Robust Model-Checking via Channel Automata

Nicolas Markey
Lab. Specification et Verification
ENS Cachan & CNRS, France

Joint work with
Patricia Bouyer and Pierre-Alain Reynier

(also starring Martin De Wulf, Laurent Doyen, Jean-François Raskin, Joël Ouaknine, James Worrell)

EPFL (Lausanne) – February 7, 2008
Controller Synthesis and Implementation

system:

⇒

property:

\[G(\text{request} \Rightarrow F \text{grant}) \]

controller synthesis

yes/no
Controller Synthesis and Implementation

system:

property:

\[G(\text{request} \Rightarrow F \text{grant}) \]

controller synthesis

yes/no
Timed Automata [AD90]

A finite control structure + a set X of variables (clocks) → A configuration is a pair $(\ell, v) \in \text{Loc} \times \mathbb{R}_0^X$

A transition is of the form: $\ell \xrightarrow{g,a,r} \ell'$

An enabling condition (or guard) is $g ::= x \sim c | g \land g$

Two kinds of steps:

Delay: for $d \in \mathbb{R}_{\geq 0}$, we have $(\ell, v) \xrightarrow{d} (\ell, v + d)$

Discrete: if $\ell \xrightarrow{g,a,r} \ell'$ and $v \models g$, then $(\ell, v) \xrightarrow{a} (\ell', v[r \leftarrow 0])$
The semantics of timed automata is a mathematical idealization:

- Infinitely punctual: Exact synchronization is required when composing several TAs;
- Infinitely precise: Different clocks are assumed to increase at the same rate in both the controller and the system;
- Infinitely fast: It may happen, for instance, that the delays elapsed in a location will be shorter and shorter (and have bounded sum).

In practice, a processor is digital and imprecise. Even if we prove that a TA will not enter a set of bad states, its implementations could still generate bad behaviors.
Implementability of Timed Controllers

- The semantics of timed automata is a mathematical idealization:

 Infinitely punctual: Exact synchronization is required when composing several TAs;
 Infinitely precise: Different clocks are assumed to increase at the same rate in both the controller and the system.
 Infinitely fast: It may happen, for instance, that the delays elapsed in a location will be shorter and shorter (and have bounded sum).
The semantics of timed automata is a mathematical idealization:

- Infinitely punctual: Exact synchronization is required when composing several TAs;
- Infinitely precise: Different clocks are assumed to increase at the same rate in both the controller and the system;
- Infinitely fast: It may happen, for instance, that the delays elapsed in a location will be shorter and shorter (and have bounded sum).

In practice, a processor is digital and imprecise. Even if we prove that a TA will not enter a set of bad states, its implementations could still generate bad behaviors.
Implementability of Timed Controllers

Examples

- Zeno behaviors:

\[
\ell_0 \quad \text{y} \leq 1 \quad \ell_1
\]

\[x := 0\]
Examples

- Zeno behaviors:
- “Fragile” controllers [CHR02]:

\[
\begin{align*}
\ell_0 & : x = 0, \\
\ell_1 & : y = 0, \\
\ell_2 & : z = 0
\end{align*}
\]

Graph:

- \(\ell_3 \) → \(\ell_0 \): \(x > 1 \)
- \(\ell_0 \) → \(\ell_1 \): \(x = 1 \)
- \(\ell_1 \) → \(\ell_2 \): \(y = 1 \)
- \(\ell_2 \) → \(\ell_3 \): \(z > 0 \)
Implementability of Timed Controllers

Examples

- Zeno behaviors:

- “Fragile” controllers [CHR02]:

- Strict guards: Fischer’s protocol [KLL+97]
“trajectory tubes”: this approach “discards” behaviours that have too “strict” constraints [GHJ97].
Related works

- “trajectory tubes”: this approach “discards” behaviours that have too “strict” constraints [GHJ97].

- “probabilistic semantics”: removes unlikely trajectories [BBB+07].
Related works

- "trajectory tubes": this approach "discards" behaviours that have too "strict" constraints [GHJ97].

- "probabilistic semantics": removes unlikely trajectories [BBB+07].

- "platform modeling": more expressive, not much developed [AT05].
Outline of the talk

1. Introduction

2. A semantical approach to implementability
 - From implementability to robustness
 - Robust model checking for safety properties
 - Robust model checking for LTL properties

3. Timed Robust Model-Checking
 - Alternating timed automata and channel machines
 - A new approach to robust model-checking
 - Robust Model-Checking for CoFlatMTL

4. Conclusion
Outline of the talk

1. Introduction

2. A semantical approach to implementability
 • From implementability to robustness
 • Robust model checking for safety properties
 • Robust model checking for LTL properties

3. Timed Robust Model-Checking
 • Alternating timed automata and channel machines
 • A new approach to robust model-checking
 • Robust Model-Checking for CoFlatMTL

4. Conclusion
We consider a simple model of a platform, that repeatedly executes the following actions:

- read the value of the global clock;
- compute guards;
- fire one of the enabled transitions.

We assume that

- one loop takes at most Δ_P t.u. to execute;
- the global clock is updated every Δ_L t.u.

We write $\llbracket A \rrbracket_{\Delta_P, \Delta_L}^{\text{Impl}}$ for the set of executions of a timed automaton A under this semantics.
The enlarged semantics for timed automata is defined by enlarging guards on transitions by a small tolerance Δ:

$$\text{If } \llbracket g \rrbracket = [a; b], \text{ then } \llbracket g \rrbracket^\text{AASAP}_\Delta = [a - \Delta, b + \Delta].$$

We write $\llbracket A \rrbracket^\text{AASAP}_\Delta$ for the set of executions of a timed automaton A under this semantics.
Definition

Let \mathcal{A} be a timed automaton and φ be a path property.

\mathcal{A} is implementable w.r.t. φ if, for some $\Delta_P > 0$ and $\Delta_L > 0$,

$$[\mathcal{A}]^{\text{impl}}_{\Delta_P, \Delta_L} \subseteq \mathcal{L}(\varphi).$$

\mathcal{A} robustly satisfies φ, written $\mathcal{A} \models \varphi$, if for some $\Delta > 0$,

$$[\mathcal{A}]^{\text{AASAP}}_{\Delta} \subseteq \mathcal{L}(\varphi).$$
From implementability to robustness [DDR04]

Definition

Let \mathcal{A} be a timed automaton and φ be a path property.

