Algorithmic Aspects of WQO (Well-Quasi-Ordering) Theory
Part II: Algorithmic Applications of WQOs

Philippe Schnoebelen

LSV, CNRS & ENS Cachan

Chennai Mathematical Institute, Jan. 2017

Based on joint work with Sylvain Schmitz, Prateek Karandikar, K. Narayan Kumar, Alain Finkel, ..

Lecture notes & exercises available via www.lsv.ens-cachan.fr/~phs
(X, ≤) is a well-quasi-ordering (a wqo) if any infinite sequence x₀, x₁, x₂... over X contains an increasing pair xᵢ ≤ xⱼ (for some i < j)

Examples.
1. (ℕᵏ, ≤ₓ) is a wqo (Dickson’s Lemma)
 where, e.g., (3, 2, 1) ≤ₓ (5, 2, 2) but (1, 2, 3) ≤ₓ (5, 2, 2)

2. (Σ*, ≤*) is a wqo (Higman’s Lemma)
 where, e.g., abc ≤* bacbc but cba ≤* bacbc

Objectives for today’s course:

- See algorithms that rely on wqos: verification of WSTS’s
- Reduce complexity analysis to bounds on bad sequences
IF YOU MISSED PART I

(X, \leq) is a well-quasi-ordering (a wqo) if any infinite sequence $x_0, x_1, x_2 \ldots$ over X contains an increasing pair $x_i \leq x_j$ (for some $i < j$)

Examples.
1. $(\mathbb{N}^k, \preceq_X)$ is a wqo (Dickson’s Lemma)
 where, e.g., $(3, 2, 1) \preceq_X (5, 2, 2)$ but $(1, 2, 3) \npreceq_X (5, 2, 2)$

2. (Σ^*, \preceq_*) is a wqo (Higman’s Lemma)
 where, e.g., $abc \preceq_* bacbc$ but $cba \npreceq_* bacbc$

Objectives for today’s course:

- See algorithms that rely on wqos: verification of WSTS’s
- Reduce complexity analysis to bounds on bad sequences
OUTLINE FOR PART II

▶ Well-structured transition systems (WSTS’s)
▶ Deciding Termination
▶ Deciding Coverability
▶ (in lecture notes only:) other wqo-based algorithms: other termination proofs, relevance logic, Karp-Miller trees, ..

All of these are actual examples of algorithms that terminate thanks to wqo-theoretical arguments

Question for Part III. terminate in how many steps exactly?
OUTLINE FOR PART II

- Well-structured transition systems (WSTS’s)
- Deciding Termination
- Deciding Coverability
- (in lecture notes only:) other wqo-based algorithms: other termination proofs, relevance logic, Karp-Miller trees, ..

All of these are actual examples of algorithms that terminate thanks to wqo-theoretical arguments

Question for Part III. terminate in how many steps exactly?
In program verification, wqo’s appear prominently under the guise of WSTS.

Def. A WSTS is a system \((S, \rightarrow, \leq)\) where

1. \((S, \rightarrow)\) with \(\rightarrow \subseteq S \times S\) is a transition system
2. the set of states \((S, \leq)\) is wqo, and
3. the transition relation is **compatible with the ordering** (also called “monotonic”): \(s \rightarrow t\) and \(s \leq s’\) imply \(s’ \rightarrow t’\) for some \(t’ \geq t\)
Some WSTS’s: Monotonic Counter Machines

A run of \(M \): \((\ell_0, 0, 1, 4) \rightarrow (\ell_1, 1, 1, 4) \rightarrow (\ell_2, 1, 0, 4) \rightarrow (\ell_3, 1, 0, 0)\)

Ordering states: \((\ell_1, 0, 0, 0) \preceq (\ell_1, 0, 1, 2)\) but \((\ell_1, 0, 0, 0) \nprec (\ell_2, 0, 1, 2)\).
This is wqo as a product of wqo’s: \((\text{Loc}, =) \times (\mathbb{N}^3, \leq x)\)

Compatibility: easily checked when guards are upward-closed and assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic. Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?
Some WSTS’s: Monotonic Counter Machines

A run of M: $(\ell_0, 0, 1, 4) \rightarrow (\ell_1, 1, 1, 4) \rightarrow (\ell_2, 1, 0, 4) \rightarrow (\ell_3, 1, 0, 0)$

