Quantified-CTL model checking

Arnaud Da Costa1, François Laroussinie2, Nicolas Markey1

1 LSV, CNRS & ENS Cachan, France
2 LIAFA, CNRS & Univ. Paris7-Diderot, France

September 10, 2011
Model checking

system:

⇒

property:

model-checking algorithm

G(request⇒F grant)

yes/no
Computation-Tree Logic (CTL)

Definition

\[
\text{CTL } \exists \varphi ::= \bigcirc | \varphi \lor \varphi | \neg \varphi | \text{EX}\varphi | \text{EG}\varphi | \text{E}\varphi \text{ U } \varphi
\]
Computation-Tree Logic (CTL)

Definition

\[
\text{CTL } \exists \varphi ::= \bigcirc | \varphi \lor \varphi | \neg \varphi | \mathbf{E} \mathbf{X} \varphi | \mathbf{E} \mathbf{G} \varphi | \mathbf{E} \varphi \mathbf{U} \varphi
\]

\[
\checkmark \quad \mathbf{E}(\text{true } \mathbf{U} \bigcirc) \equiv \mathbf{E} \mathbf{F} \bigcirc
\]
Computation-Tree Logic (CTL)

Definition

\[
\text{CTL } \exists \varphi ::= \square \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid E\ X \varphi \mid E\ G \varphi \mid E\ \varphi \ U \varphi
\]

\[
\checkmark \ E(\text{true} \ U \bigcirc) \equiv E\ F \bigcirc
\]

\[
\checkmark \ E\ G \neg \bigcirc \equiv \neg (A\ F \neg \bigcirc)
\]
Computation-Tree Logic (CTL)

Definition

\[
\text{CTL } \exists \phi ::= \begin{array}{c}
\bigcirc \\
\phi \lor \phi \\
\neg \phi \\
E X \phi \\
E G \phi \\
E \phi U \phi
\end{array}
\]

\[
\begin{aligned}
\checkmark & \quad E(\text{true} U \bigcirc) \equiv EF \bigcirc \\
\checkmark & \quad E G \neg \bigcirc \equiv \neg (A F \neg \bigcirc) \\
\times & \quad E(\neg \bigcirc U \bigcirc)
\end{aligned}
\]

Theorem

CTL model checking is \(\text{PTIME}\)-complete.
Computation-Tree Logic (CTL)

Definition

\[\text{CTL } \exists \varphi ::= \bigcirc | \varphi \lor \varphi | \neg \varphi | \text{EX} \varphi | \text{EG} \varphi | \text{E} \varphi \text{ U } \varphi \]

- **Theorem**: CTL model checking is \(\text{PTIME} \)-complete.

\[\checkmark \ \text{E(true U } \bigcirc \text{) } \equiv \text{EF } \bigcirc \]

\[\checkmark \ \text{EG } \neg \bigcirc \equiv \neg (\text{AF } \neg \bigcirc) \]

\[\times \ \text{E(} \neg \bigcirc \text{ U } \bigcirc) \]

\[\checkmark \ \text{EG(} \neg \bigcirc \land \text{EF } \bigcirc \) \]
Computation-Tree Logic (CTL)

Definition

\[
\text{CTL} \ni \varphi ::= \bigcirc | \varphi \lor \varphi | \neg \varphi | \text{EX} \varphi | \text{EG} \varphi | \text{E} \varphi \text{ U } \varphi
\]

\[
\checkmark \text{E(true U } \bigcirc) \equiv \text{EF} \bigcirc \\
\checkmark \text{EG} \neg \bigcirc \equiv \neg (\text{AF} \neg \bigcirc)
\times \text{E} (\neg \bigcirc \text{ U } \bigcirc)
\checkmark \text{EG} (\neg \bigcirc \land \text{EF} \bigcirc)
\]

Theorem

CTL model checking is PTIME-complete.
Quantified-CTL

Definition

\[
QCTL \exists \varphi ::= \bigcirc | \varphi \lor \varphi | \neg \varphi | E X \varphi | E G \varphi | E \varphi U \varphi | \exists \bigcirc. \varphi
\]
Quantified-CTL

