Ideal Decompositions
for Vector Addition Systems

S. Schmitz
joint work with J. Leroux

ENS Cachan & CNRS & INRIA, Université Paris-Saclay

Séminaire Vérification, IRIF
October 24th, 2016
OUTLINE

- **vector addition systems (VAS)** and their reachability problem
- **ideals** of well-quasi-orders
- a counter-example guided abstraction refinement (CEGAR) procedure
- the **KLMST decomposition algorithm** named after ?, ?, ?, and ?
Vector Addition Systems (VAS)

Syntax

- dimension $d \in \mathbb{N}$

- finite set $A \subseteq_{\text{fin}} \mathbb{Z}^d$ of actions $a \in A$

Semantics

- configurations $u, v, \ldots \in \mathbb{N}^d$

- transitions $u \xrightarrow{a} v \in \mathbb{N}^d \times A \times \mathbb{N}^d$ with $v = u + a$
Vector Addition Systems (VAS)

(?)

Syntax

- dimension \(d \in \mathbb{N} \)
- finite set \(A \subseteq_{\text{fin}} \mathbb{Z}^d \) of actions \(a \in A \)

Semantics

- configurations \(u, v, \ldots \in \mathbb{N}^d \)
- transitions \(u \xrightarrow{a} v \in \mathbb{N}^d \times A \times \mathbb{N}^d \) with \(v = u + a \)
Example VAS

d = 2

A = \{ \text{data} \}

\begin{align*}
(0, 2) &\rightarrow (2, 4) \\
(2, 4) &\rightarrow (3, 5) \\
(3, 5) &\rightarrow (4, 6) \\
(4, 6) &\rightarrow (3, 4) \\
(3, 4) &\rightarrow (2, 2) \\
(2, 2) &\rightarrow (0, 1)
\end{align*}
Example VAS

Example

\[d = 2 \]

\[A = \{ \text{fig:arrow} \} \]

\[x = (0, 2) \]
\[d = 2 \quad \text{and} \quad A = \left\{ \begin{pmatrix} 0 \end{pmatrix}, \begin{pmatrix} 2 \end{pmatrix} \right\} \]

\[x = (0, 2) \xrightarrow{\begin{pmatrix} -1 \end{pmatrix}, \begin{pmatrix} 0 \end{pmatrix}} \in \mathbb{N}^2 \]
Example VAS

Example

d = 2

A = \{ (0,2) \rightarrow (1,3) \}

x = (0,2) \rightarrow (1,3)
Example VAS

Example

\[d = 2 \]

\[A = \{ (0, 2) \rightarrow (1, 3) \rightarrow (2, 4) \} \]
Example VAS

\[d = 2 \]

\[A = \{ \ldots \} \]

\[x = (0,2) \rightarrow (1,3) \rightarrow (2,4) \rightarrow (3,5) \]
Example VAS

\[d = 2 \quad A = \{ \text{example} \} \]

\[x = (0,2) \rightarrow (1,3) \rightarrow (2,4) \rightarrow (3,5) \rightarrow (4,6) \]
Example VAS

\[d = 2 \]

\[A = \left\{ \rightarrow, \uparrow \right\} \]

\[x = (0,2) \rightarrow (1,3) \rightarrow (2,4) \rightarrow (3,5) \rightarrow (4,6) \rightarrow (3,4) \]
Example VAS

\[d = 2 \]

\[A = \{, \} \]

\[x = (0,2) \rightarrow (1,3) \rightarrow (2,4) \rightarrow (3,5) \rightarrow (4,6) \rightarrow (3,4) \rightarrow (2,2) \]
Example VAS

\[d = 2 \]

\[A = \left\{ \begin{array}{c} \rightarrow \\ \rightarrow \end{array} \right\} \]

\[x = (0,2) \rightarrow (1,3) \rightarrow (2,4) \rightarrow (3,5) \rightarrow (4,6) \rightarrow (3,4) \rightarrow (2,2) \rightarrow (0,1) = y \]
Runs and Preruns

Definition (Prerun)

A **prerun** is an element

\[(u, (u_1, a_1, v_1) \cdots (u_k, a_k, v_k), v)\]

from \(\text{PreRuns}_A \overset{\text{def}}{=} \mathbb{N}^d \times (\mathbb{N}^d \times A \times \mathbb{N}^d)^* \times \mathbb{N}^d\)

Definition (Run)

A prerun is **connected** (is a run) if

- (source) \(u = u_1\)
- (transitions) \(\forall 1 \leq j \leq k, u_j + a_j = v_j\)
- (contiguity) \(\forall 1 < j \leq k, v_{j-1} = u_j\)
- (target) \(v_k = v\)
The Reachability Problem

\(\text{Runs}_A(x, y) \overset{\text{def}}{=} \{ \rho \in \text{PreRuns}_A \mid \rho \text{ is a run with source } x \text{ and target } y \} \)

VAS Reachability

input \(A \subseteq_{\text{fin}} \mathbb{Z}^d, x, y \in \mathbb{N}^d \)

question Is \(y \) reachable from \(x \) in \(A \)?

l.e., is \(\text{Runs}_A(x, y) \neq \emptyset \)?

Theorem (?; ?; ?; ?; ?; ?; ?; ?)

VAS Reachability is decidable.

- by the KLMST decomposition algorithm (???)
- by Presburger invariants (?)
The Reachability Problem

\[\text{Runs}_A(x, y) \overset{\text{def}}{=} \{ \rho \in \text{PreRuns}_A \mid \rho \text{ is a run with source } x \text{ and target } y \} \]

VAS Reachability

- **Input**: \(A \subseteq \text{fin } \mathbb{Z}^d, x, y \in \mathbb{N}^d \)
- **Question**: Is \(y \) reachable from \(x \) in \(A \)?
 - i.e., is \(\text{Runs}_A(x, y) \neq \emptyset \)?

Theorem (?; ?, ?; ?, ?; ?, ?; ?, ?)

VAS Reachability is decidable.

- by the KLMST decomposition algorithm (???)
- by Presburger invariants (?)
The Reachability Problem

\[\text{Runs}_A(x, y) \overset{\text{def}}{=} \{ \rho \in \text{PreRuns}_A \mid \rho \text{ is a run with source } x \text{ and target } y \} \]

VAS Reachability

- **input**: \(A \subseteq_{\text{fin}} \mathbb{Z}^d, x, y \in \mathbb{N}^d \)
- **question**: Is \(y \) reachable from \(x \) in \(A \)?
 i.e., is \(\text{Runs}_A(x, y) \neq \emptyset \)?

Theorem: (??; ?; ?, ?; ?, ?; ?, ?)

VAS Reachability is decidable.

- by the **KLMST decomposition algorithm** (???)
- by Presburger invariants (?)
The Reachability Problem

\[\text{Runs}_A(x, y) \overset{\text{def}}{=} \{ \rho \in \text{PreRuns}_A \mid \rho \text{ is a run with source } x \text{ and target } y \} \]

VAS Reachability

Input \(A \subseteq \text{fin } \mathbb{Z}^d, x, y \in \mathbb{N}^d \)

Question Is \(y \) reachable from \(x \) in \(A \)?

I.e., is \(\text{Runs}_A(x, y) \neq \emptyset \)?

Theorem (??, ??; ??, ??; ??, ??; ??, ??)

VAS Reachability is decidable.

- by the KLMST decomposition algorithm (???)
- by Presburger invariants (?)
DECOMPOSITION THEOREM

Theorem (?,?,?)