\mathcal{A} is implementable w.r.t. φ if, for some $\Delta_P > 0$ and $\Delta_L > 0$,

$$\llbracket \mathcal{A} \rrbracket^{\text{impl}}_{\Delta_P, \Delta_L} \subseteq \mathcal{L}(\varphi).$$

\mathcal{A} robustly satisfies φ, written $\mathcal{A} \models \varphi$, if for some $\Delta > 0$,

$$\llbracket \mathcal{A} \rrbracket^{\text{AASAP}}_{\Delta} \subseteq \mathcal{L}(\varphi).$$

Theorem

If $\Delta > 3\Delta_L + 4\Delta_P$, then $\llbracket \mathcal{A} \rrbracket^{\text{impl}}_{\Delta_P, \Delta_L} \subseteq \llbracket \mathcal{A} \rrbracket^{\text{AASAP}}_{\Delta}$.
From implementability to robustness [DDR04]

Definition
Let \mathcal{A} be a timed automaton and φ be a path property. \mathcal{A} is implementable w.r.t. φ if, for some $\Delta_P > 0$ and $\Delta_L > 0$,

$$\llbracket \mathcal{A} \rrbracket_{\Delta_P, \Delta_L}^{\text{impl}} \subseteq \mathcal{L}(\varphi).$$

\mathcal{A} robustly satisfies φ, written $\mathcal{A} \models \varphi$, if for some $\Delta > 0$,

$$\llbracket \mathcal{A} \rrbracket_{\Delta}^{\text{AASAP}} \subseteq \mathcal{L}(\varphi).$$

Theorem
If $\Delta > 3\Delta_L + 4\Delta_P$, then $\llbracket \mathcal{A} \rrbracket_{\Delta_P, \Delta_L}^{\text{impl}} \subseteq \llbracket \mathcal{A} \rrbracket_{\Delta}^{\text{AASAP}}$.

In other terms, implementability can be checked via robustness.
Some (harmless) assumptions...

In the sequel, we assume that:

- all guards and invariants only involve non-strict inequalities.

This is not a restriction since

\[[a - \Delta/2; b + \Delta/2] \subseteq (a - \Delta, b + \Delta). \]

\[\leadsto \text{we consider only closed regions.} \]
Some (harmless) assumptions...

In the sequel, we assume that:

- all guards and invariants only involve non-strict inequalities.

This is not a restriction since

$$[a - \Delta/2; b + \Delta/2] \subseteq (a - \Delta, b + \Delta).$$

$$\leadsto$$ we consider only closed regions.

- the clocks are bounded by some constant M.

This is not a restriction: if $x > M$, enter a second copy of the state where the value of x is irrelevant.
Some (harmless) assumptions...

In the sequel, we assume that:

- all guards and invariants only involve non-strict inequalities.

This is not a restriction since

\[[a - \Delta/2; b + \Delta/2] \subseteq (a - \Delta, b + \Delta). \]

\[\implies \text{we consider only closed regions.} \]

- the clocks are bounded by some constant \(M \).

This is not a restriction: if \(x > M \), enter a second copy of the state where the value of \(x \) is irrelevant.

- along any cycle of the region graph, all the clocks are reset.

This is a real restriction, but it is weaker than the “strongly non-Zeno” restriction.
Robust safety [DDMR04]

Reach_Δ(𝐀) is the set of reachable states in [𝐀]_Δ.

Δ₁ ≤ Δ₂ ⇒ Reach_Δ₁(𝐀) ⊆ Reach_Δ₂(𝐀)
Reach\(_{\Delta}(A)\) is the set of reachable states in \([A]_\Delta\).

\(\Delta_1 \leq \Delta_2 \Rightarrow \text{Reach}_{\Delta_1}(A) \subseteq \text{Reach}_{\Delta_2}(A)\)

Reach\(_{>0}(A) = \bigcap_{\Delta>0} \text{Reach}_{\Delta}(A)\) is the set of reachable states under the AASAP semantics for any \(\Delta > 0\).
Robust safety \cite{DDMR04}

\[\text{Reach}_\Delta(\mathcal{A}) \text{ is the set of reachable states in } [[\mathcal{A}]]_\Delta. \]

\[\Delta_1 \leq \Delta_2 \implies \text{Reach}_{\Delta_1}(\mathcal{A}) \subseteq \text{Reach}_{\Delta_2}(\mathcal{A}) \]

\[\text{Reach}_{>0}(\mathcal{A}) = \bigcap_{\Delta > 0} \text{Reach}_\Delta(\mathcal{A}) \text{ is the set of reachable states under the AASAP semantics for any } \Delta > 0. \]

Lemma

For any timed automata \(\mathcal{A} \) and for any set of zones \(B \),

\[\text{Reach}_{>0}(\mathcal{A}) \cap B = \emptyset \quad \text{iff} \quad \exists \Delta > 0. \text{Reach}_\Delta(\mathcal{A}) \cap B = \emptyset. \]
Example

\[x = 1 \quad y = 0 \]

\[x \leq 2 \]

\[x = 0 \quad y = 0 \]

\[y \geq 2 \]

\[x = 0 \quad y = 2 \]

\[\text{Bad} \]
Example

\[\begin{align*}
 x & = 1 \\
 y & = 0 \\
 x & \leq 2 \\
 y & \geq 2 \\
 x & = 0 \\
 y & = 2
\end{align*} \]

Graph with points and edges:
- A point at \((1, 0)\) labeled as \(a\) with \(x = 1\) and \(y = 0\).
- An edge from \(a\) to \(b\) with \(x = 0\) and \(y = 0\).
- An edge from \(b\) to \(c\) with \(x = 0\) and \(y = 2\).
- An edge from \(c\) to Bad with \(x = 0\) and \(y = 2\).
Example

\[x = 1 \]
\[y = 0 \]

\[x \leq 2 \]
\[y \geq 2 \]

\[x = 0 \]
\[y = 2 \]
Example

\[x = 1 \]
\[y = 0 \]
\[x \leq 2 \]
\[y \geq 2 \]

Graph:

- Node a: \(x = 1 \), \(y = 0 \)
- Node b: \(x = 0 \), \(y = 0 \)
- Node c: \(x = 0 \), \(y = 2 \)
- Node Bad

Lines:

- Green line: \(x \leq 2 \)
- Blue line: \(y \geq 2 \)
Example

\[x = 1 \quad y = 0 \]
\[x = 0 \quad y = 0 \]
\[x \leq 2 \quad y \geq 2 \]

Graph:

- Node a: \(x = 1 \), \(y = 0 \)
- Node b: \(x = 0 \), \(y = 0 \)\(y \geq 2 \)
- Node c: \(x = 0 \), \(y = 2 \)
- Node Bad

Lines:
- Green line: \(y = 0 \)
- Blue line: \(x = 0 \)
- Red line: \(x = 2 \)

Points:
- a at (1,0)
- b at (0,0)
- c at (0,2)
- Bad at (2,0)
Example

\[x = 1\]
\[y = 0\]

\[x \leq 2\]
\[y \geq 2\]

\[x = 0\]
\[y = 2\]
Example

\[x = 1 \]
\[y = 0 \]

\[x \leq 2 \]
\[x = 0 \]
\[y \geq 2 \]
\[y = 0 \]

\[x = 0 \]
\[y = 2 \]