Definition

\[
\text{QCTL } \exists \varphi ::= \triangleleft \mid \varphi \lor \varphi \mid \neg \varphi \mid \text{EX} \varphi \mid \text{EG} \varphi \mid \text{EU} \varphi \mid \exists \triangleleft. \varphi
\]
Quantified-CTL

Definition

\[QCTL \exists \varphi ::= \bigcirc | \varphi \lor \varphi | \neg \varphi | EX \varphi | EG \varphi | E\varphi U \varphi | \exists \bigcirc. \varphi \]

\[\checkmark \exists \bigcirc. EG \bigcirc \]

\[\checkmark \exists \bigcirc. EG \bigcirc \]

\[\checkmark \exists \bigcirc. EG \bigcirc \]
Quantified-CTL

Definition

\[\text{QCTL } \exists \varphi ::= \bigcirc | \varphi \lor \varphi | \neg \varphi | \text{EX} \varphi | \text{EG} \varphi | \text{EU} \varphi | \exists \bigcirc. \varphi \]

\[\checkmark \exists \bigcirc. \text{EG} \bigcirc \]

\[\text{EF}(\forall \bigcirc. (\bigcirc \Rightarrow \text{EX} \bigcirc)) \]
Quantified-CTL

Definition

\[
\text{QCTL } \exists \varphi ::= \bigcirc | \varphi \lor \varphi | \neg \varphi | \mathbf{E} X \varphi | \mathbf{E} G \varphi | \mathbf{E} \varphi \mathbf{U} \varphi | \exists \bigcirc. \varphi
\]

✓ \exists \bigcirc. \mathbf{E} G \bigcirc

✓ \mathbf{E} F(\forall \bigcirc. (\bigcirc \Rightarrow \mathbf{E} X \bigcirc))
Quantified-CTL

Definition

$$\text{QCTL } \exists \varphi ::= \bigcirc \mid \varphi \lor \varphi \mid \neg \varphi \mid \text{E X } \varphi \mid \text{E G } \varphi \mid \text{E } \varphi \cup \varphi \mid \exists \bigcirc \cdot \varphi$$

- $\exists \bigcirc \cdot \text{E G } \bigcirc$
- $\text{E F}(\forall \bigcirc \cdot (\bigcirc \Rightarrow \text{E X } \bigcirc))$
- $\text{E F}(\forall \bigcirc \cdot \text{E X } \bigcirc \Rightarrow \text{A X } \bigcirc)$
Quantified-CTL

Definition

\[\text{QCTL } \exists \varphi ::= \bigcirc | \varphi \lor \varphi | \neg \varphi | \text{EX} \varphi | \text{EG} \varphi | \text{EU} \varphi | \exists \bigcirc \varphi \]

\[
\begin{align*}
&\exists \bigcirc. \text{EG} \\
&\text{EF}(\forall \bigcirc. (\bigcirc \Rightarrow \text{EX} \bigcirc)) \\
&\text{EF}(\forall \bigcirc. \text{EX} \bigcirc \Rightarrow \text{AX} \bigcirc) \\
&\exists \bigcirc. (\bigcirc \land \text{AXAG} \neg \bigcirc)
\end{align*}
\]
Quantified-CTL

Definition

\[
\text{QCTL } \exists \varphi ::= \bigcirc \mid \varphi \lor \varphi \mid \neg \varphi \mid \text{E X } \varphi \mid \text{E G } \varphi \mid \text{E } \varphi \mid \text{U } \varphi \mid \exists \cdot \varphi
\]

\[
\checkmark \exists \cdot \text{E G } \cdot
\]

\[
\checkmark \text{EF}(\forall \cdot. \cdot \Rightarrow \text{E X } \cdot)
\]

\[
\checkmark \text{EF}(\forall \cdot. \text{E X } \cdot \Rightarrow \text{A X } \cdot)
\]

\[
\exists \cdot. (\cdot \land \text{A X A G } \neg \cdot)
\]

\[\times\] in the *structure* semantics

\[\checkmark\] in the *tree* semantics
-equivalent structures

Definition

Given a Kripke structure \(S = \langle W, R, \ell \rangle \) with \(\ell : W \rightarrow 2^{\text{AP}} \) and an atomic proposition \(\circ \), we define \(S_{\circ} \) as the Kripke structure \(\langle W, R, \ell' \rangle \) with \(\ell'(w) = \ell(w) \setminus \{\circ\} \).