The KLMST decomposition algorithm computes the ideal decomposition of

\[\downarrow \text{Runs}_A(x,y) \overset{\text{def}}{=} \{ \rho' \in \text{PreRuns}_A \mid \exists \rho \in \text{Runs}_A(x,y). \rho' \preceq \rho \} \]

- entails decidability of VAS Reachability:

 \[\text{Runs}_A(x,y) = \emptyset \text{ iff } \downarrow \text{Runs}_A(x,y) = \emptyset \]

Upcoming

- definition of a wqo over preruns (??)

- wqo ideals (??)
Decomposition Theorem

Theorem (?,?,?)

The KLMST decomposition algorithm computes the ideal decomposition of

\[\downarrow \text{Runs}_A(x, y) \overset{\text{def}}{=} \{ \rho' \in \text{PreRuns}_A \mid \exists \rho \in \text{Runs}_A(x, y). \rho' \preceq \rho \} \]

- entails decidability of VAS Reachability:

\[\text{Runs}_A(x, y) = \emptyset \text{ iff } \downarrow \text{Runs}_A(x, y) = \emptyset \]

Upcoming

- definition of a wqo over preruns (??)
- wqo ideals (??)

7/23
Theorem

The KLMST decomposition algorithm computes the ideal decomposition of

\[
\downarrow \text{ Runs}_A(x, y) \overset{\text{def}}{=} \{ \rho' \in \text{PreRuns}_A | \exists \rho \in \text{Runs}_A(x, y). \rho' \preceq \rho \}
\]

- entails decidability of VAS Reachability:

\[
\text{Runs}_A(x, y) = \emptyset \text{ iff } \downarrow \text{Runs}_A(x, y) = \emptyset
\]

Upcoming

- definition of a wqo over preruns
- wqo ideals
Decomposition Theorem

Theorem (??, ??)

The KLMST decomposition algorithm computes the ideal decomposition of

\[
\downarrow \text{Runs}_A(x, y) \overset{\text{def}}{=} \{ \rho' \in \text{PreRuns}_A \mid \exists \rho \in \text{Runs}_A(x, y). \rho' \preceq \rho \}
\]

- entails decidability of VAS Reachability:

\[
\text{Runs}_A(x, y) = \emptyset \text{ iff } \downarrow \text{Runs}_A(x, y) = \emptyset
\]

Upcoming

- definition of a wqo over preruns (??)
- *wqo ideals (??)*
Well-Quasi-Orders (wqo)

Definition

A quasi-order \((X, \leq)\) is a wqo if in any infinite sequence \(x_0, x_1, \ldots\) of elements of \(X\), \(\exists i < j \text{ s.t. } x_i \leq x_j\).

Example

- finite sets with equality \((X, =)\)
- natural numbers \((\mathbb{N}, \leq)\)
- Dickson’s Lemma: if \((A, \leq_A)\) and \((B, \leq_B)\) are wqos, then \((A \times B, \leq_x)\) is a wqo, where \((a, b) \leq_x (a', b')\) iff \(a \leq_A a'\) and \(b \leq_B b'\)
- Higman’s Lemma: if \((A, \leq)\) is a wqo, then \((A^*, \leq_*)\) is a wqo, where \(u \leq_* v\) iff \(u = a_1 \cdots a_k\) and \(v = v_0 b_1 v_1 \cdots v_{k-1} b_k v_k\) with \(v_0, \ldots, v_k \in A^*\) and \(\forall 1 \leq j \leq k. a_j \leq b_j \in A\).
Well-Quasi-Orders (wqo)

Definition
A quasi-order \((X, \leq)\) is a wqo if in any infinite sequence \(x_0, x_1, \ldots\) of elements of \(X\), \(\exists i < j\) s.t. \(x_i \leq x_j\).

Example
- finite sets with equality \((X, =)\)
- natural numbers \((\mathbb{N}, \leq)\)
- Dickson’s Lemma: if \((A, \leq_A)\) and \((B, \leq_B)\) are wqos, then \((A \times B, \leq_X)\) is a wqo, where \((a, b) \leq_X (a', b')\) iff \(a \leq_A a'\) and \(b \leq_B b'\)
- Higman’s Lemma: if \((A, \leq)\) is a wqo, then \((A^*, \leq_*)\) is a wqo, where \(u \leq_* v\) iff \(u = a_1 \cdots a_k\) and \(v = v_0 b_1 v_1 \cdots v_{k-1} b_k v_k\) with \(v_0, \ldots, v_k \in A^*\) and \(\forall 1 \leq j \leq k. a_j \leq b_j \in A.\)
Well-Quasi-Orders (wqo)

Definition
A quasi-order \((X, \leq)\) is a wqo if in any infinite sequence \(x_0, x_1, \ldots\) of elements of \(X\), \(\exists i < j\) s.t. \(x_i \leq x_j\).

Example
- finite sets with equality \((X, =)\)
- natural numbers \((\mathbb{N}, \leq)\)
- Dickson’s Lemma: if \((A, \leq_A)\) and \((B, \leq_B)\) are wqos, then \((A \times B, \leq_x)\) is a wqo, where \((a, b) \leq_x (a', b')\) iff \(a \leq_A a'\) and \(b \leq_B b'\)
- Higman’s Lemma: if \((A, \leq)\) is a wqo, then \((A^*, \leq_*)\) is a wqo, where \(u \leq_* v\) iff \(u = a_1 \cdots a_k\) and \(v = v_0 b_1 v_1 \cdots v_{k-1} b_k v_k\) with \(v_0, \ldots, v_k \in A^*\) and \(\forall 1 \leq j \leq k. a_j \leq b_j \in A\).
Well-Quasi-Orders (wqo)

Definition
A quasi-order \((X, \leq)\) is a wqo if in any infinite sequence \(x_0, x_1, \ldots\) of elements of \(X\), \(\exists i < j\) s.t. \(x_i \leq x_j\).

Example
- finite sets with equality \((X, =)\)
- natural numbers \((\mathbb{N}, \leq)\)
- Dickson’s Lemma: if \((A, \leq_A)\) and \((B, \leq_B)\) are wqos, then \((A \times B, \leq_X)\) is a wqo, where \((a, b) \leq_X (a', b')\) iff \(a \leq_A a'\) and \(b \leq_B b'\)
- Higman’s Lemma: if \((A, \leq)\) is a wqo, then \((A^*, \leq_*)\) is a wqo, where \(u \leq_* v\) iff \(u = a_1 \ldots a_k\) and \(v = v_0 b_1 v_1 \ldots v_{k-1} b_k v_k\) with \(v_0, \ldots, v_k \in A^*\) and \(\forall 1 \leq j \leq k. a_j \leq b_j \in A\).
Prerun Embeddings

- \((\mathbb{N}^d, \preceq)\) is a wqo for the componentwise ordering
 - \((\mathbb{N}^d \times A \times \mathbb{N}^d, \preceq)\) is a wqo, where
 \((u, a, v) \preceq (u', b, v')\) if \(u \leq u', a = b\), and \(v \leq v'\)
 - \(((\mathbb{N}^d \times A \times \mathbb{N}^d)^*, \preceq_*)\) is a wqo
 - ?: \((\text{PreRuns}_A, \preceq)\) is a wqo, where
 \((u, w, v) \preceq (u', w', v')\) if \(u \leq u', w \preceq_* w',\) and \(v \leq v'\)
Prerun Embeddings

