be the shortest word that can start a bad sequence.
Let $w_{1} \in X^{*}$ be the shortest word that can continue, i.e., such that
there is a bad sequence starting with w_{0}, w_{1}
Continue. This way we pick an infinite sequence $S=w_{0}, w_{1}, w_{2}, w_{3}, \ldots$
Claim. S too is bad (easy with Def1)
Write w_{i} under the form $w_{i}=x_{i} v_{i}$. Since X is wqo, there is an infinite increasing sequence $x_{n_{0}} \leqslant x_{n_{1}} \leqslant x_{n_{2}} \leqslant \cdots$ (here we use Def2)

Now consider $S^{\prime} \stackrel{\text { def }}{=} w_{0}, w_{1}, \ldots, w_{n_{0}-1}, v_{n_{0}}, v_{n_{1}}, v_{n_{2}}, \ldots$
It cannot be bad (otherwise $w_{n_{0}}$ would not have been shortest).
But an increasing pair $v_{n} \leqslant * v_{m}$ leads to $x_{n} v_{n} \leqslant * x_{m} v_{m}$, i.e., $w_{n} \leqslant * w_{m}$, a contradiction.

Proof of Higman's Lemma

Let (X, \leqslant) be wqo and assume by way of contradiction that $\left(X^{*}, \leqslant_{*}\right)$ admits bad sequences (sequences with no increasing pairs).
Let $w_{0} \in X^{*}$ be the shortest word that can start a bad sequence.
there is a bad sequence starting with w_{0}, w_{1}
Continue. This way we pick an infinite sequence $S=w_{0}, w_{1}, w_{2}, w_{3}, \ldots$
Claim. S too is bad (easy with Def1)
Write w_{i} under the form $w_{i}=x_{i} v_{i}$. Since X is wqo, there is an infinite increasing sequence $x_{n_{0}} \leqslant x_{n_{1}} \leqslant x_{n_{2}} \leqslant \cdots$ (here we use Def2)

Now consider $S^{\prime} \stackrel{\text { def }}{=}$
It cannot be bad (otherwise $w_{n_{0}}$ would not have been shortest).
But an increasing pair $v_{n} \leqslant_{*} v_{m}$ leads to $x_{n} v_{n} \leqslant_{*} x_{m} v_{m}$, i.e., $w_{n} \leqslant_{*} w_{m}$, a
contradiction.

Proof of Higman's Lemma

Let (X, \leqslant) be wqo and assume by way of contradiction that (X^{*}, \leqslant_{*}) admits bad sequences (sequences with no increasing pairs).
Let $w_{0} \in X^{*}$ be the shortest word that can start a bad sequence.
Let $w_{1} \in X^{*}$ be the shortest word that can continue, i.e., such that there is a bad sequence starting with w_{0}, w_{1}
Continue. This way we pick an infinite sequence $S=w_{0}, w_{1}, w_{2}, w_{3}, \ldots$
Claim. S too is bad (easy with Def1)
Write w_{i} under the form $w_{i}=x_{i} v_{i}$. Since X is wqo, there is an infinite increasing sequence $x_{n_{0}} \leqslant x_{n_{1}} \leqslant x_{n_{2}} \leqslant \cdots$ (here we use Def2)

Now consider $S^{\prime} \stackrel{\text { def }}{=}$
It cannot be bad (otherwise $w_{n_{0}}$ would not have been shortest).
But an increasing pair $v_{n} \leqslant * v_{m}$ leads to $x_{n} v_{n} \leqslant * x_{m} v_{m}$, i.e., $w_{n} \leqslant * w_{m}$, a
contradiction.