Definition

Two Kripke structures \(S = \langle W, R, \ell \rangle \) and \(S' = \langle W', R', \ell' \rangle \) are \(\circ \)-equivalent if \(S_{\circ} = S'_{\circ} \).
equivalent structures

Definition
Given a Kripke structure $S = \langle W, R, \ell \rangle$ with $\ell : W \to 2^{\text{AP}}$ and an atomic proposition \circ, we define S_\circ as the Kripke structure $\langle W, R, \ell' \rangle$ with $\ell'(w) = \ell(w) \setminus \{ \circ \}$.

Definition
Two Kripke structures $S = \langle W, R, \ell \rangle$ and $S' = \langle W', R', \ell' \rangle$ are \circ-equivalent if $S_\circ = S'_\circ$.

Example
Semantics of QCTL

Definition (structure semantics)

The structure semantics of QCTL extends that of CTL with

\[S, q \models_s \exists \lozenge \varphi \iff S', q \models_s \varphi \]

for some \(S' \equiv S \).

Definition (tree semantics)

The tree semantics of QCTL is obtained from the structure semantics by

\[S, q \models_t \varphi \iff \text{tree}(S, q), \epsilon \models_s \varphi. \]
Semantics of QCTL

Definition (structure semantics)
The structure semantics of QCTL extends that of CTL with

\[S, q \models_s \exists \diamond. \varphi \iff S', q \models_s \varphi \]

for some \(S' \equiv_o S \).

Definition (tree semantics)
The tree semantics of QCTL is obtained from the structure semantics by

\[S, q \models_t \varphi \iff \text{tree}(S, q), \epsilon \models_s \varphi. \]
Related work

Linear-time

- studied by Sistla, Vardi, Wolper (1987);
- model-checking is k-EXPSPACE-c. with quantifier alternation k;
Related work

Linear-time
- studied by Sistla, Vardi, Wolper (1987);
- model-checking is k-EXPSPACE-c. with quantifier alternation k;

Branching-time
 - model-checking is NP-c. (resp. EXPTIME-c.) with quantifier depth 1 for structure (resp. tree) semantics;
- Kupferman, Madhusudan, Thiagarajan, Vardi (2000):
 - model-checking is 2-EXPTIME-complete with quantifier depth 2 (tree semantics);
- French (2003):
 - expressiveness: QCTL and QCTL* are equally expressive for the tree semantics.
Alternating-time Temporal Logic (ATL)

Definition

ATL extends CTL with *strategy quantifiers*:

\[
\text{ATL } \exists \varphi ::= \bigcirc \varphi \lor \varphi \mid \neg \varphi \mid \langle A \rangle X \varphi \mid \\
\langle A \rangle \varphi U \varphi \mid \langle A \rangle \neg (\varphi U \varphi)
\]
Alternating-time Temporal Logic (ATL)

Definition

ATL extends CTL with *strategy quantifiers*:

\[
\begin{align*}
\text{ATL } & \exists \varphi ::= \bigcirc \mathbin{|} \varphi \lor \varphi \mathbin{|} \neg \varphi \mathbin{|} \langle A \rangle X \varphi \mathbin{|} \\
& \quad \langle A \rangle \varphi U \varphi \mathbin{|} \langle A \rangle \neg(\varphi U \varphi) \\
& \quad \langle \bigcirc \rangle F \mathbin{|} \langle \bigcirc \rangle G (\langle \bigcirc \rangle F)
\end{align*}
\]
Alternating-time Temporal Logic (ATL)