- (\mathbb{N}^d, \leq) is a wqo for the componentwise ordering

- $(\mathbb{N}^d \times A \times \mathbb{N}^d, \leq)$ is a wqo, where

 \[(u, a, v) \leq (u', b, v') \text{ iff } u \leq u', a = b, \text{ and } v \leq v'\]

- $((\mathbb{N}^d \times A \times \mathbb{N}^d)^*, \leq_*)$ is a wqo

- $\vdash: (\text{PreRuns}_A, \leq)$ is a wqo, where

 \[(u, w, v) \leq (u', w', v') \text{ iff } u \leq u', w \leq_* w', \text{ and } v \leq v'\]
Prerun Embeddings

- (\mathbb{N}^d, \leq) is a wqo for the componentwise ordering

- $(\mathbb{N}^d \times A \times \mathbb{N}^d, \leq)$ is a wqo, where $(u, a, v) \leq (u', b, v')$ iff $u \leq u'$, $a = b$, and $v \leq v'$

- $((\mathbb{N}^d \times A \times \mathbb{N}^d)^*, \leq^*)$ is a wqo

- $?: (\text{PreRuns}_A, \preceq)$ is a wqo, where $(u, w, v) \preceq (u', w', v')$ iff $u \leq u'$, $w \preceq^* w'$, and $v \leq v'$
Prerun Embeddings

- (\mathbb{N}^d, \leq) is a wqo for the componentwise ordering
- $(\mathbb{N}^d \times A \times \mathbb{N}^d, \leq)$ is a wqo, where $(u, a, v) \leq (u', b, v')$ iff $u \leq u'$, $a = b$, and $v \leq v'$
- $(\mathbb{N}^d \times A \times \mathbb{N}^d)^*, \leq_*$ is a wqo
- $?: (\text{PreRuns}_A, \sqsubseteq)$ is a wqo, where $(u, w, v) \sqsubseteq (u', w', v')$ iff $u \leq u'$, $w \preceq_* w'$, and $v \leq v'$
Characterising WQOs

Upward closure: $\uparrow S \overset{\text{def}}{=} \{ x \in X \mid \exists s \in S . s \leq x \}.$

Lemma (Minimal Basis Property)

A qo (X, \leq) is a wqo iff every non-empty subset $S \subseteq X$ has a finite set of minimal elements $\min_{\leq} S.$

Lemma (Ascending Chain Property)

A qo (X, \leq) is a wqo iff every ascending chain $U_0 \subsetneq U_1 \subsetneq \cdots$ of upward-closed sets is finite.

Template for many algorithms: represent the sets U_n as $\uparrow (\min_{\leq} U_n)$ using finitely many elements.
Characterising WQOs

Downward closure: \(\downarrow S \overset{\text{def}}{=} \{ x \in X \mid \exists s \in S . x \leq s \} \).

Lemma (Minimal Basis Property)

A qo \((X, \leq)\) is a wqo iff every non-empty subset \(S \subseteq X\) has a finite set of minimal elements \(\text{min}< S\).

Lemma (Descending Chain Property)

A qo \((X, \leq)\) is a wqo iff every descending chain \(D_0 \supsetneq D_1 \supsetneq \cdots\) of downward-closed sets is finite.

Template for many algorithms: represent the sets \(U_n\) as \(\uparrow(\text{min}< U_n)\) using finitely many elements.
Ideals as Canonical Bases

Downward closure: $\downarrow S \overset{\text{def}}{=} \{ x \in X \mid \exists s \in S . x \leq s \}$.

Lemma (Canonical Ideal Decomposition; ?, ?)

Every downward-closed subset $D \subseteq X$ of a wqo (X, \leq) is the union of a unique finite family of incomparable (for the inclusion) ideals.

Lemma (Descending Chain Property)

A qo (X, \leq) is a wqo iff every descending chain $D_0 \not\supset D_1 \not\supset \cdots$ of downward-closed sets is finite.
IDEALS

(??)

- Directed set Δ
 non-empty and $\forall x_1, x_2 \in I$, $\exists x. x_1 \leq x$ and $x_2 \leq x$
- Ideal I
downwards-closed and directed
- Examples
 - $\downarrow x \in \text{Idl}(X)$ for any x in X
 - $\mathbb{N} \in \text{Idl}(\mathbb{N})$
 - $\{a, b\}^* \in \text{Idl}(\{a, b, c\}^*)$
- Canonical Decompositions
 if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$
IDEALS

(??)

- Directed set Δ
 non-empty and $\forall x_1, x_2 \in I$, $\exists x. x_1 \leq x$ and $x_2 \leq x$

- Ideal I
 downwards-closed and directed

- Examples
 - $\downarrow x \in \text{Idl}(X)$ for any x in X
 - $\mathbb{N} \in \text{Idl}(\mathbb{N})$
 - $\{a, b\}^* \in \text{Idl}([a, b, c]^*)$

- Canonical Decompositions
 if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$
IDEALS

(??)

- **Directed set** Δ
 - non-empty and $\forall x_1, x_2 \in I$, $\exists x. x_1 \leq x$ and $x_2 \leq x$

- **Ideal** I
 - downwards-closed and directed

- **Examples**
 - $\downarrow x \in \text{Idl}(X)$ for any x in X
 - $\mathbb{N} \in \text{Idl}(\mathbb{N})$
 - $\{a, b\}^* \in \text{Idl}(\{a, b, c\}^*)$

- **Canonical Decompositions**
 - if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$
IDEALS

(??)

- Directed set Δ
 non-empty and $\forall x_1, x_2 \in I, \exists x. x_1 \leq x$ and $x_2 \leq x$
- Ideal I
 downwards-closed and directed
- Examples
 - $\downarrow x \in \text{Idl}(X)$ for any x in X
 - $\mathbb{N} \in \text{Idl}(\mathbb{N})$
 - $\{a, b\}^* \in \text{Idl}(\{a, b, c\}^*)$
- Canonical Decompositions
 if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$
IDEALS

- Directed set Δ
 non-empty and $\forall x_1, x_2 \in I$, $\exists x. x_1 \leq x$ and $x_2 \leq x$
- Ideal I
 downwards-closed and directed
- Examples
 - $\downarrow x \in \text{Idl}(X)$ for any x in X
 - $\mathbb{N} \in \text{Idl}(\mathbb{N})$
 - $\{a, b\}^* \in \text{Idl}(\{a, b, c\}^*)$
- Canonical Decompositions
 if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$
IDEALS

(??)

- Directed set Δ
 - non-empty and $\forall x_1, x_2 \in I$, $\exists x. x_1 \leq x$ and $x_2 \leq x$
- Ideal I
 - downwards-closed and directed
- Examples
 - $\downarrow x \in \text{Idl}(X)$ for any x in X
 - $\mathbb{N} \in \text{Idl}(\mathbb{N})$
 - $\{a, b\}^* \in \text{Idl}(\{a, b, c\}^*)$
- Canonical Decompositions
 - if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$
IDEALS

(??)

- **Directed set** Δ
 non-empty and $\forall x_1, x_2 \in I, \exists x. x_1 \leq x$ and $x_2 \leq x$

- **Ideal** I
 downwards-closed and directed

- **Examples**
 - $\downarrow x \in \text{Idl}(X)$ for any x in X
 - $\mathbb{N} \in \text{Idl}(\mathbb{N})$
 - $\{a, b\}^* \in \text{Idl}(\{a, b, c\}^*)$

- **Canonical Decompositions**
 if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$
IDEALS

(??)