Proof of Higman's Lemma

Let (X, \leqslant) be wqo and assume by way of contradiction that (X^{*}, \leqslant_{*}) admits bad sequences (sequences with no increasing pairs).
Let $w_{0} \in X^{*}$ be the shortest word that can start a bad sequence.
Let $w_{1} \in X^{*}$ be the shortest word that can continue, i.e., such that there is a bad sequence starting with w_{0}, w_{1}
Continue. This way we pick an infinite sequence $S=w_{0}, w_{1}, w_{2}, w_{3}, \ldots$
Claim. S too is bad (easy with Def1)
Write w_{i} under the form $w_{i}=x_{i} v_{i}$. Since X is wqo, there is an infinite increasing sequence $x_{n_{0}} \leqslant x_{n_{1}} \leqslant x_{n_{2}} \leqslant \cdots$ (here we use Def2)

Now consider $S^{\prime} \stackrel{\text { def }}{=}$
It cannot be bad (otherwise $w_{n_{0}}$ would not have been shortest).
But an increasing pair $v_{n} \leqslant_{*} v_{m}$ leads to $x_{n} v_{n} \leqslant_{*} x_{m} v_{m}$, i.e., $w_{n} \leqslant_{*} w_{m}$, a contradiction.

Proof of Higman's Lemma

Let (X, \leqslant) be wqo and assume by way of contradiction that (X^{*}, \leqslant_{*}) admits bad sequences (sequences with no increasing pairs).
Let $w_{0} \in X^{*}$ be the shortest word that can start a bad sequence.
Let $w_{1} \in X^{*}$ be the shortest word that can continue, i.e., such that there is a bad sequence starting with w_{0}, w_{1}
Continue. This way we pick an infinite sequence $S=w_{0}, w_{1}, w_{2}, w_{3}, \ldots$
Claim. S too is bad (easy with Def1)
Write w_{i} under the form $w_{i}=x_{i} v_{i}$. Since X is wqo, there is an infinite increasing sequence $x_{n_{0}} \leqslant x_{n_{1}} \leqslant x_{n_{2}} \leqslant \cdots$ (here we use Def2)

Now consider $S^{\text {, def }} \stackrel{\text { It cannot be bad (otherwise }}{=} w_{n_{0}}, w_{1}, \ldots, w_{n_{0}}-1, v_{n_{0}}, v_{n_{1}}, v_{n_{2}}, \ldots$
It not have been shortest). But an increasing pair $v_{n} \leqslant_{*} v_{m}$ leads to $x_{n} v_{n} \leqslant_{*} x_{m} v_{m}$, i.e., $w_{n} \leqslant_{*} w_{m}$, a contradiction.

Proof of Higman's Lemma

Let (X, \leqslant) be wqo and assume by way of contradiction that (X^{*}, \leqslant_{*}) admits bad sequences (sequences with no increasing pairs).
Let $w_{0} \in X^{*}$ be the shortest word that can start a bad sequence.
Let $w_{1} \in X^{*}$ be the shortest word that can continue, i.e., such that there is a bad sequence starting with w_{0}, w_{1}
Continue. This way we pick an infinite sequence $S=w_{0}, w_{1}, w_{2}, w_{3}, \ldots$
Claim. S too is bad (easy with Def1)
Write w_{i} under the form $w_{i}=x_{i} v_{i}$. Since X is wqo, there is an infinite increasing sequence $x_{n_{0}} \leqslant x_{n_{1}} \leqslant x_{n_{2}} \leqslant \cdots$ (here we use Def2)

Now consider $S^{\prime} \stackrel{\text { def }}{=} w_{0}, w_{1}, \ldots, w_{n_{0}-1}, v_{n_{0}}, v_{n_{1}}, v_{n_{2}}, \ldots$
It cannot be bad (otherwise $w_{n_{0}}$ would not have been shortest) But an increasing pair $v_{n} \leqslant_{*} v_{m}$ leads to $x_{n} v_{n} \leqslant_{*} x_{m} v_{m}$, i.e., $w_{n} \leqslant_{*} w_{m}$, a contradiction.

