Temporal logics for multi-agent systems

Nicolas Markey
LSV, CNRS & ENS Cachan, France

Journées Nationales
Lyon, 21-22 January 2013
Verification of computerised systems

- Computers are everywhere
Verification of computerised systems

- Computers are everywhere

- Bugs are everywhere...

Toyota to recall Prius hybrids over ABS software

By Martyn Williams

February 1, 2010 02:16 AM ET

IDG News Service - Toyota plans to recall around 400,000 of its Prius hybrid cars to replace software that controls the anti-lock braking system (ABS), the auto maker said Tuesday.
Verification of computerised systems

- Computers are everywhere

- Bugs are everywhere...

- Verification should be everywhere!
Model checking and synthesis

system:

[Diagram of system with tanks, pump, and action symbols]

property:

[Diagram of property with X mark on tanks]

$\text{model-checking algorithm}$

$AG(\neg B.\text{overfull} \land \neg B.\text{dried_up})$

yes/no
Model checking and synthesis

system:

[http://www.embedded.com]

property:

\[\text{synthesis algorithm} \]

\[\text{AG}(\neg B.\text{overfull} \land \neg B.\text{dried_up}) \]
Outline of the presentation

1. Introduction
 - formal verification
 - model checking and synthesis

2. Classical temporal logics: CTL and LTL
 - expressing properties of “closed” systems

3. Temporal logics for games: ATL and extensions
 - expressing properties of interacting systems
 - extensions to non-zero-sum games

4. Conclusions and future works
Outline of the presentation

1. Introduction
 - formal verification
 model checking and synthesis

2. Classical temporal logics: CTL and LTL
 - expressing properties of “closed” systems

3. Temporal logics for games: ATL and extensions
 - expressing properties of interacting systems
 extensions to non-zero-sum games

4. Conclusions and future works
CTL and LTL: temporal logics for closed systems

- **atomic propositions:** \bigcirc, \bigcirc, ...

- **boolean combinators:** $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, ...

- **path quantifiers:** $E \varphi$, $\forall \varphi$, $\exists \varphi$

- **temporal modalities:** $X \varphi$, "next φ", $\varphi U \psi$, "φ until ψ", $\varphi U \top$, $\neg F \neg \varphi$, $G \varphi$, "always φ"
CTL and LTL: temporal logics for closed systems

- atomic propositions: \(\bigcirc, \Box, ... \)
- boolean combinators: \(\neg \varphi, \varphi \lor \psi, \varphi \land \psi, \ldots \)
- path quantifiers:

\[
E \varphi \\
A \varphi
\]
CTL and LTL: temporal logics for closed systems

- **atomic propositions**: \(\bigcirc, \bigcirc, \ldots \)
- **boolean combinators**: \(\neg \varphi, \varphi \lor \psi, \varphi \land \psi, \ldots \)
- **path quantifiers**:

 \[
 \text{E}\varphi \quad \text{A}\varphi
 \]

- **temporal modalities**:

 \[
 \text{X}\varphi \quad \varphi \text{ U } \psi
 \]

 "next \(\varphi \)"

 "\(\varphi \) until \(\psi \)"
CTL and LTL: temporal logics for closed systems

- **atomic propositions:** ⊤, ⬤, ...
- **boolean combinators:** ¬φ, φ ∨ ψ, φ ∧ ψ, ...
- **path quantifiers:**
 - Eφ
 - Aφ
- **temporal modalities:**
 - Xφ
 - φ U ψ
 - true U φ ≡ Fφ
 - ¬ F ¬ φ ≡ Gφ
 - “next φ”
 - “φ until ψ”
 - “eventually φ”
 - “always φ”
CTL and LTL: temporal logics for closed systems

- CTL: each temporal modality is in the immediate scope of a path quantifier.
CTL and LTL: temporal logics for closed systems

- CTL: each temporal modality is in the immediate scope of a path quantifier.

\[E F \text{ is reachable} \]
CTL and LTL: temporal logics for closed systems

- CTL: each temporal modality is in the immediate scope of a path quantifier.

\[E F \quad \text{is reachable} \]

Diagram:

- Initial state with a path quantifier.
- States connected by transitions.
CTL and LTL: temporal logics for closed systems

- CTL: each temporal modality is in the immediate scope of a path quantifier.

