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TD 6: Petri Nets

1 Modeling Using Petri Nets

Exercise 1 (Traffic Lights). Consider again the traffic lights example from the lecture

notes:
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1. How can you correct this Petri net to avert unwanted behaviours (like r — ry — 771)
in a 1-safe manner?

2. Extend your Petri net to model two traffic lights handling a street intersection.

Exercise 2 (Producer/Consumer). A producer/consumer system gathers two types of
processes:

producers who can make the actions produce (p) or deliver (d), and
consumers with the actions receive (r) and consume (c).

All the producers and consumers communicate through a single unordered channel.

1. Model a producer/consumer system with two producers and three consumers. How
can you modify this system to enforce a maximal capacity of ten simultaneous items
in the channel?

2. An inhibitor arc between a place p and a transition ¢ makes ¢ firable only if the
current marking at p is zero. In the following example, there is such an inhibitor
arc between p; and t. A marking (0,2,1) allows to fire ¢ to reach (0,1,2), but
(1,1,1) does not allow to fire ¢.
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Using inhibitor arcs, enforce a priority for the first producer and the first consumer
on the channel: the other processes can use the channel only if it is not currently
used by the first producer and the first consumer.

2 Model Checking Petri Nets

Exercise 3 (Upper Bounds). Let us fix a Petri net N' = (P, T, F, W, mg). We consider
as usual propositional LTL, with a set of atomic propositions AP equal to P the set
of places of the Petri net. We define proposition p to hold in a marking m in N? if
m(p) > 0.

The models of our LTL formulse are computations momy --- in (N¥)® such that, for
all © € N, m; = m;;1 is a transition step of the Petri net N.

1. We want to prove that state-based LTL model checking can be performed in poly-
nomial space for 1-safe Petri nets. For this, prove that one can construct an
exponential-sized Biichi automaton By, from a 1-safe Petri net that recognizes all
the infinite computations of N starting in my.

2. In the general case, state-based LTL model checking is undecidable. Prove it for
Petri nets with at least two unbounded places, by a reduction from the halting

problem for 2-counter Minsky machines.
3. We consider now a different set of atomic propositions, such that ¥ = 24P and a
labeled Petri net, with a labeling homomorphism A : T — 3. The models of our

LTL formulee are infinite words agaj - -- in X% such that mg t—on\/ my t—1>/\/ mo - -+
is an execution of N and \(t;) = a; for all .

Prove that action-based LTL model checking can be performed in polynomial space
for labeled 1-safe Petri nets.

3 Unfoldings

Exercise 4 (Adequate Partial Orders). A partial order < between events is adequate if
the three following conditions are verified:

(a) < is well-founded,

(b) C¢ € Cp implies t < ', and
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(c) < is preserved by finite extensions: as in the lecture notes, if ¢ < ¢ and B(t) =
B(t'), and E and E’ are two isomorphic extensions of Cy and Cy with C,, = C; & FE
and Cp = Cy @ E’, then u < u'.

As you can guess, adequate partial orders result in complete unfoldings.
1. Show that < defined by t <, ' iff |C¢| < |Cy| is adequate.

2. Construct the finite unfolding of the following Petri net using <g; how does the
size of this unfolding relate to the number of reachable markings?

h :<@p>; @
tg :<©p>; u
ng

3. Suppose we define an arbitrary total order < on the transitions 7" of the Petri net,
i.e. they are t; < -+ < t,,. Given a set S of events and conditions of Q, ¢(S) is
the sequence t!' - - - tin in T* where ij is the number of events labeled by ¢; in S.
We also note <« for the lexicographic order on T™.

Show that <. defined by ¢ <. ¢’ iff |C| < |Cy| or |Cy| = |Cyp| and ¢(Cy) < o(Cy)
is adequate. Construct the finite unfolding for the previous Petri net using <.

4. There might still be examples where <. performs poorly. One solution would be
to use a total adequate order; why? Give a 1-safe Petri net that shows that <. is
not total.

4 Coverability Graphs

Exercise 5 (Dickson’s Lemma). A quasi-order (A, <) is a set A endowed with a reflexive
and transitive ordering relation <. A well quasi order (wqo) is a quasi order (A, <) s.t.,
for any infinite sequence apa; - -- in A%, there exist indices ¢ < j with a; < a;.