- Directed set Δ
 non-empty and $\forall x_1, x_2 \in I, \exists x. x_1 \leq x$ and $x_2 \leq x$

- Ideal I
 downwards-closed and directed

- Examples
 - $\downarrow x \in \text{Idl}(X)$ for any x in X
 - $\mathbb{N} \in \text{Idl}(\mathbb{N})$
 - $\{a, b\}^* \in \text{Idl}(\{a, b, c\}^*)$

- Canonical Decompositions
 if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$
IDEALS

- Directed set Δ
 non-empty and $\forall x_1, x_2 \in I, \exists x. x_1 \leq x$ and $x_2 \leq x$
- Ideal I
 downwards-closed and directed
- Examples
 - $\downarrow x \in \text{Idl}(X)$ for any x in X
 - $\mathbb{N} \in \text{Idl}(\mathbb{N})$
 - $\{a, b\}^* \in \text{Idl}(\{a, b, c\}^*)$
- Canonical Decompositions
 if $D \subseteq X$ is downwards-closed, then $D = I_1 \cup \cdots \cup I_n$
IDEALS

(??)

- Directed set Δ
 non-empty and $\forall x_1, x_2 \in I,$
 $\exists x. x_1 \leq x$ and $x_2 \leq x$

- Ideal I
 downwards-closed and directed

- Examples
 - $\downarrow x \in \text{Idl}(X)$ for any x in X
 - $\mathbb{N} \in \text{Idl}(\mathbb{N})$
 - $\{a, b\}^* \in \text{Idl}(\{a, b, c\}^*)$

- Canonical Decompositions
 if $D \subseteq X$ is downwards-closed,
 then $D = I_1 \cup \cdots \cup I_n$
IDEALS

(??)

- **Directed set** \(\Delta \)
 - Non-empty and \(\forall x_1, x_2 \in I, \exists x. x_1 \leq x \) and \(x_2 \leq x \)

- **Ideal** \(I \)
 - Downwards-closed and directed

- **Examples**
 - \(\downarrow x \in \text{Idl}(X) \) for any \(x \) in \(X \)
 - \(\mathbb{N} \in \text{Idl}(\mathbb{N}) \)
 - \(\{a, b\}^* \in \text{Idl}([a, b, c]^*) \)

- **Canonical Decompositions**
 - If \(D \subseteq X \) is downwards-closed, then \(D = I_1 \cup \cdots \cup I_n \)
Effectivity

- represent canonical decompositions $D = I_1 \sqcup \cdots \sqcup I_k$ where the I_j’s are **maximal** for inclusion

- must allow effective operations over ideals: $I \subseteq J$, $I \cap J$, $I \setminus \uparrow x$ for $x \in X$

- ???: effective representations exist for all the wqos in this talk

- for Cartesian products:
 $\text{Idl}(A \times B) = \{I \times J \mid I \in \text{Idl}(A) \text{ and } J \in \text{Idl}(B)\}$

- for finite sequences: $\text{Idl}(X^*)$ are **products** defined by:

 $$P ::= \varepsilon \mid A \cdot P$$ \hspace{1cm} (products)

 $$A ::= (I + \varepsilon) \mid (I_1 \sqcup \cdots \sqcup I_n)^*$$ \hspace{1cm} (atoms)

 where I, I_1, \ldots, I_n range over $\text{Idl}(X)$
Effectivity

- represent canonical decompositions $D = I_1 \sqcup \cdots \sqcup I_k$ where the I_j’s are maximal for inclusion
- must allow effective operations over ideals: $I \subseteq J$, $I \cap J$, $I \setminus \uparrow x$ for $x \in X$
- ??: effective representations exist for all the wqos in this talk
- for Cartesian products:
 $\text{Idl}(A \times B) = \{I \times J \mid I \in \text{Idl}(A) \text{ and } J \in \text{Idl}(B)\}$
- for finite sequences: $\text{Idl}(X^*)$ are products defined by:
 \[
P ::= \varepsilon \mid A \cdot P \hspace{10cm} (\text{products})
 \]
 \[
A ::= (I + \varepsilon) \mid (I_1 \sqcup \cdots \sqcup I_n)^* \hspace{10cm} (\text{atoms})
 \]
 where I, I_1, \ldots, I_n range over $\text{Idl}(X)$
Effectivity

- represent canonical decompositions $D = I_1 \sqcup \cdots \sqcup I_k$ where the I_j's are maximal for inclusion.

- must allow effective operations over ideals: $I \subseteq J$, $I \cap J$, $I \upharpoonup x$ for $x \in X$.

- ???: effective representations exist for all the wqos in this talk.

- for Cartesian products:
 $$\text{Idl}(A \times B) = \{I \times J \mid I \in \text{Idl}(A) \text{ and } J \in \text{Idl}(B)\}$$

- for finite sequences: $\text{Idl}(X^*)$ are products defined by:

 $$P ::= \varepsilon \mid A \cdot P \quad \text{(products)}$$

 $$A ::= (I + \varepsilon) \mid (I_1 \sqcup \cdots \sqcup I_n)^* \quad \text{(atoms)}$$

where I, I_1, \ldots, I_n range over $\text{Idl}(X)$.
Effectivity

- represent canonical decompositions $D = I_1 \sqcup \cdots \sqcup I_k$ where the I_j's are maximal for inclusion
- must allow effective operations over ideals: $I \subseteq J$, $I \cap J$, $I \upharpoonright x$ for $x \in X$
- ???: effective representations exist for all the wqos in this talk
- for Cartesian products:
 $$\text{Idl}(A \times B) = \{I \times J \mid I \in \text{Idl}(A) \text{ and } J \in \text{Idl}(B)\}$$
- for finite sequences: $\text{Idl}(X^*)$ are products defined by:
 $$P ::= \varepsilon \mid A \cdot P$$
 $$A ::= (I + \varepsilon) \mid (I_1 \sqcup \cdots \sqcup I_n)^*$$

where I, I_1, \ldots, I_n range over $\text{Idl}(X)$
An Abstraction Refinement Procedure (CEGAR)

Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow-closed sets s.t.

$$\forall n. \downarrow \text{Runs}_A(x, y) \subseteq D_n$$

initially $D_0 \overset{\text{def}}{=} \text{PreRuns}_A$

$$\forall n \quad \text{if } D_n = I \sqcup D \text{ and }$$
$$\exists p \in I \setminus \downarrow \text{Runs}_A(x, y),$$

$$D_{n+1} \overset{\text{def}}{=} D \cup (I \setminus \uparrow p)$$

Otherwise stop:

$$D_n = \downarrow \text{Runs}_A(x, y)$$

terminates by Descending Chain Property
An Abstraction Refinement Procedure (CEGAR)

Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow-closed sets s.t.
$$\forall n. \downarrow \text{Runs}_A(x, y) \subseteq D_n$$

initially $D_0 \overset{\text{def}}{=} \text{PreRuns}_A$

$\forall n \triangleright$ if $D_n = I \cup D$ and $\exists p \in I \setminus \downarrow \text{Runs}_A(x, y)$,
$$D_{n+1} \overset{\text{def}}{=} D \cup (I \setminus \{p\})$$

\triangleright otherwise stop:
$$D_n = \downarrow \text{Runs}_A(x, y)$$

terminates by Descending Chain Property
An Abstraction Refinement Procedure (CEGAR)

Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow-closed sets s.t.