$$\mathbf{E} \mathbf{G} (\mathbf{E} \mathbf{F} \bigcirc)$$ there is a path along which \bigcirc is always reachable.
CTL and LTL: temporal logics for closed systems

- CTL: each temporal modality is in the immediate scope of a path quantifier.

\[\text{EG}(\text{EF} \ p) \]
there is a path along which \(p \) is always reachable.
CTL and LTL: temporal logics for closed systems

- CTL: each temporal modality is in the immediate scope of a path quantifier.

\[
\mathbf{E} \mathbf{G}(\mathbf{E} \mathbf{F} \circled{p}) \quad \text{there is a path along which } \circled{p} \text{ is always reachable}
\]
CTL and LTL: temporal logics for closed systems

- **CTL**: each temporal modality is in the immediate scope of a path quantifier.

\[\neg E(\neg \bullet) \cup \bullet \quad \text{in order to reach } \bullet, \text{ we have to visit } \bullet \]
CTL and LTL: temporal logics for closed systems

- CTL: each temporal modality is in the immediate scope of a path quantifier.

\[\neg E(\neg \bigcirc) U \bigcirc \] in order to reach \(\bigcirc \), we have to visit \(\bigcirc \)
CTL and LTL: temporal logics for closed systems

- CTL: each temporal modality is in the immediate scope of a path quantifier.

Theorem ([CE81, QS82])

CTL model checking is PTIME-complete.

CTL symbolic model checking is PSPACE-complete.
CTL and LTL: temporal logics for closed systems

- CTL: each temporal modality is in the immediate scope of a path quantifier.

Theorem ([CE81,QS82])

CTL model checking is PTIME-complete.

CTL symbolic model checking is PSPACE-complete.

- LTL: $E\varphi$ or $A\varphi$, where φ has no path quantifier.
CTL and LTL: temporal logics for closed systems

- CTL: each temporal modality is in the immediate scope of a path quantifier.

Theorem ([CE81,QS82])

CTL model checking is PTIME-complete.

CTL symbolic model checking is PSPACE-complete.

- LTL: $E\varphi$ or $A\varphi$, where φ has no path quantifier.

 $E(G F \bigcirc)$ there is a path visiting \bigcirc infinitely many times
CTL and LTL: temporal logics for closed systems

- **CTL**: each temporal modality is in the immediate scope of a path quantifier.

Theorem ([CE81,QS82])

CTL model checking is PTIME-complete.

CTL symbolic model checking is PSPACE-complete.

- **LTL**: $E\varphi$ or $A\varphi$, where φ has no path quantifier.

$$E(G F \bigcirc) \quad \text{there is a path visiting } \bigcirc \text{ infinitely many times}$$
CTL and LTL: temporal logics for closed systems

- CTL: each temporal modality is in the immediate scope of a path quantifier.

Theorem ([CE81,QS82])

CTL model checking is PTIME-complete.

CTL symbolic model checking is PSPACE-complete.

- LTL: $E \varphi$ or $A \varphi$, where φ has no path quantifier.

\[
A[(F \bullet) \Rightarrow (F G \neg \bullet)]
\]

any path that visits \(\bullet \) visits \(\circ \) finitely many times
CTL and LTL: temporal logics for closed systems

- **CTL:** each temporal modality is in the immediate scope of a path quantifier.

Theorem ([CE81,QS82])

CTL model checking is PTIME-complete.

CTL symbolic model checking is PSPACE-complete.

- **LTL:** \(E\varphi\) or \(A\varphi\), where \(\varphi\) has no path quantifier.

\[
A[(F \bigcirc) \Rightarrow (F G \neg \bigcirc)]
\]

any path that visits \(\bigcirc\) visits \(\bigcirc\) finitely many times
CTL and LTL: temporal logics for closed systems

- CTL: each temporal modality is in the immediate scope of a path quantifier.

Theorem ([CE81,QS82])

CTL model checking is PTIME-complete.

CTL symbolic model checking is PSPACE-complete.

- LTL: $E\phi$ or $A\phi$, where ϕ has no path quantifier.