Definition
ATL extends CTL with *strategy quantifiers*:

\[
\text{ATL } \exists \varphi ::= \bigcirc \varphi \lor \varphi \lor \neg \varphi \lor \langle A \rangle X \varphi \lor \langle A \rangle \varphi U \varphi \lor \langle A \rangle \neg (\varphi U \varphi)
\]
Alternating-time Temporal Logic (ATL)

Definition

ATL extends CTL with *strategy quantifiers*:

\[
\text{ATL } \exists \varphi ::= \bigcirc \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle A \rangle X \varphi \mid \langle A \rangle \varphi U \varphi \mid \langle A \rangle \neg(\varphi U \varphi)
\]
 Alternating-time Temporal Logic (ATL)

Definition

ATL extends CTL with strategy quantifiers:

\[
\text{ATL} \ni \varphi ::= \bigcirc \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle A \rangle X \varphi \mid \\
\langle A \rangle \varphi \lor \varphi \mid \langle A \rangle \neg (\varphi \lor \varphi)
\]

\[
\checkmark \langle \bigcirc \rangle F \circ \\
\times \langle \blacksquare \rangle F \circ \\
\times \langle \bigcirc \rangle G(\langle \blacksquare \rangle F \circ)
\]
Alternating-time Temporal Logic (ATL)

Definition

ATL extends CTL with strategy quantifiers:

\[\text{ATL} \ni \varphi ::= \circ \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle\langle A \rangle\rangle X \varphi \mid \langle\langle A \rangle\rangle \varphi U \varphi \mid \langle\langle A \rangle\rangle \neg (\varphi U \varphi) \]

Theorem

ATL model checking is PTIME-complete.
ATL with strategy contexts

ATL_{sc} has the same syntax as ATL, but different semantics:

\[\langle \circ \rangle G (\langle \Box \rangle F \circ) \]
ATL with strategy contexts

ATL_{sc} has the same syntax as ATL, but different semantics:

\[
\langle \circ \rangle G (\langle \Box \rangle F \circ)
\]

Evaluate the formula on the execution tree:
ATL with strategy contexts

ATL_{sc} has the same syntax as ATL, but different semantics:

\[\langle \bigcirc \rangle \mathbf{G} (\langle \Box \rangle \mathbf{F} \bigcirc) \]

Evaluate the formula on the execution tree:

- apply a strategy of Player \(\bigcirc \);
ATL with strategy contexts

ATL_{sc} has the same syntax as ATL, but different semantics:

Evaluate the formula on the execution tree:

- apply a strategy of Player \bigcirc;
- in the remaining tree, check that Player \square can always enforce a visit to \bigcirc.

$\langle\bigcirc\rangle G(\langle\square\rangle \mathbf{F} \bigcirc)$
ATL with strategy contexts

\(\text{ATL}_{sc} \) has the same syntax as ATL, but different semantics:

\[\langle \bigcirc \rangle \ G (\langle \Box \rangle \ F \ C) \]

Evaluate the formula on the execution tree:

- apply a strategy of Player \(\bigcirc \);
- in the remaining tree, check that Player \(\Box \) can always enforce a visit to \(C \).
From ATL$_{sc}$ to QCTL

ATL$_{sc}$ and QCTL are very tightly connected:

strategy = labelling of configurations with the action to be played.

$\langle\langle A \rangle\rangle \varphi$
From ATL\textsubscript{sc} to QCTL

ATL\textsubscript{sc} and QCTL are very tightly connected:

strategy = labelling of configurations with the action to be played.

\[\langle\langle A \rangle\rangle \varphi \]
From ATL\textsubscript{sc} to QCTL

ATL\textsubscript{sc} and QCTL are very tightly connected:

strategy = labelling of configurations with the action to be played.

\[\sigma : A \mapsto m_1 \]

\[A \mapsto m_3 \]

\[A \mapsto m_2 \]

\[\langle \langle A \rangle \varphi \]

\[\neg m_1 \neg m_2 \neg m_3 \]

\[\exists m_A i. A \mathbin{G} (\text{one} (m_A 1, \ldots, m_A k)) \land A \mathbin{G} (\text{outcome} \Rightarrow \hat{\varphi}) \]