$$\forall n . \downarrow \text{Runs}_A(x,y) \subseteq D_n$$

Initially $D_0 \overset{\text{def}}{=} \text{PreRuns}_A$

$$\forall n \quad \text{if } D_n = I \sqcup D \text{ and } \exists \rho \in I \setminus \downarrow \text{Runs}_A(x,y),$$

$$D_{n+1} \overset{\text{def}}{=} D \cup (I \setminus \uparrow \rho)$$

$$\text{otherwise stop:}$$

$$D_n = \downarrow \text{Runs}_A(x,y)$$

terminates by Descending Chain Property
An Abstraction Refinement Procedure (CEGAR)

Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow-closed sets s.t.

$$\forall n . \downarrow \text{Runs}_A(x, y) \subseteq D_n$$

initially $D_0 \overset{\text{def}}{=} \text{PreRuns}_A$

$$\forall n \uparrow \text{ if } D_n = I \sqcup D \text{ and } \exists \rho \in I \setminus \downarrow \text{Runs}_A(x, y),$$

$$D_{n+1} \overset{\text{def}}{=} D \cup (I \setminus \uparrow \rho)$$

$$\uparrow \text{ otherwise stop:}$$

$$D_n = \downarrow \text{Runs}_A(x, y)$$

terminates by Descending Chain Property
An Abstraction Refinement Procedure (CEGAR)

Build a sequence \(D_0 \supseteq D_1 \supseteq \cdots \) of \(\downarrow \)-closed sets s.t.

\[
\forall n. \downarrow \text{Runs}_A(x,y) \subseteq D_n
\]

initially \(D_0 \overset{\text{def}}{=} \text{PreRuns}_A \)

\[
\forall n \quad \text{if } D_n = I \cup D \text{ and } \\
\exists \rho \in I \setminus \downarrow \text{Runs}_A(x,y), \\
D_{n+1} \overset{\text{def}}{=} D \cup (I \setminus \uparrow \rho)
\]

\[
\text{otherwise stop: } \\
D_n = \downarrow \text{Runs}_A(x,y)
\]

terminates by Descending Chain Property
An Abstraction Refinement Procedure (CEGAR)

Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow-closed sets s.t.

$$\forall n. \downarrow \text{Runs}_A(x, y) \subseteq D_n$$

initially $D_0 \overset{\text{def}}{=} \text{PreRuns}_A$

$$\forall n \quad \text{if } D_n = I \cup D \text{ and }$$
$$\exists \rho \in I \setminus \downarrow \text{Runs}_A(x, y),$$
$$D_{n+1} \overset{\text{def}}{=} D \cup (I \setminus \uparrow \rho)$$

otherwise stop:

$$D_n = \downarrow \text{Runs}_A(x, y)$$

terminates by Descending Chain Property
An Abstraction Refinement Procedure (CEGAR)

Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow-closed sets s.t.

$$\forall n. \downarrow \text{Runs}_A(x, y) \subseteq D_n$$

initially $D_0 \overset{\text{def}}{=} \text{PreRuns}_A$

$$\forall n \quad \text{if } D_n = I \sqcup D \text{ and } \exists \rho \in I \setminus \downarrow \text{Runs}_A(x, y),$$

$$D_{n+1} \overset{\text{def}}{=} D \cup (I \setminus \uparrow \rho)$$

otherwise stop:

$$D_n = \downarrow \text{Runs}_A(x, y)$$

terminates by Descending Chain Property
An Abstraction Refinement Procedure (CEGAR)

Build a sequence $D_0 \supseteq D_1 \supseteq \cdots$ of \downarrow-closed sets s.t.

$$\forall n. \downarrow \text{Runs}_A(x, y) \subseteq D_n$$

Initially $D_0 \overset{\text{def}}{=} \text{PreRuns}_A$

$$\forall n \quad \text{if } D_n = I \sqcup D \text{ and }$$
$$\exists \rho \in I \setminus \downarrow \text{Runs}_A(x, y),$$

$$D_{n+1} \overset{\text{def}}{=} D \sqcup (I \setminus \uparrow \rho)$$

$$\quad \text{otherwise stop:}$$

$$D_n = \downarrow \text{Runs}_A(x, y)$$

terminates by Descending Chain Property
Containment Oracles

Ideal Containment (into VAS Runs) Problem

Input \(A \subseteq_{\text{fin}} \mathbb{Z}^d, x, y \in \mathbb{N}^d, I \in \text{Idl}(\text{PreRuns}_A) \)

Question \(\exists \rho \in I \setminus \downarrow \text{Runs}_A(x, y) \)?

Proposition

VAS Reachability reduces to Ideal Containment.

Proof.

Because \(\downarrow (0, \epsilon, 0) \subseteq \downarrow \text{Runs}_A(x, y) \) iff \(\text{Runs}_A(x, y) \neq \emptyset \).

Proposition

Ideal Containment is decidable.

Proof.

Consequence of the Decomposition Theorem.
Containment Oracles

Ideal Containment (into VAS Runs) Problem

Input: $A \subseteq \text{fin} \mathbb{Z}^d$, $x, y \in \mathbb{N}^d$, $I \in \text{Idl}(\text{PreRuns}_A)$

Question: Is $I \subseteq \downarrow \text{Runs}_A(x, y)$?

Proposition

VAS Reachability reduces to Ideal Containment.

Proof.
Because $\downarrow(0, \varepsilon, 0) \subseteq \downarrow \text{Runs}_A(x, y)$ iff $\text{Runs}_A(x, y) \neq \emptyset$.

Proposition

Ideal Containment is decidable.

Proof.
Consequence of the Decomposition Theorem.
Containment Oracles

Ideal Containment (into VAS Runs) Problem

Input

\[A \subseteq_{\text{fin}} \mathbb{Z}^d, \ x, y \in \mathbb{N}^d, I \in \text{Idl}(\text{PreRuns}_A) \]

Question

Is \[I \subseteq \downarrow \text{Runs}_A(x, y) \]?

Proposition

VAS Reachability reduces to Ideal Containment.

Proof.

Because \(\downarrow (0, \varepsilon, 0) \subseteq \downarrow \text{Runs}_A(x, y) \) iff \(\text{Runs}_A(x, y) \neq \emptyset \).

Proposition

Ideal Containment is decidable.

Proof.

Consequence of the Decomposition Theorem.
Containment Oracles

Ideal Containment (into VAS Runs) Problem

input \(A \subseteq_{\text{fin}} \mathbb{Z}^d, x, y \in \mathbb{N}^d, I \in \text{Idl}(\text{PreRuns}_A) \)

question Is \(I \subseteq \downarrow\text{Runs}_A(x, y) \)?

Proposition

VAS Reachability reduces to Ideal Containment.

Proof.

Because \(\downarrow(0, \varepsilon, 0) \subseteq \downarrow\text{Runs}_A(x, y) \) iff \(\text{Runs}_A(x, y) \neq \emptyset \).

Proposition

Ideal Containment is decidable.

Proof.

Consequence of the Decomposition Theorem.
Adherence Oracles

Adherence (of VAS Runs) Membership Problem

input $A \subseteq_{\text{fin}} \mathbb{Z}^d, x, y \in \mathbb{N}^d, I \in \text{Idl(PreRuns}_A)$

question $\exists \Delta \subseteq \text{Runs}_A(x, y)$ directed s.t. $\downarrow\Delta = I$?

Claim
In the context of the CEGAR procedure, containment checks are equivalent to adherence membership checks.

Theorem
Adherence Membership is undecidable.