Theorem ([SC85])

LTL (symbolic) model checking is PSPACE-complete.
Outline of the presentation

1. Introduction
 - formal verification
 model checking and synthesis

2. Classical temporal logics: CTL and LTL
 - expressing properties of “closed” systems

3. Temporal logics for games: ATL and extensions
 - expressing properties of interacting systems
 extensions to non-zero-sum games

4. Conclusions and future works
Reasoning about interacting systems

Concurrent games

A concurrent game is made of

- a transition system;
Reasoning about interacting systems

Concurrent games

A concurrent game is made of

- a transition system;
- a set of agents (or players);

![Diagram of a concurrent game with states q0, q1, q2 and transitions between them.]

player 1
player 2
Reasoning about interacting systems

Concurrent games

A concurrent game is made of

- a transition system;
- a set of agents (or players);
- a table indicating the transition to be taken given the actions of the players.

![Diagram](image)
Reasoning about interacting systems

Concurrent games
A concurrent game is made of
- a transition system;
- a set of agents (or players);
- a table indicating the transition to be taken given the actions of the players.

Turn-based games
A turn-based game is a game where only one agent plays at a time.
Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play depending on what has happened previously.
A strategy for a given player is a function telling what to play depending on what has happened previously.

Strategy for player □:
alternately go to ● and ●.
Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play depending on what has happened previously.

Strategy for player □:
alternately go to □ and □.
Reasoning about open systems

Strategies

A *strategy* for a given player is a function telling what to play depending on what has happened previously.

Strategy for player □:
alternately go to • and •.
Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play depending on what has happened previously.

Strategy for player □:
alternately go to 🟡 and 🟢.

[Diagram showing a strategy tree with nodes and arrows connecting them, indicating the possible actions and transitions.]
Reasoning about open systems

Strategies

A *strategy* for a given player is a function telling what to play depending on what has happened previously.

Strategy for player □:
alternately go to ● and ◼.
A strategy for a given player is a function telling what to play depending on what has happened previously.

Strategy for player \(\square \): alternately go to \(\bigcirc \) and \(\bigcirc \).
Strategies

A strategy for a given player is a function telling what to play depending on what has happened previously.

Strategy for player \(\square \): alternately go to \(\bigcirc \) and \(\bigcirc \).
Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play depending on what has happened previously.

Strategy for player □:
alternately go to ○ and ○.

![Diagram](image-url)
Reasoning about open systems

Strategies

A strategy for a given player is a function telling what to play depending on what has happened previously.

Strategy for player □:
alternately go to ○ and ○.
Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities X and U, and strategy quantifiers:

$\langle A \rangle \varphi$ expresses that A has a strategy to enforce φ.
Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities X and U, and strategy quantifiers:

$\langle A \rangle \varphi$ expresses that A has a strategy to enforce φ.

\[\vphantom{\text{ATL}} \]
Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities X and U, and strategy quantifiers:

$$\langle\langle A \rangle\rangle \varphi$$ expresses that A has a strategy to enforce φ.
Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities \textbf{X} and \textbf{U}, and strategy quantifiers:

$\langle\langle A \rangle\rangle \varphi$ expresses that A has a strategy to enforce φ.

![Diagram of ATL formulas with nodes and edges illustrating the logic's structure.]
Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities X and U, and strategy quantifiers:

$$\langle A \rangle \varphi$$ expresses that A has a strategy to enforce φ.
Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities \mathbf{X} and \mathbf{U}, and strategy quantifiers:

\[
\langle\langle A \rangle\rangle \varphi \text{ expresses that } A \text{ has a strategy to enforce } \varphi.
\]
Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities X and U, and strategy quantifiers:

$$\langle A \rangle \varphi \text{ expresses that } A \text{ has a strategy to enforce } \varphi.$$
Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities X and U, and strategy quantifiers:

$$\langle A \rangle \varphi$$ expresses that A has a strategy to enforce φ.

$$\langle \square \rangle F \equiv \langle \Diamond \rangle G(p)$$
Alternating-time Temporal Logic

ATL formulas are built inductively using atomic propositions, Boolean combinations, temporal modalities \mathbf{X} and \mathbf{U}, and strategy quantifiers:

$s A \rangle \varphi$ expresses that A has a strategy to enforce φ.