Tree semantics corresponds to ATL\textsubscript{sc}; structure semantics represents memoryless-strategy quantification.
From ATL\textsubscript{sc} to QCTL

ATL\textsubscript{sc} and QCTL are very tightly connected:

strategy = labelling of configurations with the action to be played.

\[
\sigma: A \mapsto m_1
\]

\[
A \mapsto m_3
\]

\[
A \mapsto m_2
\]

\[
\langle\langle A \rangle\rangle \varphi
\]
From ATL\textsubscript{sc} to QCTL

ATL\textsubscript{sc} and QCTL are very tightly connected: strategy = labelling of configurations with the action to be played.

\[\sigma : A \mapsto m_1 \]

\[A \mapsto m_3 \]

\[A \mapsto m_2 \]

\[\langle \langle A \rangle \rangle \varphi \]

\[m_1^A \]

\[\neg m_2^A \]

\[\neg m_3^A \]

\[\neg m_1^A \]

\[\neg m_2^A \]

\[m_3^A \]

\[\neg m_1^A \]

\[\neg m_2^A \]

\[\neg m_3^A \]

\[\ldots \]

\[\ldots \]

\[\ldots \]
From ATL_{sc} to QCTL

ATL_{sc} and QCTL are very tightly connected:

strategy $=$ **labelling** of configurations with the action to be played.

$$\sigma : A \mapsto m_1$$

$$A \mapsto m_3$$

$$A \mapsto m_2$$

$$\varphi$$

$$\varphi$$

$$\langle \langle A \rangle \rangle \varphi$$

$$\exists m_i^A \cdot A \mathbf{G}(\text{one}(m_1^A, \ldots, m_k^A)) \land A(\text{outcome} \Rightarrow \hat{\varphi})$$
From ATL\textsubscript{sc} to QCTL

ATL\textsubscript{sc} and QCTL are very tightly connected:

\textbf{strategy} = \textit{labelling} of configurations with the action to be played.

- \sigma: A \mapsto m_1
- A \mapsto m_3
- A \mapsto m_2

\[\varphi \quad \varphi \]

\[\neg m_1^A \quad \neg m_2^A \quad m_3^A \]

\[\neg m_1^A \quad \neg m_2^A \quad \neg m_3^A \]

\[\exists m_i^A. ~ A G (\text{one}(m_1^A, \ldots, m_k^A)) \land A (\text{outcome} \Rightarrow \hat{\varphi}) \]

- tree semantics corresponds to ATL\textsubscript{sc};
- structure semantics represents memoryless-strategy quantification.
Outline of the talk

1 Introduction
 • Semantics of QCTL
 • Motivations

2 Expressiveness results

3 Model-checking complexity

4 Conclusions
Outline of the talk

1. Introduction
 - Semantics of QCTL
 - Motivations

2. Expressiveness results

3. Model-checking complexity

4. Conclusions
Theorem

QCTL and QCTL are equally expressive.

Proof

QCTL can express μ-calculus, hence CTL*, hence QCTL*.

\[q \models \mu T.\varphi(T) \iff q \models \exists T. \left[T \land \mathsf{AG}(T \leftrightarrow \varphi(T)) \land \mathsf{AG}(T \Rightarrow U) \Rightarrow \mathsf{AG}(T \Rightarrow U) \right] \]
Expressiveness of QCTL and QCTL*

Theorem

QCTL and QCTL* are equally expressive.

Proof

QCTL can express μ-calculus, hence CTL*, hence QCTL*.

\[
q \models \mu T.\varphi(T) \iff q \models \exists T. \left[T \land AG(T \leftrightarrow \varphi(T)) \land \\
\forall U. (AG(U \leftrightarrow \varphi(U)) \Rightarrow AG(T \Rightarrow U)) \right]
\]
Expressiveness of QCTL

Theorem

QCTL and QCTL* are as expressive as MSO.