Proof Idea.
By a reduction from Boundedness in Lossy Counter Machines.
Adherence Oracles

Adherence (of VAS Runs) Membership Problem

Input

\[A \subseteq_{\text{fin}} \mathbb{Z}^d, x, y \in \mathbb{N}^d, I \in \text{Idl} (\text{PreRuns}_A) \]

Question

\[\exists \Delta \subseteq \text{Runs}_A (x, y) \text{ directed s.t. } \downarrow \Delta = I? \]

Claim

In the context of the CEGAR procedure, containment checks are equivalent to adherence membership checks.

Theorem

Adherence Membership is undecidable.

Proof Idea.

By a reduction from Boundedness in Lossy Counter Machines.
How to Salvage the CEGAR Procedure?

- both containment and adherence miss a crucial point: if $\downarrow \text{Runs}_A(x, y) = D_n = I \sqcup D$, then I is some maximal ideal of $\downarrow \text{Runs}_A(x, y)$

- find ‘nice’ invariants of such ideals:

 initially $D_0 \overset{\text{def}}{=} \text{PreRuns}_A$ is nice

 $\forall n$ if $D_n = I \sqcup D$ and $\exists \rho \in I \setminus \downarrow \text{Runs}_A(x, y)$, which is decidable:

 $D_{n+1} \overset{\text{def}}{=} D \cup (I \uparrow \rho)$

 otherwise stop:

 $D_n = \downarrow \text{Runs}_A(x, y)$

- template for the KLMST decomposition algorithm
How to Salvage the CEGAR Procedure?

- both containment and adherence miss a crucial point:
 if $\downarrow \text{Runs}_A(x, y) = D_n = I \cup D$, then I is some maximal ideal of $\downarrow \text{Runs}_A(x, y)$

- find ‘nice’ invariants of such ideals:

 initially $D_0 \overset{\text{def}}{=} \text{PreRuns}_A$ is nice

 $\forall n$ if $D_n = I \cup D$ and
 $\exists \rho \in I \setminus \downarrow \text{Runs}_A(x, y)$, which is decidable,

 $D_{n+1} \overset{\text{def}}{=} D \cup (I \setminus \uparrow \rho)$

 otherwise stop:

 $D_n = \downarrow \text{Runs}_A(x, y)$

- template for the KLMST decomposition algorithm
How to Salvage the CEGAR Procedure?

- both containment and adherence miss a crucial point:
 if \(\downarrow \text{Runs}_A(x,y) = D_n = I \sqcup D \), then \(I \) is some maximal ideal of \(\downarrow \text{Runs}_A(x,y) \)

- find ‘nice’ invariants of such ideals:
 initially \(D_0 \overset{\text{def}}{=} \text{PreRuns}_A \) is nice

\[\forall n \quad \text{if } D_n = I \sqcup D \text{ and } \exists \rho \in I \setminus \downarrow \text{Runs}_A(x,y), \text{ which is decidable,} \]
\[D_{n+1} \overset{\text{def}}{=} D \cup (I \setminus \uparrow \rho) \text{ is nice} \]

- otherwise stop:
 \(D_n = \downarrow \text{Runs}_A(x,y) \)

- template for the KLMST decomposition algorithm
How to Salvage the CEGAR Procedure?

- both containment and adherence miss a crucial point: if $\downarrow \text{Runs}_A(x,y) = D_n = I \sqcup D$, then I is some maximal ideal of $\downarrow \text{Runs}_A(x,y)$

- find ‘nice’ invariants of such ideals:

 initially $D_0 \overset{\text{def}}{=} \text{PreRuns}_A$ is nice

 $\forall n$ if $D_n = I \sqcup D$ and $\exists \rho \in I \setminus \downarrow \text{Runs}_A(x,y)$, which is decidable,

 $D_{n+1} \overset{\text{def}}{=} D \cup (I \setminus \uparrow \rho)$ is nice

- otherwise stop:

 $D_n = \downarrow \text{Runs}_A(x,y)$

- template for the KLMST decomposition algorithm
How to Salvage the CEGAR Procedure?

- both containment and adherence miss a crucial point:
 \[\text{if } \downarrow \text{Runs}_A(x, y) = D_n = I \sqcup D, \text{ then } I \text{ is some maximal ideal of } \downarrow \text{Runs}_A(x, y) \]

- find ‘nice’ invariants of such ideals:

 Initially \(D_0 \stackrel{\text{def}}{=} \text{PreRuns}_A \) is nice

 \[\forall n \quad \text{if } D_n = I \sqcup D \text{ and } \exists \rho \in I \setminus \downarrow \text{Runs}_A(x, y), \text{ which is decidable}, \]
 \[D_{n+1} \stackrel{\text{def}}{=} D \cup (I \setminus \uparrow \rho) \] is nice

 - otherwise stop:
 \[D_n = \downarrow \text{Runs}_A(x, y) \]

- template for the KLMST decomposition algorithm
Run Embeddings

Fix $\rho = c_0 \xrightarrow{a_1} c_1 \cdots c_{k-1} \xrightarrow{a_k} c_k$ from $\text{Runs}_A(x,y)$

If $\rho' \succeq \rho$ is a run, $\exists v_0, \ldots, v_{k+1} \in \mathbb{N}^d$ and $\sigma_0, \ldots, \sigma_k \in A^*$:

$$\rho' = (v_0 + c_0) \xrightarrow{\sigma_0} (v_1 + c_0) \xrightarrow{a_1} (v_1 + c_1) \cdots (v_k + c_{k-1}) \xrightarrow{a_k} (v_k + c_k) \xrightarrow{\sigma_k} (v_{k+1} + c_k)$$

Lemma (Run Amalgamation)

If $\rho \preceq \rho_1, \rho_2$ are runs, then there exists a run $\rho' \succeq \rho_1, \rho_2$.
Run Embeddings

\[
(3,3) \rightarrow (2,1) \rightarrow (3,2) \rightarrow (2,0) \rightarrow (3,1)
\]

Fix \(\rho = c_0 \xrightarrow{a_1} c_1 \cdots c_{k-1} \xrightarrow{a_k} c_k \) from \(\text{Runs}_A(x,y) \)

If \(\rho' \succeq \rho \) is a run, \(\exists v_0, \ldots, v_{k+1} \in \mathbb{N}^d \) and \(\sigma_0, \ldots, \sigma_k \in A^* : \)

\[
\rho' = (v_0+c_0) \xrightarrow{\sigma_0} (v_1+c_0) \xrightarrow{a_1} (v_1+c_1) \cdots (v_k+c_{k-1}) \xrightarrow{a_k} (v_k+c_k) \xrightarrow{\sigma_k} (v_{k+1}+c_k)
\]

Lemma (Run Amalgamation)

If \(\rho \preceq \rho_1, \rho_2 \) are runs, then there exists a run \(\rho' \succeq \rho_1, \rho_2 \).
Run Embeddings

Fix $\rho = c_0 \xrightarrow{a_1} c_1 \cdots c_{k-1} \xrightarrow{a_k} c_k$ from $\text{Runs}_A(x,y)$

If $\rho' \geq \rho$ is a run, $\exists v_0, \ldots, v_{k+1} \in \mathbb{N}^d$ and $\sigma_0, \ldots, \sigma_k \in A^*$:

$$\rho' = (v_0+c_0) \xrightarrow{\sigma_0} (v_1+c_0) \xrightarrow{a_1} (v_1+c_1) \cdots (v_k+c_{k-1}) \xrightarrow{a_k} (v_k+c_k) \xrightarrow{\sigma_k} (v_{k+1}+c_k)$$