1. Let (A, <) be a wqo and B C A. Show that (B, <) is a wqo.
2. Show that (NW{w}, <) is a wqo.

3. Let (A, <) be a wqo. Show that any infinite sequence aga; --- in A embeds an
infinite increasing subsequence a;, < a;, < a;, < --- with i <13 <192 <---.
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4. Let (A, <4) and (B, <p) be two wqo’s. Show that the cartesian product (A x B, <),
where the product ordering is defined by (a,b) <« (a’,V') iff a <4 a’ and b <p ¥V,
is a wqo.

Exercise 6 (Coverability Graph). The coverability problem for Petri nets is the following
decision problem:

Instance: A Petri net N = (P, T, F, W, mg) and a marking m; in N*.
Question: Does there exist mg in reachas(mg) such that m; < msg?

For 1-safe Petri nets, coverability coincides with reachability, and is thus PSPACE-
complete.

One way to decide the general coverability problem is to use Karp and Miller’s
coverability graph (see the lecture notes). Indeed, we have the equivalence between the
two statements:

i. there exists mgo in reachp/(mg) such that m; < mag, and
ii. there exists mg in CoverabilityGraph s (mg) such that m; < ms.

1. In order to prove that implies , we will prove a stronger statement: for a
marking m in (Nw{w})?, write Q(m) = {p € P | m(p) = w} be the set of w-places
of m.

Show that, if mg — A mo in the Petri net A for some w in T, then there exists
m3 in (NW {w})” such that ma(p) = ma(p) for all p in P\ Q(m3) and mg =g m3
in the coverability graph.

2. Let us prove that implies . The idea is that we can find reachable markings
that agree with ms on its finite places, and that can be made arbitrarily high on
its w-places. For this, we need to identify the graph nodes where new w values
were introduced, which we call w-nodes.

(a) The threshold ©(u) of a transition sequence u in 7 is the minimal marking
m in N¥ s.t. u is enabled from m. Show how to compute ©(u). Show that
O(u-v) < O(u) + O(v) for all u,v in T*.

(b) Recall that an w value is introduced in the coverability graph thanks to Al-
gorithm
Let {v1,...,vs} be the set of “v” sequences found on line |3| of the algorithm
that resulted in adding at least one w value to m’ on line 5| during a single call
to ADDOMEGAS(m,m/, V') on line 8 of the COVERABILITYGRAPH algorithm
from the course notes. Let w = wy---vp. Show that, for any k in N, the
marking v, defined by

() = {m'(p) if pe P\ Q(m)
O(w*)(p) if p € Q(m)

4
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1 repeat

2 saved < m/
3 foreach m” € V s.t. v e Tt,m” Sc m do
4 if m” < m’ then

5 m —m' 4+ ((m' —m") w)

6 end

7

8

9

end

until saved = m’

return m’
Algorithm 1: ADDOMEGAS(m, m/, V)

k
allows to fire w*. How does the marking v, with vy, Zn v, compare to vj?

(c) Prove that, if mg 2 & mg for some w in T* in the coverability graph and m’
in Nms) ig g partial marking on the places of 2(ms3), then there are
e nin N,
e a decomposition u = ujug - - - up41 with each u; in T (where the markings
UL UG .
w; reached by m ——¢ p; for i < n have new w values),
e sequences wi, ..., wy in T,
e numbers ky, ..., k, in N,

k1 kn
UTW, U2 UnWr' Un 41

such that mg ~ ma with ma(p) = ma(p) for all p in P\
Q(m3) and ma(p) > m/(p) for all p in Q(mg).

Exercise 7 (Decidability of Model-checking Action-based LTL).

1. Let A be Petri net, G its coverability graph, and m some marking in N”. An
infinite computation is a sequence mgmy --- in (NF)* where for all i € N, m; —
m;y1 is a transition step. The effect A(u) of a transition sequence w in 7% is
defined by A(g) = 0F and A(ut) = A(u) — W(P,t) + W(t, P).