Ordering states: $(\ell_1, 0, 0, 0) \leq (\ell_1, 0, 1, 2)$ but $(\ell_1, 0, 0, 0) \nleq (\ell_2, 0, 1, 2)$. This is wqo as a product of wqo’s: $(\text{Loc}, =) \times (\mathbb{N}^3, \leq_x)$

Compatibility: easily checked when guards are upward-closed and assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic. Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?
Some WSTS’s: Monotonic Counter Machines

A run of M: $(\ell_0, 0, 1, 4) \rightarrow (\ell_1, 1, 1, 4) \rightarrow (\ell_2, 1, 0, 4) \rightarrow (\ell_3, 1, 0, 0)$

Ordering states: $(\ell_1, 0, 0, 0) \leq (\ell_1, 0, 1, 2)$ but $(\ell_1, 0, 0, 0) \nleq (\ell_2, 0, 1, 2)$. This is wqo as a product of wqo’s: $(\text{Loc}, =) \times (\mathbb{N}^3, \leq_x)$

Compatibility: easily checked when guards are upward-closed and assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic. Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?
Some WSTS's: Monotonic Counter Machines

A run of M: $(\ell_0,0,1,4) \rightarrow (\ell_1,1,1,4) \rightarrow (\ell_2,1,0,4) \rightarrow (\ell_3,1,0,0)$

Ordering states: $(\ell_1,0,0,0) \leq (\ell_1,0,1,2)$ but $(\ell_1,0,0,0) \not\leq (\ell_2,0,1,2)$. This is wqo as a product of wqo's: $(\text{Loc},=) \times (\mathbb{N}^3,\leq_x)$

Compatibility: easily checked when guards are upward-closed and assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic. Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?
Some WSTS’s: Monotonic Counter Machines

A run of M: $(\ell_0, 0, 1, 4) \rightarrow (\ell_1, 1, 1, 4) \rightarrow (\ell_2, 1, 0, 4) \rightarrow (\ell_3, 1, 0, 0)$

Ordering states: $(\ell_1, 0, 0, 0) \leq (\ell_1, 0, 1, 2)$ but $(\ell_1, 0, 0, 0) \not\leq (\ell_2, 0, 1, 2)$. This is wqo as a product of wqo’s: $(\mathbb{L}oc, =) \times (\mathbb{N}^3, \leq_x)$

Compatibility: easily checked when guards are upward-closed and assignments are monotonic functions of the variables.

NB. Other updates can be considered as long as they are monotonic. Extending guards require using a finer ordering.

Question. How does this compare to Minsky (counter) machines?
Some WSTS’s: Relational Automata

Guards: comparisons between counters and constants

Updates: assignments with counter values, constants, & “??”

One does not use \(\leq_x \) to compare states!! Rather

\[
(a_1,\ldots,a_k) \leq_{\text{sparse}} (b_1,\ldots,b_k)
\]

\[
\text{def } \iff \forall i,j = 1,\ldots,k: (a_i \leq a_j \iff b_i \leq b_j) \land (|a_i - a_j| \leq |b_i - b_j|).
\]

Fact. \((\mathbb{Z}^k, \leq_{\text{sparse}})\) is wqo

\[
(l,a_1,\ldots,a_k) \leq (l',b_1,\ldots,b_k) \text{ def } \iff \exists \ell = l' \land (a_1,\ldots,a_k,-1,10) \leq_{\text{sparse}} (b_1,\ldots,b_k,-1,10).
\]

Compatibility: We use
Some WSTS’s: Relational Automata

Guards: comparisons between counters and constants

Updates: assignments with counter values, constants, & "??"

One does not use \leq to compare states!! Rather

$$(a_1, \ldots, a_k) \leq_{\text{sparse}} (b_1, \ldots, b_k)$$

$\iff \forall i, j = 1, \ldots, k : (a_i \leq a_j \text{ iff } b_i \leq b_j) \land (|a_i - a_j| \leq |b_i - b_j|).$

Fact. $(\mathbb{Z}^k, \leq_{\text{sparse}})$ is wqo

$$(\ell, a_1, \ldots, a_k) \leq (\ell', b_1, \ldots, b_k) \iff$$

Compatibility: We use

$$\ell = \ell' \land (a_1, \ldots, a_k, -1, 10) \leq_{\text{sparse}} (b_1, \ldots, b_k, -1, 10).$$
** Guards:** comparisons between counters and constants
** Updates:** assignments with counter values, constants, & “??”