Bad
Example

\[x = 1\]
\[y = 0\]

\[x \leq 2\]
\[y \geq 2\]

\[x = 0\]
\[y = 2\]

\[x = 0\]
\[y = 0\]
Example

\[\begin{align*}
 x &\in [1-\Delta;1+\Delta] \\
y &:= 0
\end{align*} \]

\[\begin{align*}
 x &\leq 2+\Delta \\
y &\geq 2-\Delta
\end{align*} \]

\[\begin{align*}
 x &:= 0 \\
y &\leq 2+\Delta \\
y &:= 0
\end{align*} \]
Example

\[x \in [1-\Delta; 1+\Delta] \]
\[y := 0 \]
\[x \leq 2 + \Delta \]
\[y \geq 2 - \Delta \]
\[y := 0 \]
\[x \leq \Delta \]

Diagram:

- Node A with condition \(x \in [1-\Delta; 1+\Delta] \) and \(y := 0 \)
- Node B with conditions \(x := 0 \) and \(y \geq 2 - \Delta \)
- Node C with condition \(y \in [2-\Delta, 2+\Delta] \)
- Transition to Bad node with condition \(x \leq \Delta \)
Example

\[
x \in [1-\Delta;1+\Delta] \\
y := 0
\]

\[
x \leq 2 + \Delta
\]

\[
x := 0
\]

\[
y \geq 2 - \Delta
\]

\[
y := 0
\]

\[
x \leq \Delta
\]

\[
y \in [2-\Delta,2+\Delta]
\]

Bad

Diagram:

- Node a with x ∈ [1−Δ; 1+Δ], y := 0
- Node b with x ≤ 2 + Δ, y := 0
- Node c with x ≤ Δ, y ∈ [2−Δ, 2+Δ]
- Transition arrows connecting nodes:
 - a to b: x ∈ [1−Δ; 1+Δ], y := 0
 - b to c: x ≤ 2 + Δ
 - c to Bad: x ≤ Δ, y ∈ [2−Δ, 2+Δ]
Example

\[x \in [1-\Delta; 1+\Delta] \]

\[y : = 0 \]

\[x \leq 2 + \Delta \]

\[y \geq 2 - \Delta \]

\[y : = 0 \]
Example

\[x \in [1-\Delta;1+\Delta] \]
\[y := 0 \]
\[x \leq 2+\Delta \]
\[x := 0 \]
\[y \geq 2-\Delta \]
\[y := 0 \]
\[y \in [2-\Delta,2+\Delta] \]
\[x \leq \Delta \]

Graph:
- Node a: \[x \in [1-\Delta;1+\Delta] \]
- Node b: \[x := 0 \]
- Node c: \[y \geq 2-\Delta \]
- Node Bad: \[y \in [2-\Delta,2+\Delta] \]

Diagram:
- Node a to b: \[x \in [1-\Delta;1+\Delta] \]
- b to c: \[x := 0 \]
- c to Bad: \[y \geq 2-\Delta \]
- a to c: \[x \leq \Delta \]

Graph edges:
- a to b: \[x \in [1-\Delta;1+\Delta] \]
- b to c: \[x := 0 \]
- c to bad: \[y \geq 2-\Delta \]
- a to c: \[x \leq \Delta \]
Example

$$x \in [1-\Delta; 1+\Delta]$$

$$y := 0$$

$$x \leq 2 + \Delta$$

$$x := 0$$

$$y \geq 2 - \Delta$$

$$y := 0$$

$$x \leq \Delta$$

$$y \in [2-\Delta, 2+\Delta]$$

$$\text{Bad}$$

$$b$$

$$c$$

$$a$$
Example

\[x \in [1 - \Delta; 1 + \Delta] \]

\[y = 0 \]

\[x \leq 2 + \Delta \]

\[y \geq 2 - \Delta \]

\[y = 0 \]

\[x \leq \Delta \]

\[y \in [2 - \Delta, 2 + \Delta] \]

\[\text{Bad} \]
Example

\[x \in [1-\Delta;1+\Delta] \]
\[y := 0 \]
\[x \leq 2+\Delta \]
\[y \geq 2-\Delta \]
\[y := 0 \]
\[x \leq \Delta \]
\[y \in [2-\Delta,2+\Delta] \]
Example

\[x \in [1-\Delta;1+\Delta] \]
\[y := 0 \]
\[x \leq 2+\Delta \]
\[x := 0 \]
\[y \geq 2-\Delta \]
\[y := 0 \]
\[x \leq \Delta \]
\[y \in [2-\Delta,2+\Delta] \]

BAD
Example

$x \in [1-\Delta; 1+\Delta]$
$y := 0$
$x \leq 2 + \Delta$
$y \geq 2 - \Delta$
$y := 0$

$x \leq \Delta$
$y \in [2-\Delta, 2+\Delta]$

Bad
Example

\[\begin{align*}
 x, y &\in [1-\Delta; 1+\Delta] \\
 x &\leq 2+\Delta \\
 y &\geq 2-\Delta \\
 x &\leq \Delta \\
 y &\in [2-\Delta, 2+\Delta] \\
\end{align*} \]
Example

\[x \in [1-\Delta; 1+\Delta] \]
\[x = 0 \]
\[y \geq 2 - \Delta \]
\[y = 0 \]
\[x \leq 2 + \Delta \]
\[y \in [2-\Delta, 2+\Delta] \]
Example

\[x \in [1-\Delta; 1+\Delta] \]
\[y = 0 \]
\[x = 0 \]
\[y \geq 2-\Delta \]
\[y = 0 \]
\[x \leq 2+\Delta \]
\[x \leq \Delta \]
\[y \in [2-\Delta, 2+\Delta] \]
Example

\[x \in [1-\Delta; 1+\Delta] \]
\[y := 0 \]
\[x \leq 2 + \Delta \]
\[x := 0 \]
\[y \geq 2 - \Delta \]
\[y := 0 \]
\[y \in [2-\Delta, 2+\Delta] \]
Example

\[x \in [1-\Delta; 1+\Delta] \]
\[y := 0 \]
\[x \leq 2 + \Delta \]
\[x := 0 \]
\[x \leq \Delta \]

bad

\[y \geq 2 - \Delta \]
\[y := 0 \]

\[y \in [2-\Delta, 2+\Delta] \]
An algorithm for computing $\text{Reach}_{>0}(\mathcal{A})$ [DDMR04]

Input: A Timed Automaton \mathcal{A}

Output: The set $\text{Reach}_{> 0}(\mathcal{A})$
An algorithm for computing $\text{Reach}_{>0}(\mathcal{A})$ [DDMR04]

Input: A Timed Automaton \mathcal{A}

Output: The set $\text{Reach}_{>0}(\mathcal{A})$

1. build the region graph G of \mathcal{A};
An algorithm for computing $\text{Reach}_{>0}(\mathcal{A})$ [DDMR04]

Input: A Timed Automaton \mathcal{A}
Output: The set $\text{Reach}_{>0}(\mathcal{A})$