Theorem ([AHK02,HLW06])

ATL model checking is PTIME-complete.
ATL symbolic model checking is EXPTIME-complete.
Another semantics: ATL with strategy contexts [BDLM09]

Consider the following strategy of Player: “always go to”. In the remaining tree, Player can always enforce a visit to F.
Another semantics: ATL with strategy contexts [BDLM09]

Consider the following strategy of Player blue: “always go to yellow”;

$$\langle \square \rangle G(\langle \Box \rangle F \bigcirc)$$
Another semantics: ATL with strategy contexts [BDLM09]

\[\langle \Box \rangle G(\langle \Box \rangle F \circ) \]

• consider the following strategy of Player \(\circ \): “always go to \(\Box \)”;
Another semantics: ATL with strategy contexts [BDLM09]

\[
\langle \bigcirc \rangle \ \mathbf{G} \langle \bigboxdot \rangle \ \mathbf{F} \ \bigcirc
\]

consider the following strategy of Player \(\bigcirc \): “always go to \(\bigboxdot \);”

in the remaining tree, Player \(\bigboxdot \) can always enforce a visit to \(\bigcirc \).
ATL with strategy contexts

Definition

ATL_{sc} has two new strategy quantifiers: $\langle \cdot A \rangle \varphi$ and $\parallel A \parallel \varphi$.

- $\langle \cdot A \rangle$ is similar to $\langle A \rangle$ but assigns the corresponding strategy to A for evaluating φ;
- $\parallel A \parallel$ drops the assigned strategies for A.

Theorem

ATL_{sc} is strictly more expressive than ATL.
ATL with strategy contexts

Theorem

ATL_{sc} is strictly more expressive than ATL.
Theorem

ATL_{sc} is strictly more expressive than ATL.

Proof

\[
\langle A \rangle \varphi \equiv \langle \text{Agt} \rangle \langle A \rangle \hat{\varphi}
\]
ATL with strategy contexts

Theorem

ATL_{sc} is strictly more expressive than ATL.

Proof

$\langle 1\cdot \rangle (\langle 2\cdot \rangle Xa \land \langle 2\cdot \rangle Xb)$ is only true in the second game. But ATL cannot distinguish between these two games.
What ATL_{sc} can express

- All ATL^* properties:
What ATL_{sc} can express

- All ATL^* properties:
- Client-server interactions for accessing a shared resource:

$$
\langle \text{Server} \rangle \ G \left[\bigwedge_{c \in \text{Clients}} \langle \cdot \cdot \rangle F \ \text{access}_c \right.
\left. \wedge \neg \bigwedge_{c \neq c'} \text{access}_c \wedge \text{access}_{c'} \right]
$$
What ATL_{sc} can express

- All ATL^{*} properties:
- Client-server interactions for accessing a shared resource:
 \[
 \langle \cdot \text{Server} \cdot \rangle \text{ G } \left[\bigwedge_{c \in \text{Clients}} \langle \cdot c \cdot \rangle \text{ F access}_c \right] \land \left(\neg \bigwedge_{c \neq c'} \text{access}_c \land \text{access}_{c'} \right)
 \]

- Existence of Nash equilibria:
 \[
 \langle \cdot A_1, \ldots, A_n \cdot \rangle \bigwedge_i \left(\langle \cdot A_i \cdot \rangle \varphi_{A_i} \Rightarrow \varphi_{A_i} \right)
 \]
What ATL_{sc} can express

- All ATL^* properties:
- Client-server interactions for accessing a shared resource:
 \[
 \langle \text{Server} \rangle \ G \ \land \ \begin{cases}

 \bigwedge_{c \in \text{Clients}} \langle \cdot \rangle F \text{ access}_c \\

 \neg \bigwedge_{c \neq c'} \text{ access}_c \land \text{ access}_{c'}
 \end{cases}
 \]

- Existence of Nash equilibria:
 \[
 \langle \cdot A_1, \ldots, A_n \rangle \ \land \ (\langle \cdot A_i \rangle \ \varphi_{A_i} \ \Rightarrow \ \varphi_{A_i})
 \]

- Existence of dominating strategy:
 \[
 \langle \cdot A \rangle \ [B] (\neg \varphi \ \Rightarrow \ [A] \neg \varphi)
 \]
Theorem

Given a CGS \mathcal{C}, a state ℓ_0 and an ATL$_{sc}$ formula φ, we can build an alternating parity tree automaton A s.t.

$$\mathcal{L}(A) \neq \emptyset \iff \mathcal{C}, \ell_0 \models \emptyset \varphi.$$

A has size d-exponential, where d is the maximal number of nested quantifiers.