One does not use \leq_\times to compare states!! Rather

$$(a_1,\ldots,a_k) \leq_{\text{sparse}} (b_1,\ldots,b_k)$$

$$\text{def} \leftrightarrow \forall i,j = 1,\ldots,k : (a_i \leq a_j \iff b_i \leq b_j) \land (|a_i - a_j| \leq |b_i - b_j|).$$

Fact. $(\mathbb{Z}^k, \leq_{\text{sparse}})$ is wqo

$$(\ell,a_1,\ldots,a_k) \leq (\ell',b_1,\ldots,b_k) \text{ def }$$

Compatibility: We use

$$\ell = \ell' \land (a_1,\ldots,a_k,-1,10) \leq_{\text{sparse}} (b_1,\ldots,b_k,-1,10).$$
Guards: comparisons between counters and constants

Updates: assignments with counter values, constants, & “??”

One does not use \leq_\times to compare states!! Rather

$$(a_1, \ldots, a_k) \leq_{\text{sparse}} (b_1, \ldots, b_k)$$

$$\iff \forall i, j = 1, \ldots, k : (a_i \leq a_j \iff b_i \leq b_j) \land (|a_i - a_j| \leq |b_i - b_j|).$$

Fact. $(\mathbb{Z}^k, \leq_{\text{sparse}})$ is wqo

$$(\ell, a_1, \ldots, a_k) \leq (\ell', b_1, \ldots, b_k) \iff$$

Compatibility: We use

$$\ell = \ell' \land (a_1, \ldots, a_k, -1, 10) \leq_{\text{sparse}} (b_1, \ldots, b_k, -1, 10).$$
A **configuration** $\sigma = (\ell_1, \ell_2, w_1, w_2)$ with $w_i \in \Sigma^*$.
E.g., $w_1 = \text{hup.ack.ack}$.

Reliable steps: $\sigma \rightarrow_{\text{rel}} \rho$ read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically

$$\sigma \rightarrow \sigma' \iff \sigma \sqsubseteq \rho \rightarrow_{\text{rel}} \rho' \sqsubseteq \sigma' \text{ for some } \rho, \rho'$$

where (S, \sqsubseteq) is the wqo $(\text{Loc}_1, =) \times (\text{Loc}_2, =) \times (\Sigma^*_c, \leq_*) \times (\Sigma^*_c, \leq_*)$

A model useful for concurrent protocols but also timed automata, metric temporal logic, products of modal logics, ...
Some WSTS’s: LCS / Lossy Channel Systems

A configuration $\sigma = (\ell_1, \ell_2, w_1, w_2)$ with $w_i \in \Sigma^*$.
E.g., $w_1 = \text{hup.ack.ack}$.

Reliable steps: $\sigma \rightarrow_{\text{rel}} \rho$ read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically

$\sigma \rightarrow \sigma' \iff \sigma \sqsubseteq \rho \rightarrow_{\text{rel}} \rho' \sqsubseteq \sigma'$ for some ρ, ρ'

where (S, \sqsubseteq) is the wqo $(\text{Loc}_1, =) \times (\text{Loc}_2, =) \times (\Sigma_{c_1}^*, \leq^*) \times (\Sigma_{c_2}^*, \leq^*)$

A model useful for concurrent protocols but also timed automata, metric temporal logic, products of modal logics, ...
A configuration $\sigma = (\ell_1, \ell_2, w_1, w_2)$ with $w_i \in \Sigma^*$.

E.g., $w_1 = \text{hup.ack.ack}$.

Reliable steps: $\sigma \rightarrow_{\text{rel}} \rho$ read in front of channels, write at end (FIFO)

Lossy steps: messages may be lost nondeterministically

$\sigma \rightarrow \sigma' \iff \sigma \sqsubseteq \rho \rightarrow_{\text{rel}} \rho' \sqsubseteq \sigma'$ for some ρ, ρ'

where (S, \sqsubseteq) is the wqo $(\text{Loc}_1, =) \times (\text{Loc}_2, =) \times (\Sigma_{c_1}^*, \leq*) \times (\Sigma_{c_2}^*, \leq*)$

A model useful for concurrent protocols but also timed automata, metric temporal logic, products of modal logics, ...
Termination is the question, given a TS \((S, \rightarrow, \ldots)\) and a state \(s_{\text{init}} \in S\), whether there are no infinite runs starting from \(s_{\text{init}}\).

Lem. [Finite Witnesses for Infinite Runs]

A WSTS \((S, \rightarrow, \leq)\) has an infinite run from \(s_{\text{init}}\) iff it has a finite run from \(s_{\text{init}}\) that is a good sequence.