Lemma (Run Amalgamation)

*If $\rho \preceq \rho_1, \rho_2$ are runs, then there exists a run $\rho' \supseteq \rho_1, \rho_2$.***
Maximal Run Ideals (1/2)

Since \leq is a wqo, $B \overset{\text{def}}{=} \min_{\leq} \text{Runs}_A(x, y)$ is finite:

$$\downarrow \text{Runs}_A(x, y) = \bigcup_{\rho \in B} \downarrow (\uparrow \rho \cap \text{Runs}_A(x, y))$$

For any run ρ, $\downarrow (\uparrow \rho \cap \text{Runs}_A(x, y))$ is

- non-empty: it contains at least ρ
- directed by run amalgamation
- downward-closed by definition

Proposition

The maximal ideals of $\downarrow \text{Runs}_A(x, y)$ are the ideals of the form $\downarrow (\uparrow \rho \cap \text{Runs}_A(x, y))$ for $\rho \in \text{Runs}_A(x, y)$.
Maximal Run Ideals (1/2)

Since \leq is a wqo, $B \overset{\text{def}}{=} \min_{\leq} \text{Runs}_A(x, y)$ is finite:

$$\downarrow \text{Runs}_A(x, y) = \bigcup_{\rho \in B} \downarrow (\uparrow \rho \cap \text{Runs}_A(x, y))$$

For any run ρ, $\downarrow (\uparrow \rho \cap \text{Runs}_A(x, y))$ is

- non-empty: it contains at least ρ
- directed by run amalgamation
- downward-closed by definition

Proposition

The maximal ideals of $\downarrow \text{Runs}_A(x, y)$ are the ideals of the form $\downarrow (\uparrow \rho \cap \text{Runs}_A(x, y))$ for $\rho \in \text{Runs}_A(x, y)$.
Maximal Run Ideals (1/2)

Since \preceq is a wqo, $B \overset{\text{def}}{=} \min_{\preceq} \text{Runs}_A(x, y)$ is finite:

$$\downarrow \text{Runs}_A(x, y) = \bigcup_{\rho \in B} \downarrow (\uparrow \rho \cap \text{Runs}_A(x, y))$$

For any run ρ, $\downarrow (\uparrow \rho \cap \text{Runs}_A(x, y))$ is

- non-empty: it contains at least ρ
- directed by run amalgamation
- downward-closed by definition

Proposition

The maximal ideals of $\downarrow \text{Runs}_A(x, y)$ are the ideals of the form $\downarrow (\uparrow \rho \cap \text{Runs}_A(x, y))$ for $\rho \in \text{Runs}_A(x, y)$.
Maximal Run Ideals (1/2)

Since \preceq is a wqo, $B \overset{\text{def}}{=} \min_{\preceq} \text{Runs}_A(x, y)$ is finite:

$$\downarrow \text{Runs}_A(x, y) = \bigcup_{\rho \in B} (\uparrow \rho \cap \text{Runs}_A(x, y))$$

For any run ρ, $\downarrow (\uparrow \rho \cap \text{Runs}_A(x, y))$ is

- non-empty: it contains at least ρ
- directed by run amalgamation
- downward-closed by definition

Proposition

The maximal ideals of $\downarrow \text{Runs}_A(x, y)$ are the ideals of the form $\downarrow (\uparrow \rho \cap \text{Runs}_A(x, y))$ for $\rho \in \text{Runs}_A(x, y)$.
Maximal Run Ideals (2/2)

Transformer Relations

- $\mathbb{A} \triangleq \{(u, v) \mid \exists \sigma \in A^* . u + c \xrightarrow{\sigma} v + c\}

- \mathbb{A} is periodic: it contains 0, and if $u \mathbb{A} v$ and $u' \mathbb{A} v'$, then $u + u' \mathbb{A} v + v'$

Decomposition of $\uparrow \rho \cap \text{Runs}_A(x, y)$

- let $\rho = c_0 \xrightarrow{a_1} c_1 \cdots c_{k-1} \xrightarrow{a_k} c_k$

- consider all the $(k+1)$-tuples $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$ s.t. $v_0 \mathbb{A} v_1 \mathbb{A} \cdots \mathbb{A} v_k$

- every projection $P_j \triangleq \{(v_j, v_{j+1}) \mid \ldots\}$ is also periodic

- define Ω_j as the set of runs $v_j + c_j \xrightarrow{\sigma_j} v_{j+1} + c_j$ for each j
Maximal Run Ideals (2/2)

Transformer Relations

- $\overset{c}{\rightsquigarrow} \overset{\text{def}}{=} \{(u, v) \mid \exists \sigma \in A^* . u + c \overset{\sigma}{\Rightarrow} v + c\}$

- $\overset{c}{\rightsquigarrow}$ is periodic: it contains 0, and if $u \overset{c}{\rightsquigarrow} v$ and $u' \overset{c}{\rightsquigarrow} v'$, then $u + u' \overset{c}{\rightsquigarrow} v + v'$

Decomposition of $\uparrow \rho \cap \text{Runs}_A(x, y)$

- Let $\rho = c_0 \overset{a_1}{\rightarrow} c_1 \cdots c_{k-1} \overset{a_k}{\rightarrow} c_k$

- Consider all the $(k + 1)$-tuples $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$ s.t. $v_0 \overset{c_0}{\rightsquigarrow} v_1 \overset{c_1}{\rightsquigarrow} \cdots \overset{c_k}{\rightsquigarrow} v_k$

- Every projection $P_j \overset{\text{def}}{=} \{(v_j, v_{j+1}) \mid \ldots\}$ is also periodic

- Define Ω_j as the set of runs $v_j + c_j \overset{\sigma_j}{\Rightarrow} v_{j+1} + c_j$ for each j
Marked Witness Graphs

Example

\[A = \{a, b\} \text{ where } a = (1, 1, -1) \quad b = (-1, 0, 1) \]

\[c_j = (1, 0, 1) \quad P_j = \{((0, 0, 0), (0, n, 0)) \mid n \in \mathbb{N}\} \]

\[\Omega_j = \{c_j \xrightarrow{w_1 \cdots w_n} c_j + (0, n, 0) \mid n \in \mathbb{N}, w_i \in \{ab, ba\}\} \]
MARKED WITNESS GRAPHS

Each Ω_j can be represented as a finite marked witness graph M_j.

Example

$A = \{a, b\}$ where $a = (1, 1, -1)$, $b = (-1, 0, 1)$

$c_j = (1, 0, 1)$, $P_j = \{(0, 0, 0), (0, n, 0)\} | n \in \mathbb{N}$

$\Omega_j = \{c_j \xrightarrow{w_1\ldots w_n} c_j + (0, n, 0) | n \in \mathbb{N}, w_i \in \{ab, ba\}\}$
Marked Witness Graph Sequences

Back to $\rho = c_0 \xrightarrow{a_1} c_1 \cdots c_{k-1} \xrightarrow{a_k} c_k$:

- $\uparrow \rho \cap \text{Runs}_A(x,y)$ can be represented using a sequence of marked witness graphs and actions from A:

$$\xi = M_0, a_1, M_1, \ldots, a_k, M_k$$

- Conversely, each such sequence defines an associated set of runs Ω_ξ and an associated prerun ideal I_ξ.