1. build the region graph G of \mathcal{A};
2. compute $\text{SCC}(G) =$ the set of strongly connected components of G;
An algorithm for computing $\text{Reach}_{>0}(\mathcal{A})$ [DDMR04]

Input: A Timed Automaton \mathcal{A}
Output: The set $\text{Reach}_{>0}(\mathcal{A})$

1. build the region graph G of \mathcal{A};
2. compute $\text{SCC}(G) = \text{the set of strongly connected components of } G$;
3. $J := [(q_0)]$;

6. return(J);
An algorithm for computing \(\text{Reach}_0(\mathcal{A}) \) [DDMR04]

Input: A Timed Automaton \(\mathcal{A} \)

Output: The set \(\text{Reach}_0(\mathcal{A}) \)

1. build the region graph \(G \) of \(\mathcal{A} \);
2. compute \(\text{SCC}(G) = \) the set of strongly connected components of \(G \);
3. \(J := [(q_0)] \);
4. \(J := \text{Reach}(G, J) \);

6. return \((J) \);
An algorithm for computing $\text{Reach}_{>0}(\mathcal{A})$ [DDMR04]

Input: A Timed Automaton \mathcal{A}

Output: The set $\text{Reach}_{>0}(\mathcal{A})$

1. build the region graph G of \mathcal{A};
2. compute $\text{SCC}(G) =$ the set of strongly connected components of G;
3. $J := [(q_0)]$;
4. $J := \text{Reach}(G, J)$;
5. while $\exists \; S \in \text{SCC}(G). \; S \not\subseteq J$ and $S \cap J \neq \emptyset$,

 $J := J \cup S$;

 $J := \text{Reach}(G, J)$;
6. return(J);
An algorithm for computing $\text{Reach}_{>0}(\mathcal{A})$ [DDMR04]

Input: A Timed Automaton \mathcal{A}
Output: The set $\text{Reach}_{>0}(\mathcal{A})$

1. build the region graph G of \mathcal{A};
2. compute $\text{SCC}(G) =$ the set of strongly connected components of G;
3. $J := [(q_0)]$;
4. $J := \text{Reach}(G, J)$;
5. while $\exists S \in \text{SCC}(G). \ S \not\subseteq J$ and $S \cap J \neq \emptyset$,
 $J := J \cup S$;
 $J := \text{Reach}(G, J)$;
6. return(J);

Theorem

This algorithm is correct.
An algorithm for computing $\text{Reach}_{>0}(\mathcal{A})$ [DDMR04]

Input: A Timed Automaton \mathcal{A}

Output: The set $\text{Reach}_{>0}(\mathcal{A})$

1. build the region graph G of \mathcal{A};
2. compute $\text{SCC}(G) =$ the set of strongly connected components of G;
3. $J := [(q_0)]$;
4. $J := \text{Reach}(G, J)$;
5. while \exists $S \in \text{SCC}(G)$. $S \not\subseteq J$ and $S \cap J \neq \emptyset$,

 $J := J \cup S$;

 $J := \text{Reach}(G, J)$;
6. return(J);

Theorem

Robustness w.r.t. safety properties can be checked in PSPACE.
The algorithm is correct ($J \subseteq \text{Reach}_{>0}(\mathcal{A})$):

Lemma

If $[\mathcal{A}]$ then $[\mathcal{A}]_{\Delta}$

Proof. We build the new trajectory by slightly modifying the delay transitions in π. This crucially depends on the fact that all clocks are reset along the cycle.

□
Some intuition about the proof [DDMR04]

- The algorithm is correct ($J \subseteq \text{Reach}_{>0}(\mathcal{A})$):

Lemma

If $\llbracket A \rrbracket$ then $\llbracket A \rrbracket_\Delta$

Lemma

If $R(\mathcal{A})$ then $\llbracket A \rrbracket_\Delta$
The algorithm is complete ($J \supseteq \text{Reach}_{>0}(A)$):

Lemma

For any k and $\alpha > 0$, there is a Δ_0 s.t. for all $\Delta \leq \Delta_0$, for all path π in $\llbracket A \rrbracket_\Delta$, there is a path π' in $\llbracket A \rrbracket$ s.t. $d(\pi, \pi') \leq \alpha$.
Some intuition about the proof [DDMR04]

The algorithm is complete ($J \supseteq \text{Reach}_{>0}(\mathcal{A})$):

Lemma

*For any k and $\alpha > 0$, there is a Δ_0 s.t. for all $\Delta \leq \Delta_0$, for all path π in $[\mathcal{A}]_\Delta$, there is a path π' in $[\mathcal{A}]$ s.t. $d(\pi, \pi') \leq \alpha$.***
The algorithm is complete ($J \supseteq \text{Reach}_{>0}(\mathcal{A})$):

Lemma

*For any k and $\alpha > 0$, there is a Δ_0 s.t. for all $\Delta \leq \Delta_0$, for all path π in $[\mathcal{A}]_\Delta$, there is a path π' in $[\mathcal{A}]$ s.t. $d(\pi, \pi') \leq \alpha$.***
Some intuition about the proof [DDMR04]

- The algorithm is complete ($J \supseteq \text{Reach}_{>0}(\mathcal{A})$):

Lemma

For any k and $\alpha > 0$, there is a Δ_0 s.t. for all $\Delta \leq \Delta_0$, for all path π in $[\mathcal{A}]_\Delta$, there is a path π' in $[\mathcal{A}]$ s.t. $d(\pi, \pi') \leq \alpha$.

Proof. Parametric DBMs.

□
Some intuition about the proof [DDMR04]

- The algorithm is complete \((J \supseteq \text{Reach}_{>0}(\mathcal{A}))\):

Lemma

For any \(k\) and \(\alpha > 0\), there is a \(\Delta_0\) s.t. for all \(\Delta \leq \Delta_0\), for all path \(\pi\) in \([\mathcal{A}]_\Delta\), there is a path \(\pi'\) in \([\mathcal{A}]\) s.t. \(d(\pi, \pi') \leq \alpha\).

\[
\begin{array}{c}
\alpha \quad [\mathcal{A}] \\
p_1 \\
\end{array}
\quad
\begin{array}{c}
[\mathcal{A}]_\Delta \\
p_k \\
\end{array}
\]

Proof. Parametric DBMs.

Lemma

For all \(\alpha > 0\), there is a \(\Delta_0\) s.t. for all \(\Delta \leq \Delta_0\), for all path \(x \rightarrow y\) in \([\mathcal{A}]_\Delta\),

\[
\text{if } x \in J \text{ then } d(y, J) \leq \alpha.
\]
Our algorithm suggests to extend the region automaton with extra transitions:

For any location ℓ and any two regions r and r', if

- $r \cap r' \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $R(\mathcal{A})$,

then we add a transition $\ell \rightarrow (\ell, r).$

We write $R^*(\mathcal{A})$ for the resulting automaton.
Extended region automaton

Our algorithm suggests to extend the region automaton with extra transitions:

For any location ℓ and any two regions r and r', if
1. $r \cap r' \neq \emptyset$ and
2. (ℓ, r') belongs to an SCC of $R(\mathcal{A})$,
then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$.