Proof of Higman's Lemma

Let (X, \leqslant) be wqo and assume by way of contradiction that (X^{*}, \leqslant_{*}) admits bad sequences (sequences with no increasing pairs).
Let $w_{0} \in X^{*}$ be the shortest word that can start a bad sequence.
Let $w_{1} \in X^{*}$ be the shortest word that can continue, i.e., such that there is a bad sequence starting with w_{0}, w_{1}
Continue. This way we pick an infinite sequence $S=w_{0}, w_{1}, w_{2}, w_{3}, \ldots$
Claim. S too is bad (easy with Def1)
Write w_{i} under the form $w_{i}=x_{i} v_{i}$. Since X is wqo, there is an infinite increasing sequence $x_{n_{0}} \leqslant x_{n_{1}} \leqslant x_{n_{2}} \leqslant \cdots$ (here we use Def2)
Now consider $S^{\prime} \stackrel{\text { def }}{=} w_{0}, w_{1}, \ldots, w_{n_{0}-1}, v_{n_{0}}, v_{n_{1}}, v_{n_{2}}, \ldots$
It cannot be bad (otherwise $w_{n_{0}}$ would not have been shortest).
But an increasing pair $v_{n} \leqslant_{*} v_{m}$ leads to $x_{n} v_{n} \leqslant_{*} x_{m} v_{m}$, i.e., $w_{n} \leqslant_{*} w_{m}$, a contradiction.

More wqo's

- Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

Proof of Kruskal's Tree Theorem

Let (X, \leqslant) be wqo and assume, b.w.o.c., that $(\mathcal{T}(X), \sqsubseteq)$ is not wqo.
We pick a "minimal" bad sequence $S=t_{0}, t_{1}, t_{2}, \ldots$
—Def1
Write every t_{i} under the form $t_{i}=f_{i}\left(u_{i, 1}, \ldots, u_{i, k_{i}}\right)$.
Claim. The set $U=\left\{u_{i, j}\right\}$ of the immediate subterms is wqo.
(Indeed, an infinite bad sequence $u_{i_{0}, j_{o}}, u_{i_{1}, j_{i}},$. could be used to show that $t_{i_{0}}$ was not shortest).

Since U is wqo, and using Higman's Lemma on U^{*}, there is some $\left(u_{n_{1}, 1}, \ldots, u_{n_{1}, k_{n_{1}}}\right) \leqslant *\left(u_{n_{2}, 1}, \ldots, u_{n_{2}, k_{n_{2}}}\right) \leqslant_{*}\left(u_{n_{3}, 1}, \ldots, u_{n_{3}, k_{n_{3}}}\right) \leqslant_{*} \cdots$-Def2

Further extracting some $f_{n_{1}} \leqslant f_{r_{1},} \leqslant \cdots$ exhibits an infinite increasing subsequence $t_{n_{i}} \sqsubseteq t_{n_{i_{2}}} \sqsubseteq \cdots$ in S, a contradiction

Proof of Kruskal's Tree Theorem

Let (X, \leqslant) be wqo and assume, b.w.o.c., that $(\mathcal{T}(X), \sqsubseteq)$ is not wqo.
We pick a "minimal" bad sequence $S=t_{0}, t_{1}, t_{2}, \ldots$
—Def1
Write every t_{i} under the form $t_{i}=f_{i}\left(u_{i, 1}, \ldots, u_{i, k_{i}}\right)$.
Claim. The set $U=\left\{u_{i, j}\right\}$ of the immediate subterms is wqo. (Indeed, an infinite bad sequence $u_{i_{0}, j_{o}}, u_{i_{1}, j_{i}},$. could be used to show that $t_{i_{0}}$ was not shortest).