Recall: \(s_0, s_1, s_2, \ldots, s_n\) is good \(\iff\) there exist \(i < j\) s.t. \(s_i \leq s_j\)

Coro. One can decide Termination for a WSTS by enumerating all finite runs from \(s_{\text{init}}\) and reject when/if a good sequence is found.

NB: This requires some minimal effectiveness assumptions on the WSTS, e.g., that the ordering is decidable.

Algorithm extends and allows deciding inevitability, finiteness, and regular simulation.
Termination

Termination is the question, given a TS \((S, \rightarrow, \ldots)\) and a state \(s_{\text{init}} \in S\), whether there are no infinite runs starting from \(s_{\text{init}}\).

Lem. [Finite Witnesses for Infinite Runs]

A WSTS \((S, \rightarrow, \leq)\) has an infinite run from \(s_{\text{init}}\) iff it has a finite run from \(s_{\text{init}}\) that is a good sequence.

Recall: \(s_0, s_1, s_2, \ldots, s_n\) is good def there exist \(i < j\) s.t. \(s_i \leq s_j\)

Coro. One can decide Termination for a WSTS by enumerating all finite runs from \(s_{\text{init}}\) and reject when/if a good sequence is found.

NB: This requires some minimal effectiveness assumptions on the WSTS, e.g., that the ordering is decidable.

Algorithm extends and allows deciding inevitability, finiteness, and regular simulation.
Termination

Termination is the question, given a TS \((S, \rightarrow, \ldots)\) and a state \(s_{\text{init}} \in S\), whether there are no infinite runs starting from \(s_{\text{init}}\).

Lem. [Finite Witnesses for Infinite Runs]

A WSTS \((S, \rightarrow, \leq)\) has an infinite run from \(s_{\text{init}}\) iff it has a finite run from \(s_{\text{init}}\) that is a good sequence.

Recall: \(s_0, s_1, s_2, \ldots, s_n\) is good \(\Longleftrightarrow\) there exist \(i < j\) s.t. \(s_i \leq s_j\)

Proof. \(\Rightarrow:\) the infinite run contains an increasing pair

\(\Leftarrow:\) good finite run \(s_0 \stackrel{*}{\rightarrow} s_i \stackrel{+}{\rightarrow} s_j\) can be extended by simulating \(s_i \stackrel{+}{\rightarrow} s_j\) from above: \(s_j \stackrel{+}{\rightarrow} s_{2j-i}\), then \(s_{2j-i} \stackrel{+}{\rightarrow} s_{3j-2i}\), etc.

Coro. One can decide Termination for a WSTS by enumerating all finite runs from \(s_{\text{init}}\) and reject when/if a good sequence is found.

NB: This requires some minimal effectiveness assumptions on the WSTS, e.g., that the ordering is decidable.

Algorithm extends and allows deciding inevitability, finiteness, and regular simulation.
TERMINATION

Termination is the question, given a TS \((S, \rightarrow, \ldots)\) and a state \(s_{\text{init}} \in S\), whether there are no infinite runs starting from \(s_{\text{init}}\).

Lem. [Finite Witnesses for Infinite Runs]

A WSTS \((S, \rightarrow, \leq)\) has an infinite run from \(s_{\text{init}}\) iff it has a finite run from \(s_{\text{init}}\) that is a good sequence.

Recall: \(s_0, s_1, s_2, \ldots, s_n\) is good \(\overset{\text{def}}{\iff}\) there exist \(i < j\) s.t. \(s_i \leq s_j\)

Proof. \(\Rightarrow\): the infinite run contains an increasing pair

\(\Leftarrow\): good finite run \(s_0 \xrightarrow{*} s_i \xrightarrow{\dagger} s_j\) can be extended by simulating \(s_i \xrightarrow{\dagger} s_j\) from above: \(s_j \xrightarrow{\dagger} s_{2j-i}\), then \(s_{2j-i} \xrightarrow{\dagger} s_{3j-2i}\), etc.

Coro. Termination is co-r.e.

Since it is also r.e. (for finitely branching systems), it is decidable.

Coro. One can decide Termination for a WSTS by enumerating all finite runs from \(s_{\text{init}}\) and reject when/if a good sequence is found.

NB: This requires some minimal effectiveness assumptions on the WSTS, e.g., that the ordering is decidable.