We write $R^*(\mathcal{A})$ for the resulting automaton.

Theorem

The set $\text{Reach}_{>0}(\mathcal{A})$ is the set of reachable regions in $R^*(\mathcal{A})$.
Outline of the talk

1. Introduction

2. A semantical approach to implementability
 - From implementability to robustness
 - Robust model checking for safety properties
 - Robust model checking for LTL properties

3. Timed Robust Model-Checking
 - Alternating timed automata and channel machines
 - A new approach to robust model-checking
 - Robust Model-Checking for CoFlatMTL

4. Conclusion
Definition

\[\text{LTL } \exists \psi, \varphi ::= p \mid \varphi \land \psi \mid \varphi \lor \psi \mid \neg \varphi \mid X \varphi \mid \varphi U \psi \]
LTL Robust Model-Checking [BMR06]

Definition

\[
\text{LTL } \exists \psi, \varphi ::= p \mid \varphi \land \psi \mid \varphi \lor \psi \mid \neg \varphi \mid X \varphi \mid \varphi U \psi
\]

LTL formulas are evaluated along paths:

Definition

\[
X
\]

\[
U
\]
LTL Robust Model-Checking [BMR06]

Definition

LTL \(\exists \psi, \varphi ::= p \mid \varphi \land \psi \mid \varphi \lor \psi \mid \neg \varphi \mid X \varphi \mid \varphi U \psi \)

LTL formulas are evaluated along paths:

- **X**
 - Next
 - \(\circ \rightarrow \cdots \)

- **U**
 - Until
 - \(\circ \rightarrow \cdots \)

- **F**
 - Eventually
 - \(\circ \rightarrow \cdots \)

- **G**
 - Always
 - \(\circ \rightarrow \cdots \)
Theorem

Any LTL formula φ can be turned into an equivalent Büchi automaton \mathcal{B}_φ.
Theorem

Any LTL formula ϕ can be turned into an equivalent Büchi automaton B_ϕ.

Theorem

Let $B_{\neg \phi}$ be a Büchi automaton corresponding to LTL formula $\neg \phi$, and with accepting set $Q_{\neg \phi}$. Then

$$A \models \phi \iff A \times B_{\neg \phi} \models \text{co-Büchi}(L \times Q_{\neg \phi}).$$
Theorem

Any **LTL** formula \(\varphi \) can be turned into an equivalent **Büchi automaton** \(\mathcal{B}_\varphi \).

Theorem

Let \(\mathcal{B}_{\neg \varphi} \) be a **Büchi automaton** corresponding to **LTL** formula \(\neg \varphi \), and with **accepting set** \(Q_{\neg \varphi} \). Then

\[
\mathcal{A} \models \varphi \iff \mathcal{A} \times \mathcal{B}_{\neg \varphi} \models \text{co-Büchi}(L \times Q_{\neg \varphi}).
\]

Theorem

Let \(\mathcal{A} \) be a **timed automaton** and \(Q \) a set of locations of \(\mathcal{A} \). Then

\[
\mathcal{A} \models \text{co-Büchi}(Q) \iff \mathcal{R}^*(\mathcal{A}) \models \text{co-Büchi}(Q).
\]
Theorem

Let \mathcal{A} be a timed automaton and Q a set of locations of \mathcal{A}. Then

$$\mathcal{A} \models \text{co-Büchi}(Q) \iff R^*(\mathcal{A}) \models \text{co-Büchi}(Q).$$

Corollary

LTL robust model-checking is PSPACE-complete.
Some intuition about the proof [BMR06]

Theorem

Let $\mathcal{B}_{\neg \varphi}$ be a Büchi automaton corresponding to LTL formula $\neg \varphi$, and with accepting set $Q_{\neg \varphi}$. Then

$$\mathcal{A} \not\models \varphi \iff \mathcal{A} \times \mathcal{B}_{\neg \varphi} \models \text{co-Büchi}(L \times Q_{\neg \varphi}).$$

Proof.

$$\mathcal{A} \not\models \varphi \iff \forall \Delta > 0. \exists \pi \in \llbracket \mathcal{A} \rrbracket_\Delta. \pi \not\models \varphi$$

$$\iff \forall \Delta > 0. \exists \pi \in \llbracket \mathcal{A} \times \mathcal{B}_{\neg \varphi} \rrbracket_\Delta. \pi \models \text{Büchi}(L \times Q_{\neg \varphi}).$$

Hence

$$\mathcal{A} \models \varphi \iff \exists \Delta > 0. \forall \pi \in \llbracket \mathcal{A} \times \mathcal{B}_{\neg \varphi} \rrbracket_\Delta. \pi \models \text{co-Büchi}(L \times Q_{\neg \varphi}).$$
Theorem

Let \mathcal{A} be a timed automaton and Q a set of locations of \mathcal{A}. Then

$$\mathcal{A} \models \text{co-B"uchi}(Q) \iff \mathcal{R}^*(\mathcal{A}) \models \text{co-B"uchi}(Q).$$

Proof.

- From a path π in $\mathcal{R}^*(\mathcal{A})$, we can build a path in $\llbracket \mathcal{A} \rrbracket_\Delta$ visiting (at least) the locations visited by π:
Some intuition about the proof [BMR06]

Theorem

Let A be a timed automaton and Q a set of locations of A. Then

$$A \models \text{co-Büchi}(Q) \iff R^*(A) \models \text{co-Büchi}(Q).$$

Proof.

- From a path π in $R^*(A)$, we can build a path in $[A]_{\Delta}$ visiting (at least) the locations visited by π:

- if $A \not\models \text{co-Büchi}(Q)$, since q is finite, there is a $q \in Q$ s.t.

$$\forall \Delta > 0. \exists \pi \in [A]_{\Delta}. \pi \models \text{Büchi}\{q\}.$$

\leadsto there is a path in $R^*(A)$ visiting q infinitely many times.
Outline of the talk

1. Introduction

2. A semantical approach to implementability
 - From implementability to robustness
 - Robust model checking for safety properties
 - Robust model checking for LTL properties

3. Timed Robust Model-Checking
 - Alternating timed automata and channel machines
 - A new approach to robust model-checking
 - Robust Model-Checking for CoFlatMTL

4. Conclusion
Metric Temporal Logic [Koy87, AH92]

Definition

\[
\begin{align*}
\text{MTL } & \ni \psi, \varphi ::= p \mid \phi \land \psi \mid \phi \lor \psi \mid \neg \phi \mid \phi \text{ U}_I \psi
\end{align*}
\]
Metric Temporal Logic [Koy87,AH92]