Remark

The following formula expresses Hamiltonicity (under structure semantics):

\[\mathbf{E} \mathbf{G} (\exists z. \forall z'. [\text{state}(z) \land \text{state}(z') \land z \land \neg z'] \Rightarrow \mathbf{X}(\neg z \mathbf{U} z')) \]

Using similar ideas, it can express Eulerianity, which cannot be expressed in MSO.

But these are not QCTL* formulas: in QCTL*, propositional quantifiers must be followed by path quantifiers.
Expressiveness of QCTL

Theorem

QCTL and QCTL* are as expressive as MSO.

Remark

The following formula expresses Hamiltonicity (under structure semantics):

$$\mathbf{E}\,\mathbf{G}(\exists z. \forall z'. [\text{state}(z) \land \text{state}(z') \land z \land \neg z'] \Rightarrow \mathbf{X}(\neg z \mathbf{U} z'))$$

Using similar ideas, it can express Eulerianity, which cannot be expressed in MSO.

But these are not QCTL* formulas: in QCTL*, propositional quantifiers must be followed by path quantifiers.
Expressiveness of QCTL

Theorem

Any QCTL formula can be turned in prenex normal form.
Expressiveness of QCTL

Theorem

Any QCTL formula can be turned in prenex normal form.

Example

\[\text{E} \; \text{X} (\forall x. \varphi) \equiv \exists z. \forall x. \text{E} \; \text{X} (z \land \varphi) \]
Expressiveness of QCTL

Theorem

Any QCTL formula can be turned in prenex normal form.

Example

\[\mathbf{E} X (\forall x . \varphi) \equiv \exists z . \forall x . \mathbf{E} X (z \land \varphi) \]

Proof

Transform path quantification into propositional quantification.

- DAG-size linear in the DAG-size of the original formula.
- quantifier alternation linear in the quantifier depth of the original formula.
Outline of the talk

1. Introduction
 - Semantics of QCTL
 - Motivations

2. Expressiveness results

3. Model-checking complexity

4. Conclusions
Model checking under the structure semantics

Theorem

QCTL and QCTL model checking is PSPACE-complete.*

Proof

- PSPACE-hardness from QBF;
- in PSPACE by enumerating the possible labellings.
Model checking under the structure semantics

Theorem

QCTL and QCTL* model checking is PSPACE-complete.

Proof

- PSPACE-hardness from QBF;
- in PSPACE by enumerating the possible labellings.

Theorem

- $EQ^k CTL$ model checking is Σ_{k+1}^P-complete.

 $EQ^k CTL$ is the fragment in prenex normal form, with at most k quantifier alternations, starting with existential quantification.

- $Q^k CTL$ model checking is Δ_{k+1}^P-complete.

 $Q^k CTL$ is the fragment with at most k quantifiers.
Theorem

- $EQ^k \text{CTL}$ and $Q^k \text{CTL}$ model checking are k-EXPTIME-complete.
- $EQ^k \text{CTL}^*$ and $Q^k \text{CTL}^*$ model checking are $(k+1)$-EXPTIME-complete.

Proof

Algorithm for $EQ^k \text{CTL}$:
- build (exponential-size) tree automaton for CTL formula;
- use projection for existential quantification (universal quantification by complementing, with exponential blowup).
- build product with the Kripke structure, and check emptiness.

Hardness: encoding of $k - 1$-exponential-space alternating Turing machine (Sistla, Vardi, Wolper (1987)).
Conclusions and future work

Conclusions

- QCTL is a nice and natural extension of CTL:
 - same expressiveness as MSO;
 - high complexity.
- understanding QCTL helps us understanding ATL_{sc} (and Strategy Logic).

Future works

- other semantics for modelling finite-memory strategies?
- can QCTL help us find the right bisimulation notion that corresponds to ATL_{sc}?
Conclusions and future work

Conclusions
- QCTL is a nice and natural extension of CTL:
 - same expressiveness as MSO;
 - high complexity.
- understanding QCTL helps us understanding ATL_{sc} (and Strategy Logic).

Future works
- other semantics for modelling finite-memory strategies?
- can QCTL help us find the right bisimulation notion that corresponds to ATL_{sc}?