Since U is wqo, and using Higman's Lemma on U^{*}, there is some —Def2

Further extracting some $f_{n_{i}} \leqslant f_{n_{2}} \leqslant \cdots$ exhibits an infinite increasing subsequence $t_{n_{i_{1}}} \sqsubseteq t_{n_{i_{2}}} \sqsubseteq \cdots$ in S, a contradiction

Proof of Kruskal's Tree Theorem

Let (X, \leqslant) be wqo and assume, b.w.o.c., that $(\mathcal{T}(X), \sqsubseteq)$ is not wqo.
We pick a "minimal" bad sequence $S=t_{0}, t_{1}, t_{2}, \ldots$
—Def1
Write every t_{i} under the form $t_{i}=f_{i}\left(u_{i, 1}, \ldots, u_{i, k_{i}}\right)$.
Claim. The set $U=\left\{u_{i, j}\right\}$ of the immediate subterms is wqo. (Indeed, an infinite bad sequence $u_{i_{0}, j_{o}}, u_{i_{1}, j_{i}}$, . could be used to show that $t_{i_{0}}$ was not shortest).
Since U is wqo, and using Higman's Lemma on U^{*}, there is some $\left(u_{n_{1}, 1}, \ldots, u_{n_{1}, k_{n_{1}}}\right) \leqslant_{*}\left(u_{n_{2}, 1}, \ldots, u_{n_{2}, k_{n_{2}}}\right) \leqslant_{*}\left(u_{n_{3}, 1}, \ldots, u_{n_{3}, k_{n_{3}}}\right) \leqslant_{*} \cdots$-Def2
Further extracting some $f_{n_{i_{1}}} \leqslant f_{n_{i_{2}}} \leqslant \cdots$ exhibits an infinite increasing subsequence $t_{n_{i_{1}}} \sqsubseteq t_{n_{i_{2}}} \sqsubseteq \cdots$ in S, a contradiction

More wqo's

- Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

- Finite Graphs ordered by embeddings (Robertson-Seymour Theorem)

$$
C_{n} \leqslant \operatorname{minor} K_{n} \text { and } C_{n} \leqslant \operatorname{minor} C_{n+1}
$$

- $\left(X^{\omega}, \leqslant_{*}\right)$ for X linear wqo.
- $\left(P_{f}(X), E_{H}\right)$ for X wqo, where

$$
U \sqsubseteq_{H} V \stackrel{\text { def }}{\Leftrightarrow} \forall x \in U: \exists y \in V: x \leqslant y
$$

More wqo's

- Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

- Finite Graphs ordered by embeddings (Robertson-Seymour Theorem)

$$
C_{n} \leqslant \text { minor } K_{n} \text { and } C_{n} \leqslant \text { minor } C_{n+1}
$$

- $\left(X^{\omega}, \leqslant_{*}\right)$ for X linear wqo.
- $\left(\mathcal{P}_{f}(X), \sqsubseteq_{H}\right)$ for X wqo, where
$U \sqsubseteq_{H} V \stackrel{\text { def }}{\rightleftharpoons} \forall x \in U: \exists y \in V: x \leqslant y$

More wqo's

- Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

- Finite Graphs ordered by embeddings (Robertson-Seymour Theorem)

$$
C_{n} \leqslant \text { minor } K_{n} \text { and } C_{n} \leqslant \text { minor } C_{n+1}
$$

- $\left(X^{\omega}, \leqslant_{*}\right)$ for X linear wqo.
- $\left(\mathcal{P}_{f}(X), \sqsubseteq_{H}\right)$ for X wqo, where $U \sqsubseteq_{H} V \stackrel{\text { def }}{\Leftrightarrow} \forall x \in U: \exists y \in V: x \leqslant y$

More wao's

- Finite Trees ordered by embeddings (Kruskal's Tree Theorem)

- Finite Graphs ordered by embeddings (Robertson-Seymour Theorem)

$$
C_{n} \leqslant \text { minor } K_{n} \text { and } C_{n} \leqslant \text { minor } C_{n+1}
$$

- $\left(X^{\omega}, \leqslant_{*}\right)$ for X linear wqo.
- $\left(\mathcal{P}_{f}(X), \sqsubseteq_{H}\right)$ for X wqo, where

$$
U \sqsubseteq_{H} V \stackrel{\text { def }}{\Leftrightarrow} \forall x \in U: \exists y \in V: x \leqslant y
$$

FInIte-BASIS CHARACTERIZATION

Defn. (X, \leqslant) is a wqo $\stackrel{\text { det }}{\Leftrightarrow}$ every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is upward-closed if $x \geqslant y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).
For $B \subseteq X$, the upward-closure $\uparrow B$ of B is $\{x \mid x \geqslant b$ for some $b \in B\}$. Note that $\uparrow\left(\bigcup_{i} B_{i}\right)=\bigcup_{i} \uparrow B_{i}$, and that V is upward-closed iff $V=\uparrow V$.