Definition

\[
\text{MTL} \ni \psi, \varphi ::= p \mid \varphi \land \psi \mid \varphi \lor \psi \mid \neg \varphi \mid \varphi \mid \varphi U_i \psi
\]

MTL formulas are evaluated along timed words:

![Diagram of MTL formulas evaluation along timed words]
Metric Temporal Logic \cite{Koy87,AH92}

Definition

\[
\text{MTL} \ni \psi, \varphi ::= p \mid \varphi \land \psi \mid \varphi \lor \psi \mid \neg \varphi \mid \varphi \ U_I \psi
\]

MTL formulas are evaluated along timed words:

\[
\text{Definition}
\]

\[
\text{delay} \in I
\]
Metric Temporal Logic [Koy87, AH92]

Definition

\[\text{MTL } \owns \psi, \phi ::= p \mid \phi \land \psi \mid \phi \lor \psi \mid \neg \phi \mid \phi \U_I \psi \]

MTL formulas are evaluated along timed words:

- \(U_I \)
- \(F_I \)
- \(G_I \)
LTL formulas can (also) be turned into linear alternating Büchi automata:

Example

\[G(a \Rightarrow F b) \]
LTL formulas can (also) be turned into linear alternating Büchi automata:

\[G(a \Rightarrow F b) \]
LTL formulas can (also) be turned into linear alternating Büchi automata:

Example

\[G(a \Rightarrow F b) \]
LTL formulas can (also) be turned into linear alternating Büchi automata:

Example

$$G(a \Rightarrow F b)$$
Similarly, MTL formulas can be turned into 1-clock alternating Büchi automata [OW05]:

Example

\[G(a \Rightarrow F_{[1,2]} b) \]
Similarly, MTL formulas can be turned into 1-clock alternating Büchi automata [OW05]:

Example

\[G(a \Rightarrow F_{[1,2]} b) \]
Similarly, MTL formulas can be turned into 1-clock alternating Büchi automata [OW05]:

Example

\[G(a \Rightarrow F_{[1,2]} b) \]
Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

\[
C : \\
\begin{array}{c}
s \\
\leftarrow a?:b? \\
a \rightarrow \{a,b\} \\
\rightarrow zero(a)? \\
t \\
\end{array}
\]
Definition

Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

\[C : \]

\[s \] \[\Rightarrow a!,b! \]

\[t \] \[\Rightarrow a?,b? \]

\[s \] \[\Rightarrow zero(a)? \]

\[t \] \[\Rightarrow a\rightarrow\{a,b\} \]

\[s \] \[\Rightarrow t \]

\[t \] \[\Rightarrow s \]
Definition

Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

\[C : \]

\[a!,b! \]

\[a\to\{a,b\} \]

\[zero(a)? \]

\[a?,b? \]

\[\triangleright! \]

\[\triangleright? \]

\[s_{\triangleright} \]

\[\triangleright \]

\[t_{\triangleright} \]
Definition

Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

\[C : \]

```
S → a!, b!
s → a→{a,b}
S₀ → zero(a)?
S → a!, b!
S → S₀
S → t
S → a!, b?
t → a→{a,b}
t → t
```

```
|$\quad\quad\quad\quad\quad$ |
|---|---|---|---|---|
| $\triangleright$ | | | | |

```
Definition

Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

C :

\[
\begin{array}{c}
C: a!, b! \\
S: a, b! \\
zero(a)? \\
S \\
t \\
a, b? \\
\end{array}
\]
Definition

Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

\[
C: \quad \begin{array}{c}
\text{zero}(a)? \\
\triangleright ! \\
\triangleright ? \\
{\text{S}}_{\triangleright} \\
\text{a} \rightarrow \{a, b\} \\
\triangleright ! \\
\triangleright ? \\
{\text{t}}_{\triangleright} \\
\end{array}
\]

\[
\begin{array}{c}
\text{a} \\
\triangleright \\
\text{a} \\
\triangleright \\
\end{array}
\]
Definition

Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

\[C : \begin{array}{ll}
 s & \quad a!,b! \\
 t & \quad a?,b? \\
 s & \quad \text{zero}(a)? \\
 t & \quad \text{zero}(a)? \\
 b & \quad \text{a} \quad \text{a} \\
\end{array} \]
Definition

Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

\[C : \]

\[
\begin{array}{c}
\text{a!,b!} \\
\text{a?},\text{b?}
\end{array}
\]

\[
\begin{array}{c}
s \quad \text{zero}(a)? \\
t
\end{array}
\]

\[
\text{b} \quad \text{a} \quad \text{b} \quad \text{!} \quad \text{?}
\]

\[
\text{a} \rightarrow \{a,b\}
\]
Definition
Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example
\[C : \]

\[a!,b! \quad a?\rightarrow\{a,b\} \quad zero(a)? \quad a?,b? \quad \]

\[\begin{array}{c}
\text{zero}(a) ? \\
\text{a} \rightarrow \{a,b\} \\
a!,b! \\
\text{a}?,b? \\
\end{array} \]

\[b \quad a \quad b \quad \]
Definition

Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

\[
C : \\
\]

\[
\begin{array}{c}
\text{\(s\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(t\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(a!,b!\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(a\rightarrow\{a,b\}\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(a?,b?\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(s\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(t\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{\(b\)} \\
\text{\(a\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\text{\(b\)} \\
\end{array}
\]
Definition

Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

\[C : \]

\[\begin{array}{c}
\text{a!,b!} \\
\text{a?},b? \\
\text{zero(a)?} \\
\text{a\rightarrow\{a,b\}} \\
\text{S\rightarrow} \\
\hline
\text{b} & \text{a} & \text{b} & \text{zero(a)} \\
\hline
\end{array} \]
Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

\[C : \]

\[
\begin{array}{c}
\text{zero}(a)\
\text{a→}\{a,b\}\
a?,b?\
a!,b!\
\end{array}
\]

\[
\begin{array}{c}
\text{!}
\text{?}
\text{!}
\text{?}
\text{!}
\text{?}
\end{array}
\]
Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

\[C : \]

- Transition: \(a \rightarrow \{a, b\} \)
- Zero test: \(\text{zero}(a) ? \)
- Channel events: \(a!, b! \), \(a?, b? \)

Diagram:

- States: \(S \), \(T \)
- Edges:
 - \(S \rightarrow T \)
 - \(T \rightarrow S \)
 - \(S \rightarrow S \)
 - \(T \rightarrow T \)
 - \(S \rightarrow T \) with \(a\)!
 - \(T \rightarrow S \) with \(a? \)

Termination:

- Channel buffer:
 - \(b \)
 - \(\text{zero}(a) ? \)

References:

- [BMOW07]
Definition

Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

\[C : \]

\[
\begin{array}{c}
S & a!,b! & a\rightarrow\{a,b\} & a?,b? \\
\text{zero}(a)\?
\end{array}
\]

\[
\begin{array}{c}
S & a!,b! & a\rightarrow\{a,b\} & a?,b? \\
\text{zero}(a)\?
\end{array}
\]
Definition
Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Example

$$C : a!, b!$$

$$a \rightarrow \{a, b\}$$

$$\text{zero}(a)?$$

$$a?, b?$$

$$\triangleright b$$
Definition
Channel Automata with Renaming and Occurrence Testing (CAROT) are (roughly) Büchi automata equipped with a FIFO channel.