Algorithm extends and allows deciding inevitability, finiteness, and regular simulation.
Termination

Termination is the question, given a TS (S, \rightarrow, \ldots) and a state $s_{\text{init}} \in S$, whether there are no infinite runs starting from s_{init}.

Lem. [Finite Witnesses for Infinite Runs]
A WSTS (S, \rightarrow, \leq) has an infinite run from s_{init} iff it has a finite run from s_{init} that is a good sequence.

Recall: $s_0, s_1, s_2, \ldots, s_n$ is good \iff there exist $i < j$ s.t. $s_i \leq s_j$.

Coro. One can decide Termination for a WSTS by enumerating all finite runs from s_{init} and reject when/if a good sequence is found.

NB: This requires some minimal effectiveness assumptions on the WSTS, e.g., that the ordering is decidable.

Algorithm extends and allows deciding inevitability, finiteness, and regular simulation.
COVERABILITY (IN PRACTICE: SAFETY)

Coverability is the question, given \((S, \to, \ldots)\), a state \(s_{\text{init}}\) and a target state \(t\), whether there is a run \(s_{\text{init}} \to s_1 \to s_2 \cdots \to s_n\) with \(s_n \geq t\).

This is equivalent to having a pseudo-run \(s_{\text{init}}, s_1, \ldots, s_n\) with \(s_n \geq t\), where a pseudo-run is a sequence of pseudo-steps \(s_{i-1} \to s_i' \geq s_i\).

Lem. [Finite Witnesses for Covering] There is a pseudo-run \(s_{\text{init}}, \ldots, s_n\) covering \(t\) iff there is a minimal pseudo-run \(s_0 \to \cdots \to s_{n'} = t\) from some \(s_0 \leq s_{\text{init}}\) to \(t\) such that \(s_{n'}, s_{n'-1}, \ldots, s_0\) is a bad sequence.

NB. a pseudo-run \(s_0, \ldots, s_{n'}\) is minimal \(\text{def}\) for all \(0 \leq i < n'\), \(s_i\) is a minimal (pseudo) predecessor of \(s_{i+1}\).

Coro. one can decide Coverability by enumerating all pseudo-runs ending in \(t\) (backward-chaining!) that are minimal & bad sequences.
Coverability is the question, given \((S, \to, \ldots)\), a state \(s_{\text{init}}\) and a target state \(t\), whether there is a run \(s_{\text{init}} \to s_1 \to s_2 \cdots \to s_n\) with \(s_n \geq t\).

This is equivalent to having a pseudo-run \(s_{\text{init}}, s_1, \ldots, s_n\) with \(s_n \geq t\), where a pseudo-run is a sequence of pseudo-steps \(s_{i-1} \to s'_i \geq s_i\).

Picture

\[
\begin{align*}
\text{1st pseudo-step} & \quad s_0 \to s'_1 \geq s_1 \to s'_2 \geq s_2 \to \cdots \geq \cdots \\
\text{2nd pseudo-step} & \\
\text{last pseudo-step} & \quad \cdots \to s_{n-1} \to s'_n \geq s_n \geq t
\end{align*}
\]

Lem. [Finite Witnesses for Covering] There is a pseudo-run \(s_{\text{init}}, \ldots, s_n\) covering \(t\) iff there is a minimal pseudo-run \(s_0 \to \geq \cdots \to \geq s_n' = t\) from some \(s_0 \leq s_{\text{init}}\) to \(t\) such that \(s_n', s_{n-1}', \ldots, s_0\) is a bad sequence.

NB. a pseudo-run \(s_0, \ldots, s_{n'}\) is minimal \(\defeq\) for all \(0 \leq i < n'\), \(s_i\) is a minimal (pseudo) predecessor of \(s_{i+1}\).

Coro. one can decide Coverability by enumerating all pseudo-runs ending in \(t\) (backward-chaining!) that are minimal & bad sequences.
Coverability (in practice: Safety)

Coverability is the question, given \((S, \rightarrow, \ldots)\), a state \(s_{\text{init}}\) and a target state \(t\), whether there is a run \(s_{\text{init}} \rightarrow s_1 \rightarrow s_2 \cdots \rightarrow s_n\) with \(s_n \geq t\).