Proof (Theorem [DLM10]) Model checking ATL$_{sc}$ formulas with d strategy quantifiers is d-EXPTIME-complete.
Model checking \(\text{ATL}_{sc} \)

Theorem

Given a CGS \(C \), a state \(l_0 \) and an \(\text{ATL}_{sc} \) formula \(\varphi \), we can build an alternating parity tree automaton \(A \) s.t.

\[
\mathcal{L}(A) \neq \emptyset \iff C, l_0 \models \emptyset \varphi.
\]

\(A \) has size \(d \)-exponential, where \(d \) is the maximal number of nested quantifiers.

Proof

Theorem ([DLM10])

Model checking \(\text{ATL}_{sc} \) formulas with \(d \) strategy quantifiers is \(d \)-\text{EXPTIME}-complete.
Related formalisms

Strategy logic [CHP07,MMV10]

- first-order quantification over strategies;
- strategies are assigned to players;

Example

\[\langle A \rangle \ G(\langle B \rangle \ F \bigcirc) \] would be written

\[\exists \sigma_A. \ \forall \sigma_B. \ (A \ plays \ \sigma_A \ \land \ B \ plays \ \sigma_B) \ \Rightarrow \ G(\exists \sigma'_B. \ B \ plays \ \sigma'_B \ \Rightarrow \ F \bigcirc) \]

Other related formalisms

- Quantified Decision \(\mu \)-calculus [Pin07];
- Stochastic Game Logic [BBG+07];
- ATL with irrevocable strategies [ÅGJ08], ...
Conclusions

Temporal logics for games

- ATL and ATL\textsubscript{sc} are convenient formalisms for reasoning about interacting systems;
- ATL\textsubscript{sc} is much more expressive: equilibria, client-server interactions... Well-suited for multi-agent systems;
- There is a price for this expressiveness: high complexity of the model-checking algorithm.

http://www.cassting-project.eu
Conclusions

Temporal logics for games

- ATL and ATL$_{sc}$ are convenient formalisms for reasoning about interacting systems;
- ATL$_{sc}$ is much more expressive: equilibria, client-server interactions... Well-suited for multi-agent systems;
- There is a price for this expressiveness: high complexity of the model-checking algorithm.

Future works

- fragments of ATL$_{sc}$ with better complexity;
- more realistic setting: stochastic strategies, partial observation, bounded memory...
- effective synthesis of strategies.

http://www.cassting-project.eu
Model checking ATL_{sc} – Algorithm

Tree-automata approach

The unwinding tree is accepted by a deterministic tree automaton;
Model checking ATL_{sc} – Algorithm

Tree-automata approach

- The unwinding tree is accepted by a deterministic tree automaton;
A strategy is encoded as a labelling of the unwinding tree;
We can mark outcomes corresponding to selected strategies;
We mark the tree with extra propositions p_l and p_r, and require that it satisfies $\mathbf{A}(\mathbf{G} p_o \Rightarrow p_l \mathbf{U} p_r)$;
We require that subtrees rooted at a p_l or p_r node is accepted by the automaton for φ or φ', respectively;
We can build a tree automaton accepting all trees that *can be labelled* with correct strategies. This requires turning the alternating tree automaton into a non-deterministic one, which yields an *exponential-size* automaton.
Hardness

QLTL extends LTL with quantification over atomic propositions:

Example

\[\forall a. \exists b. \ G (b \iff X a) \]
Hardness

QLTL extends LTL with quantification over atomic propositions:

Example

$$\forall a. \exists b. \ G(b \leftrightarrow X a)$$

Theorem (SVW87)

Satisfiability of a QLTL formula is k-EXPSPACE-complete, where k is the alternation-depth of the formula.
Hardness

QLTL extends LTL with quantification over atomic propositions:

Example

$$\forall a. \exists b. \quad G(b \Leftrightarrow X a)$$
Hardness

QLTL extends LTL with quantification over atomic propositions:

Example

\[\forall a. \exists b. \ G(b \equiv X a) \]

Theorem (SVW87)

Satisfiability of a QLTL formula is \(k\)-EXPSPACE-complete, where \(k\) is the alternation-depth of the formula.
Theorem

ATL model checking is \(k \)-EXPSPACE-hard for formulas with alternation depth \(k \).
Hardness

Example

\[[A] \langle B \rangle \quad \text{G} \quad \Rightarrow \quad \text{G}(\langle Z \rangle \quad X \quad X \quad b) \quad \iff \quad X \quad (\langle Z \rangle \quad X \quad X \quad a) \]

Theorem

\(ATL_{sc} \) model checking is \(k\)-\(EXPSPACE \)-hard for formulas with alternation depth \(k \).