Theorem
Cycle-bounded reachability is decidable and is in PSPACE (if the number of cycles is given in unary).
From timed automata to CAROTs [BMOW07]

location:
- location of \mathcal{A}
- integ. part clocks of \mathcal{A}
- clocks (of \mathcal{A} and $\mathcal{B}_{-\varphi}$) with integ. value

channel:
- config. (loc. + integ. parts) of $\mathcal{B}_{-\varphi}$
- order of frac. parts of clocks of both \mathcal{A} and $\mathcal{B}_{-\varphi}$
Example of encoding

We consider the following configuration:

$$\mathcal{A} : \begin{cases} x = 1.4 \\ \ell, \quad y = 2 \\ z = 1.7 \end{cases}$$

$$\mathcal{B}_{-\varphi} : (\ell_1', u = 1), (\ell_2', u = 3.4), (\ell_1', u = 0.1)$$

This is encoded by the following configuration of the channel machine:
Example of encoding

We consider the following configuration:

\[\mathcal{A} : \begin{cases} x = 1.4 \\ \ell, & y = 2 \\ z = 1.7 \end{cases} ; \quad \mathcal{B}_{\varphi} : (\ell_1', u = 1), (\ell_2', u = 3.4), (\ell_1', u = 0.1) \]

This is encoded by the following configuration of the channel machine:

\[\begin{pmatrix} \lfloor x \rfloor = 1 \\ \ell, & \lfloor y \rfloor = 2 \\ \lfloor z \rfloor = 1 \end{pmatrix} \]

\[\begin{array}{c}
 0 \quad 1 \\
 y, (\ell_1', 1) \quad (\ell_1', 0) \quad x, (\ell_2', 3) \quad z \\
\end{array} \]
Example of encoding

We consider the following configuration:

\[\mathcal{A}: \begin{pmatrix} \ell, & y = 2 \\ x = 1.4 & \\ z = 1.7 \end{pmatrix}; \quad \mathcal{B}_{\varphi}: (\ell', u = 1), (\ell', u = 3.4), (\ell', u = 0.1) \]

This is encoded by the following configuration of the channel machine:

\[\begin{pmatrix} \ell, & \lfloor x \rfloor = 1 \\ \lfloor y \rfloor = 2 \\ \lfloor z \rfloor = 1 \end{pmatrix} \]
Example of encoding

We consider the following configuration:

$$\mathcal{A} : \begin{cases} x = 1.4 \\
\ell, \quad y = 2 \\
z = 1.7 \end{cases} \quad ; \quad \mathcal{B}_{-\varphi} : (\ell'_1, u = 1), (\ell'_2, u = 3.4), (\ell'_1, u = 0.1)$$

This is encoded by the following configuration of the channel machine:

$$\begin{pmatrix} x \left\lfloor x \right\rfloor = 1 \\
\ell, \quad \left\lfloor y \right\rfloor = 2 \\
\left\lfloor z \right\rfloor = 2 \end{pmatrix}$$
Example of encoding

We consider the following configuration:

\[\mathcal{A} : \left(\ell, \begin{array}{c} x = 1.4 \\ y = 2 \\ z = 1.7 \end{array} \right) \]; \quad \mathcal{B}_{\varphi} : (\ell'_1, u = 1), (\ell'_2, u = 3.4), (\ell'_1, u = 0.1) \]

This is encoded by the following configuration of the channel machine:

\[\left(\begin{array}{c} [x] = 1 \\ \ell, \begin{array}{c} [y] = 2 \\ [z] = 2 \end{array} \end{array} \right) \]

\[\xrightarrow{\sim} 1 \text{ cycle corresponds to } 1 \text{ t.u. elapsing} \]
The logic CoFlatMTL [BMOW07]

Definition

CoFlatMTL ∋ ψ, φ ::= p | φ ∧ ψ | φ ∨ ψ |
 φ U_I ψ | φ U_J α | φ R_I ψ | β R_J ψ

where α and β are LTL formulas, I are bounded intervals, and J are unbounded intervals.

BoundedMTL is the fragment where all intervals are bounded.
The logic CoFlatMTL [BMOW07]

Definition

CoFlatMTL \(\ni \psi, \phi \ ::= \ p \ | \ \phi \land \psi \ | \ \phi \lor \psi \ | \)

\(\phi \ U_I \psi \ | \ \phi \ U_J \alpha \ | \ \phi \ R_I \psi \ | \ \beta \ R_J \psi \)

where \(\alpha \) and \(\beta \) are LTL formulas, \(I \) are bounded intervals, and \(J \) are unbounded intervals.

BoundedMTL is the fragment where all intervals are bounded.

Theorem

Model-checking is EXPSPACE-complete for BoundedMTL and CoFlatMTL.
The logic CoFlatMTL \[\text{[BMOW07]}\]

Definition

CoFlatMTL \(\ni \psi, \phi \) ::= \(p \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \mathcal{U} I \psi \mid \phi \mathcal{U} J \alpha \mid \phi \mathcal{R} I \psi \mid \beta \mathcal{R} J \psi \)

where \(\alpha \) and \(\beta \) are LTL formulas, \(I \) are bounded intervals, and \(J \) are unbounded intervals.

BoundedMTL is the fragment where all intervals are bounded.

Theorem

Model-checking is EXPSPACE-complete for BoundedMTL and CoFlatMTL.

BoundedMTL is in PSPACE with unary-encoded constants.
Theorem

Cycle-bounded reachability is decidable and is in PSPACE (if the number of cycles is given in unary).

Proof.

\[
\begin{align*}
 s & b! & s & b! & s & R & t & \triangleright? & t_	riangleright & \triangleright! & t \\
 b? & t & c? & s & a! & s & b! & s & R & t & \triangleright? & t_	riangleright & \triangleright! & t \\
 a? & t & c? & s & b! & s & R & t & \triangleright? & t_	riangleright & \triangleright! & t \\
 c? & s & R & t & \triangleright? & t_	riangleright & \triangleright! & t
\end{align*}
\]
Some intuition about the proof [BMOW07]

Theorem

Cycle-bounded reachability is decidable and is in PSPACE (if the number of cycles is given in unary).

Proof.

s b! s b! s R t ≥? t≥ ≥! t

b? t c? s a! s b! s R t ≥? t≥ ≥! t

a? t c? s b! s R t ≥? t≥ ≥! t

c? s R t ≥? t≥ ≥! t
Some intuition about the proof [BMOW07]

Theorem

Cycle-bounded reachability is decidable and is in PSPACE (if the number of cycles is given in unary).