- Conditions on such sequences:
 - Consistent markings (？)
 - θ condition (？)
 - Perfectness condition (？)

Lemma (Perfectness implies Adherence Membership)

If ξ is perfect then $I_\xi = \downarrow \Omega_\xi$.
Marked Witness Graph Sequences

Back to $\rho = c_0 \xrightarrow{a_1} c_1 \cdots c_{k-1} \xrightarrow{a_k} c_k$:

- $\uparrow \rho \cap \text{Runs}_A(x, y)$ can be represented using a sequence of marked witness graphs and actions from A:

\[\xi = M_0, a_1, M_1, \ldots, a_k, M_k \]

- Conversely, each such sequence defines an associated set of runs Ω_ξ and an associated prerun ideal I_ξ.

- Conditions on such sequences:
 - Consistent markings (?)
 - \emptyset condition (?)
 - Perfectness condition (?)

Lemma (Perfectness implies Adherence Membership)

*If ξ is perfect then $I_\xi = \downarrow \Omega_\xi$.**
Marked Witness Graph Sequences

Back to $\rho = c_0 \xrightarrow{a_1} c_1 \cdots c_{k-1} \xrightarrow{a_k} c_k$:

- $\uparrow \rho \cap \text{Runs}_A(x,y)$ can be represented using a sequence of marked witness graphs and actions from A:

 $$\xi = M_0, a_1, M_1, \ldots, a_k, M_k$$

- Conversely, each such sequence defines an associated set of runs Ω_ξ and an associated prerun ideal I_ξ.

- Perfectness condition on such sequences

Lemma (Perfectness implies Adherence Membership)

If ξ is perfect then $I_\xi = \downarrow \Omega_\xi$.

Theorem

There exists a finite set Ξ of perfect marked witness graph sequences s.t. $\downarrow \text{Runs}_A(x,y) = \bigcup_{\xi \in \Xi} I_\xi$.
KLMST Algorithm (Schematically)

Construct a sequence Ξ_0, Ξ_1, \ldots of finite sets of marked witness graph sequences with $\forall n$

$$D_n \overset{\text{def}}{=} \bigcup_{\xi \in \Xi_n} I_{\xi} \supset \downarrow \text{Runs}_A(x, y)$$

initially Ξ_0 is s.t. $D_0 = \text{PreRuns}_A$

$\forall n \quad$ if $\Xi_n = \{\xi\} \cup \Xi$ and
ξ is not perfect, which is decidable,

$\Xi_{n+1} \overset{\text{def}}{=} \Xi \cup (\text{decompose}(\xi))$

\quad otherwise stop:

$D_n = \downarrow \text{Runs}_A(x, y)$

terminates via a ranking function argument
KLMST Algorithm (Schematically)

Construct a sequence Ξ_0, Ξ_1, \ldots of finite sets of marked witness graph sequences with $\forall n$

$$D_n \overset{\text{def}}{=} \bigcup_{\xi \in \Xi_n} I_\xi \supseteq \downarrow \text{Runs}_A(x, y)$$

initially Ξ_0 is s.t. $D_0 = \text{PreRuns}_A$

\[\forall n \quad \text{if } \Xi_n = \{\xi\} \cup \Xi \text{ and } \xi \text{ is not perfect, which is decidable, then }\]

$$\Xi_{n+1} \overset{\text{def}}{=} \Xi \cup (\text{decompose}(\xi))$$

\[\text{otherwise stop:} \]

$$D_n = \downarrow \text{Runs}_A(x, y)$$

terminates via a ranking function argument
KLMST Algorithm (Schematically)

Construct a sequence Ξ_0, Ξ_1, \ldots of finite sets of marked witness graph sequences with $\forall n$

$$D_n \overset{\text{def}}{=} \bigcup_{\xi \in \Xi_n} I_{\xi} \supseteq \downarrow \text{Runs}_A(x, y)$$

initially Ξ_0 is s.t. $D_0 = \text{PreRuns}_A$

$\forall n \quad$ if $\Xi_n = \{\xi\} \uplus \Xi$ and

ξ is not perfect, which is decidable,

$$\Xi_{n+1} \overset{\text{def}}{=} \Xi \cup (\text{decompose}(\xi))$$

\quad otherwise stop:

$$D_n = \downarrow \text{Runs}_A(x, y)$$

terminates via a ranking function argument
KLMST Algorithm (Schematically)

Construct a sequence Ξ_0, Ξ_1, \ldots of finite sets of marked witness graph sequences with $\forall n$

$$D_n \stackrel{\text{def}}{=} \bigcup_{\xi \in \Xi_n} I_\xi \supseteq \downarrow \text{Runs}_A(x, y)$$

initially Ξ_0 is s.t. $D_0 = \text{PreRuns}_A$

$\forall n \quad \text{if } \Xi_n = \{\xi\} \uplus \Xi$ and

ξ is not perfect, which is decidable,

$\Xi_{n+1} \stackrel{\text{def}}{=} \Xi \cup (\text{decompose}(\xi))$

$\quad \text{otherwise stop:}$

$D_n = \downarrow \text{Runs}_A(x, y)$

terminates via a ranking function argument
KLMST Algorithm (Schematically)

Construct a sequence Ξ_0, Ξ_1, \ldots of finite sets of marked witness graph sequences with $\forall n$

$$D_n \overset{\text{def}}{=} \bigcup_{\xi \in \Xi_n} I_\xi \supseteq \downarrow \text{Runs}_A(x, y)$$

Initially Ξ_0 is s.t. $D_0 = \text{PreRuns}_A$

$\forall n \triangleright$ if $\Xi_n = \{\xi\} \uplus \Xi$ and

ξ is not perfect, which is decidable,

$$\Xi_{n+1} \overset{\text{def}}{=} \Xi \cup (\text{decompose}(\xi))$$

\triangleright otherwise stop:

$$D_n = \downarrow \text{Runs}_A(x, y)$$

terminates via a ranking function argument
Concluding Remarks

- ideals as an *algorithmic* tool to work with downward-closed sets

- new *understanding* of the KLMST decomposition
 extension to other models (BVASS, PDVAS,…)?

- complexity of VAS Reachability:
 - PSPACE-complete with states if $d = 2$ (?)
 - EXPSPACE-hard (?) and in F_{ω^3} (?) in general

- to learn more: references in the next slide and
Concluding Remarks

- ideals as an **algorithmic** tool to work with downward-closed sets
- new **understanding** of the KLMST decomposition
 - extension to other models (BVASS, PDVAS, ...)?
- complexity of VAS Reachability:
 - PSPACE-complete with states if $d = 2$ (?)
 - EXPSPACE-hard (?) and in F_{ω^3} (?) in general
- to learn more: references in the next slide and
CONCLUDING REMARKS

- ideals as an **algorithmic** tool to work with downward-closed sets

- new **understanding** of the KLMST decomposition
 extension to other models (BVASS, PDVAS, ...)?

- complexity of VAS Reachability:
 - PSPACE-complete with states if $d = 2$ (?)
 - EXPSPACE-hard (?) and in F_{ω^3} (?) in general

- to learn more: references in the next slide and
 http://arxiv.org/abs/1503.00745 (?)
Concluding Remarks

- ideals as an algorithmic tool to work with downward-closed sets

- new understanding of the KLMST decomposition extension to other models (BVASS, PDVAS,…)?

- complexity of VAS Reachability:
 - PSPACE-complete with states if $d = 2$ (?)
 - EXPSPACE-hard (?) and in F_{ω^3} (?) in general

- to learn more: references in the next slide and http://arxiv.org/abs/1503.00745 (?)