Cor1. Any upward-closed $U \subseteq X$ has a finite basis, i.e., U is some $\uparrow\left\{m_{1}, \ldots, m_{k}\right\}$.

Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

FInIte-BASIS CHARACTERIZATION

Defn. (X, \leqslant) is a wqo $\stackrel{\text { det }}{\Leftrightarrow}$ every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is upward-closed if $x \geqslant y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).
For $B \subseteq X$, the upward-closure $\uparrow B$ of B is $\{x \mid x \geqslant b$ for some $b \in B\}$. Note that $\uparrow\left(\bigcup_{i} B_{i}\right)=\bigcup_{i} \uparrow B_{i}$, and that V is upward-closed iff $V=\uparrow V$.

Cor1. Any upward-closed $U \subseteq X$ has a finite basis, i.e., U is some $\uparrow\left\{m_{1}, \ldots, m_{k}\right\}$.
Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

Finite-basis characterization

Defn. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Rightarrow}$ every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is upward-closed if $x \geqslant y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).
For $B \subseteq X$, the upward-closure $\uparrow B$ of B is $\{x \mid x \geqslant b$ for some $b \in B\}$. Note that $\uparrow\left(\bigcup_{i} B_{i}\right)=\bigcup_{i} \uparrow B_{i}$, and that V is upward-closed iff $V=\uparrow V$.

Cor1. Any upward-closed $U \subseteq X$ has a finite basis, i.e., U is some $\uparrow\left\{m_{1}, \ldots, m_{k}\right\}$.
Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

$$
x \in V \Leftrightarrow m_{1} \nless x \wedge \cdots \wedge m_{k} \nless x
$$

E.g, Kuratowksi Theorem: a graph is planar iff it does not contain K_{5} or $K_{3,3}$.

Gives polynomial-time characterization of closed sets.

FINITE-BASIS CHARACTERIZATION

Defn. (X, \leqslant) is a wqo $\stackrel{\text { def }}{\Leftrightarrow}$ every non-empty subset V of X has at least one and at most finitely many (non-equivalent) minimal elements.

Say $V \subseteq X$ is upward-closed if $x \geqslant y \in V$ implies $x \in V$. (There is a similar notion of downward-closed sets).
For $B \subseteq X$, the upward-closure $\uparrow B$ of B is $\{x \mid x \geqslant b$ for some $b \in B\}$.
Note that $\uparrow\left(\bigcup_{i} B_{i}\right)=\bigcup_{i} \uparrow B_{i}$, and that V is upward-closed iff $V=\uparrow V$.
Cor1. Any upward-closed $U \subseteq X$ has a finite basis, i.e., U is some $\uparrow\left\{m_{1}, \ldots, m_{k}\right\}$.

Cor2. Any downward-closed $V \subseteq X$ can be defined by a finite set of excluded minors:

$$
x \in V \Leftrightarrow m_{1} \not \subset x \wedge \cdots \wedge m_{k} \not \subset x
$$

Cor3. Any sequence $\uparrow V_{0} \subseteq \uparrow V_{1} \subseteq \uparrow V_{2} \subseteq \cdots$ of upward-closed subsets converges in finite-time: $\exists m:\left(\bigcup_{i} \uparrow V_{i}\right)=\uparrow V_{m}=\uparrow V_{m+1}=\ldots$

Beyond wao's

For (X, \leqslant), we consider $\left(\mathcal{P}(X), \sqsubseteq_{S}\right)$ defined with

$$
U \sqsubseteq_{S} V \stackrel{\text { def }}{\Leftrightarrow} \forall y \in V: \exists x \in U: x \leqslant y \quad(\stackrel{\text { def }}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)
$$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wqo
NB. X well-founded $\nRightarrow \mathcal{P}(X)$ well-founded
Question. Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_{f}(X)$ wqo?)