This is equivalent to having a pseudo-run \(s_{\text{init}}, s_1, \ldots, s_n\) with \(s_n \geq t\), where a pseudo-run is a sequence of pseudo-steps \(s_{i-1} \rightarrow s_i' \geq s_i\).

\[
\text{Picture:} \quad s_0 \rightarrow s_1' \geq s_1 \rightarrow s_2' \geq s_2 \rightarrow \cdots \geq \cdots s_{n-1} \rightarrow s_n' \geq s_n \geq t
\]

Lem. [Finite Witnesses for Covering] There is a pseudo-run \(s_{\text{init}}, \ldots, s_n\) covering \(t\) iff there is a minimal pseudo-run \(s_0 \rightarrow \geq \cdots \rightarrow \geq s_{n'} = t\) from some \(s_0 \leq s_{\text{init}}\) to \(t\) such that \(s_{n'}, s_{n'-1}, \ldots, s_0\) is a bad sequence.

NB. a pseudo-run \(s_0, \ldots, s_{n'}\) is minimal \(\overset{\text{def}}{\iff} \) for all \(0 \leq i < n'\), \(s_i\) is a minimal (pseudo) predecessor of \(s_{i+1}\).

Coro. One can decide Coverability by enumerating all pseudo-runs ending in \(t\) (backward-chaining!) that are minimal & bad sequences.
COVERABILITY (IN PRACTICE: SAFETY)

Coverability is the question, given \((S, \rightarrow, \ldots)\), a state \(s_{\text{init}}\) and a target state \(t\), whether there is a run \(s_{\text{init}} \rightarrow s_1 \rightarrow s_2 \cdots \rightarrow s_n\) with \(s_n \geq t\).

This is equivalent to having a pseudo-run \(s_{\text{init}}, s_1, \ldots, s_n\) with \(s_n \geq t\), where a pseudo-run is a sequence of pseudo-steps \(s_{i-1} \rightarrow s'_i \geq s_i\).

Picture

\[
\begin{align*}
1\text{st pseudo-step} & \quad s_0 \rightarrow s'_1 \geq s_1 \rightarrow s'_2 \geq s_2 & \rightarrow \cdots \geq \cdots s_{n-1} \rightarrow s'_n \geq s_n \geq t \\
2\text{nd pseudo-step} &
\end{align*}
\]

Lem. [Finite Witnesses for Covering] There is a pseudo-run \(s_{\text{init}}, \ldots, s_n\) covering \(t\) iff there is a minimal pseudo-run \(s_0 \rightarrow \geq \cdots \rightarrow \geq s_n, = t\) from some \(s_0 \leq s_{\text{init}}\) to \(t\) such that \(s_n', s_{n'-1}, \ldots, s_0\) is a bad sequence.

NB. a pseudo-run \(s_0, \ldots, s_{n'}\) is minimal \(\overset{\text{def}}{=}\) for all \(0 \leq i < n', s_i\) is a minimal (pseudo) predecessor of \(s_{i+1}\).

Coro. one can decide Coverability by enumerating all pseudo-runs ending in \(t\) (backward-chaining!) that are minimal & bad sequences.
COMPLEXITY ANALYSIS

The two algorithms we have seen guess a finite sequence \(s_0, s_1, \ldots, s_\ell \) that is **bad** (for Coverability) or almost bad (for non-Termination) and check that they are indeed correct witnesses.

We can give a complexity upper bound in \((\text{CO})\text{NTIME}(f(n))\) or \((\text{CO})\text{NSPACE}(f(n))\) if we can bound the size of the sequence —in practice: bound its length \(\ell \)— as a function of the input \((S, \to, \leq), s_{\text{init}}, t, ..\)

This is the topic for next course …
The two algorithms we have seen guess a finite sequence s_0, s_1, \ldots, s_ℓ that is bad (for Coverability) or almost bad (for non-Termination) and check that they are indeed correct witnesses.

We can give a complexity upper bound in $\text{CO}NTIME(f(n))$ or $\text{CO}NSPACE(f(n))$ if we can bound the size of the sequence —in practice: bound its length ℓ— as a function of the input $(S, \rightarrow, \leq), s_{\text{init}}, t, \ldots$

This is the topic for next course . . .
COMPLEXITY ANALYSIS

The two algorithms we have seen guess a finite sequence s_0, s_1, \ldots, s_ℓ that is bad (for Coverability) or almost bad (for non-Termination) and check that they are indeed correct witnesses.

We can give a complexity upper bound in $(\text{CO})\text{NTIME}(f(n))$ or $(\text{CO})\text{NSPACE}(f(n))$ if we can bound the size of the sequence —in practice: bound its length ℓ— as a function of the input $(S, \rightarrow, \leq), s_{\text{init}}, t, \ldots$

This is the topic for next course . . .