Show that there exists an infinite computation s.t. m < m; for infinitely many

indices 4 iff there exists an accessible loop m' ¢ m’ in G s.t. m < m’ and
A(v) > 07,

2. Show that action-based LTL model-checking is decidable for labeled Petri nets.

Exercise 8 (Rackoff’s Algorithm). A rather severe issue with the coverability graph
construction is that it can generate a graph of Ackermannian size compared to that of
the original Petri net. We show here a much more decent EXPSPACE upper bound,
which is matched by an EXPSPACE hardness proof by Lipton.
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Let us fix a Petri net N' = (P, T, F, W, mq). We consider generalized markings in ZP.
A generalized computation is a sequence puy - - - i, in (Z7)* such that, for all 1 <4 < n,
there is a transition ¢ in 7" with p;41(p) = pi(p) — Wi(p,t) + W(t,p) for all p € P (i.e.
we do not enforce enabling conditions). For a subset I of P, a generalized sequence is
I-admissible if furthermore p;(p) > W(p,t) for all p in I at each step 1 < i < n. For
a value B in N, it is [-B-bounded if furthermore p;(p) < B for all p in I at each step
1 <i < n. A generalized sequence is an I-covering for my if 1 = mg and p,(p) > mi(p)
for all pin I.

Thus a computation is a P-admissible generalized computation, and a P-admissible
P-covering for m; answers the coverability problem.

For a Petri net N' = (P, T, F, W, mg) and a marking m; in N*, let £(N,m1) be the
length of the shortest P-admissible P-covering for mi in N if one exists, and otherwise
(N ,mq) =0. For L, k in N, define

— = <
M (k) = sup{{(N,m1) | |P| k’pé%i}éTW(p’t) +r;1€al§m1(p) <L}

the maximal ¢(N,m1) over all Petri nets N of dimension k£ and all markings m; to
cover, under some restrictions on incoming weights W (p,t) in /' and values in m;.

1. Show that M (0) < 1.
2. We want to show that
My (k) < (L- Mgk — 1)+ Mp(k—1)

for all k£ > 1. To this end, we prove that, for every marking m; in N for a Petri
net N with |P| = k,

0N, my) < (L-Mp(k—1)*+ Mp(k—1) . (%)

Let

B=Mg(k-1) -pg)%)éTW(p,t) +I;1€af>)<m1(p) :

and suppose that there exists a P-admissible P-covering w = pq - - - 4, for my in

N.
(a) Show that, if w is P—B-bounded, then holds.

(b) Assume the contrary: we can split w as wjws such that w; is P—B-bounded
and wy starts with a marking p; with a place p such that u;(p) > B. Show
that also holds.

3. Show that My (|P|) < L*IPD for L > 2.

4. Given a Petrinet N' = (P, T, W, mg) and a marking m;, set L = 2+max,cprer W (p,t)+
maxpep mi(p). Assuming that the size n of the instance (N, m) of the coverability
problem is more than

log L. |P log W (¢
max(log L, | I,pelllgigT og W(t,p)),

6
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deduce that we can guess a P-admissible P-covering for m; of length at most
22" %8 f5r some constant c. Conclude that coverability can be solved in EX-
PSPACE.

5 Vector Addition Systems

Exercise 9 (VASS). An n-dimensional vector addition system with states (VASS) is
a tuple V = (Q,0,qo) where @ is a finite set of states, qo € @ the initial state, and
d C Q xZ" x @ the transition relation. A configuration of V is a pair (¢,v) in @ x N".
An execution of V is a sequence of configurations (qo,vo)(q1,v1) - (¢m,vm) such that
vo =0, and for 0 <i <m, (gi_1,v; — vi_1,q;) is in 6.

1. Show that any VASS can be simulated by a Petri net.

2. Show that, conversely, any Petri net can be simulated by a VASS.

Exercise 10 (VAS). An n-dimensional vector addition system (VAS) is a pair (vg, W)
where vg € N” is the initial vector and W C Z" is the set of transition vectors. An
execution of (vg, W) is a sequence vgvy - - vy, where v; € N for all 0 < i < m and
v; —vi—1 € Wfor all 0 <i <m.

We want to show that any n-dimensional VASS V can be simulated by an (n + 3)-
dimensional VAS (vg, W).
Hint: Let k = |Q|, and define the two functions a(i) =i + 1 and b(i) = (k + 1)(k — 9).
Encode a configuration (g;,v) of V as the vector (v(1),...,v(n),a(i),b(i),0). For every
state ¢;, 0 <17 < k, we add two transition vectors to W:

ti=(0,...,0,—a(i),a(k —i) — b(i),b(k — 7))
t: =(0,...,0,b(i), —a(k —1i),a(i) — b(k — 1))

For every transition d = (¢;, w, ¢;) of V, we add one transition vector to W:

tq = (w(1),..., w(n),a(j) —b(i),b(4), —a(i))

1. Show that any execution of V can be simulated by (vg, W) for a suitable vg.

2. Conversely, show that this VAS (vg, W) simulates V faithfully.
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