Beyond wao's

For (X, \leqslant), we consider $\left(\mathcal{P}(X), \sqsubseteq_{S}\right)$ defined with

$$
U \sqsubseteq_{S} V \stackrel{\text { def }}{\Leftrightarrow} \forall y \in V: \exists x \in U: x \leqslant y \quad(\stackrel{\text { def }}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)
$$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wqo
—Def n^{\prime}
NB. X well-founded $\nRightarrow \mathcal{P}(X)$ well-founded
Question. Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_{f}(X)$ wqo?)

BEYOND WQO's

For (X, \leqslant), we consider $\left(\mathcal{P}(X), \sqsubseteq_{S}\right)$ defined with

$$
U \sqsubseteq_{S} V \stackrel{\text { def }}{\Leftrightarrow} \forall y \in V: \exists x \in U: x \leqslant y \quad(\stackrel{\text { def }}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)
$$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wqo
—Def n^{\prime}
NB. X well-founded $\nRightarrow \mathcal{P}(X)$ well-founded
Question. Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_{f}(X)$ wqo?)

Beyond wqo's

For (X, \leqslant), we consider $\left(\mathcal{P}(X), \sqsubseteq_{S}\right)$ defined with

$$
U \sqsubseteq_{S} V \stackrel{\text { def }}{\Leftrightarrow} \forall y \in V: \exists x \in U: x \leqslant y \quad(\stackrel{\text { def }}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)
$$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wqo
NB. X well-founded $\nRightarrow \mathcal{P}(X)$ well-founded
Question. Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_{f}(X)$ wqo?)

$$
\begin{aligned}
& X \stackrel{\text { def }}{=}\left\{(a, b) \in \mathbb{N}^{2} \mid a<b\right\} \\
& (a, b)<\left(a^{\prime}, b^{\prime}\right) \stackrel{\text { def }}{\Leftrightarrow}\left\{\begin{array}{l}
a=a^{\prime} \text { and } b<b^{\prime} \\
\text { or } b<a^{\prime}
\end{array}\right.
\end{aligned}
$$

Fact. (X, \leqslant) is WQO

BEYOND WQO's

For (X, \leqslant), we consider $\left(\mathcal{P}(X), \sqsubseteq_{S}\right)$ defined with

$$
U \sqsubseteq_{S} V \stackrel{\text { def }}{\Leftrightarrow} \forall y \in V: \exists x \in U: x \leqslant y \quad(\stackrel{\text { def }}{\Leftrightarrow} \uparrow U \supseteq \uparrow V)
$$

Fact. $\mathcal{P}(X)$ is well-founded iff X is wqo
NB. X well-founded $\nRightarrow \mathcal{P}(X)$ well-founded
Question. Does X wqo $\Rightarrow \mathcal{P}(X)$ wqo? (Equivalently $\mathcal{P}_{f}(X)$ wqo?)

$$
\begin{aligned}
& X \stackrel{\text { def }}{=}\left\{(a, b) \in \mathbb{N}^{2} \mid a<b\right\} \\
& (a, b)<\left(a^{\prime}, b^{\prime}\right) \stackrel{\text { def }}{\Leftrightarrow}\left\{\begin{array}{l}
a=a^{\prime} \text { and } b<b^{\prime} \\
\text { or } b<a^{\prime}
\end{array}\right.
\end{aligned}
$$

Fact. (X, \leqslant) is WQO

Thm. 1. $\left(\mathcal{P}_{f}(X), \sqsubseteq_{S}\right)$ is not wqo: rows are incomparable
2. $\left(\mathcal{P}(Y), \sqsubseteq_{S}\right)$ is wqo iff Y does not contain X