Proof.

\[
\begin{array}{cccccccc}
 s & b! & s & b! & s & R & t & \triangleright ? & t \triangleright \\
 b? & t & c? & s & a! & s & b! & s & R & t & \triangleright ? & t \triangleright & \triangleright ! & t \\
 a? & t & c? & s & b! & s & R & t & \triangleright ? & t \triangleright & \triangleright ! & t \\
 c? & s & R & t & \triangleright ? & t \triangleright & \triangleright ! & t
\end{array}
\]
Some intuition about the proof \[BMOW07\]

Theorem

Cycle-bounded reachability is decidable and is in *PSPACE* (if the number of cycles is given in unary).

Proof.

\[
\begin{align*}
s \quad b! \quad s \quad b! \quad s \quad R \quad t \quad \triangleright? \quad t_\triangleright \quad - \quad t_\triangleright \quad \triangleright! \quad t \quad - \quad t \quad - \quad t \quad - \quad t \\
t \quad b? \quad t \quad c? \quad s \quad a! \quad s \quad b! \quad s \quad R \quad t \quad \triangleright? \quad t_\triangleright \quad \triangleright! \quad t \quad - \quad t \quad - \quad t \\
t \quad - \quad t \quad - \quad t \quad a? \quad t \quad c? \quad s \quad b! \quad s \quad R \quad t \quad \triangleright? \quad t_\triangleright \quad \triangleright! \quad t \quad - \quad t \\
t \quad - \quad t \quad - \quad t \quad - \quad t \quad - \quad t \quad c? \quad s \quad R \quad t \quad - \quad t \quad \triangleright? \quad t_\triangleright \quad \triangleright! \quad t \quad - \quad t
\end{align*}
\]
Some intuition about the proof [BMOW07]

Theorem

Cycle-bounded reachability is decidable and is in PSPACE (if the number of cycles is given in unary).

Proof.

```
s  b!  s  b!  s  R  t  ▷?  temaker  ▷!  t  -  t  -  t  -  t  -  t
  t  b?  t  c?  s  a!  s  b!  s  R  t  ▷?  temaker  ▷!  t  -  t  -  t
  t  -  t  -  t  a?  t  c?  s  b!  s  R  t  ▷?  temaker  ▷!  t  -  t
  t  -  t  -  t  -  t  -  t  c?  s  R  t  -  t  ▷?  temaker  ▷!  t
```
Some intuition about the proof [BMOW07]

Theorem

Cycle-bounded reachability is decidable and is in PSPACE (if the number of cycles is given in unary).

Proof.

```
s b! s b! s R t ▷? t ▷ t ▷ t ▷ t ▷ t ▷ t
```

```
t b? t c? s a! s b! s R t ▷? t ▷ t ▷ t ▷ t ▷ t ▷ t
```

```
t t t t a? t c? s b! s R t ▷? t ▷ t ▷ t ▷ t ▷ t ▷ t
```

```
t t t t t t t c? s R t t ▷? t ▷ t ▷ t ▷ t ▷ t ▷ t
```
Theorem

Model-checking is EXPSPACE-complete for BoundedMTL and CoFlatMTL.

Proof.

- **BoundedMTL**: only the first h time units are relevant;
- **CoFlatMTL**: all accepting path can be split as follows:

![Diagram showing active and inactive parts]

Active parts: bounded duration.
Inactive parts: “untimed” constraints.
Outline of the talk

1. Introduction

2. A semantical approach to implementability
 - From implementability to robustness
 - Robust model checking for safety properties
 - Robust model checking for LTL properties

3. Timed Robust Model-Checking
 - Alternating timed automata and channel machines
 - A new approach to robust model-checking
 - Robust Model-Checking for CoFlatMTL

4. Conclusion
Intuition

[Diagram of a state machine with states a, b, c, and Bad, with transitions labeled by conditions on x and y.]
Intuition

\[a \xrightarrow{x=1, \ y:=0} b \xrightarrow{x=2, \ x:=0} c \xrightarrow{x=0, \ y=2} \text{Bad} \]

\[\lfloor x \rfloor = a, \ \lfloor y \rfloor = b \]

\[x \geq 2, \ x:=0 \]

\[y \geq 2, \ y:=0 \]

\[x, y \]

\[[x] = 1, \ [y] = 0 \]
Intuition

\[\lfloor x \rfloor = 2, \lfloor y \rfloor = 1 \]

\[x = 1, y = 0 \]

\[x \leq 2, x := 0 \]

\[y \geq 2, y := 0 \]

\[x = 0, y = 2 \]

\[\text{Bad} \]
Intuition

\[x=1, \quad y:=0 \]

\[x \leq 2, \quad x:=0 \]

\[y \geq 2, \quad y:=0 \]

\[x=0, y=2 \]

\[\text{Bad} \]

\[[x]=2, \quad [y]=1 \]

\[2 < v(x) \leq 2 + \Delta \]
Intuition

\[\lfloor x \rfloor = 0\]

\[a \xrightarrow{x=1, y:=0} b \xrightarrow{\text{\(x\leq2, x:=0\)}} c \xrightarrow{\text{\(x=0, y=2\)}} \text{Bad}\]

\[y \geq 2, y:=0\]

\[\begin{array}{c}
\text{0} \\
\text{\(\Delta\)} \\
\text{1} - \Delta \\
\text{1}
\end{array}\]

\[\begin{array}{c}
x \\
y \\
\text{\(1\)}
\end{array}\]

\([x]=0, [y]=1\]
Intuition

A single channel machine whatever the number of clocks!

Additionnal clocks can be handled by a channel machine!

\[
\begin{align*}
x \leq 2, & \quad x := 0 \\
y \geq 2, & \quad y := 0
\end{align*}
\]
Intuition

[Diagram with states and transitions labeled with equations and conditions]

\[[x] = 0, [y] = 1 \]

\[2 - \Delta \leq v(y) < 2 \]
Intuition

\[\text{Intuition}\]

\[\begin{align*}
x\geq 2, & \quad x := 0 \\
y & \geq 2, \quad y := 0
\end{align*}\]

Additionnal clocks can be handled by a channel machine!
Intuition

\[x = 1, \ y = 0 \]

\[x = 2, \ x = 0, \ y = 2 \]

\[y \geq 2, \ y = 0 \]

Additionnal clocks can be handled by a channel machine!
Intuition

A single channel machine whatever the number of clocks!
Intuition

A single channel machine whatever the number of clocks!

\[\lfloor x \rfloor = 1, \lfloor y \rfloor = 0 \]

\[x = 1, y = 0 \]

\[x = 2, x := 0 \]

\[y = 2, y := 0 \]

\[x = 0, y = 2 \]

\[\Delta := 0 \]
Intuition

\[\begin{align*}
\lfloor x \rfloor &= 0, \\lfloor y \rfloor &= 0 \\
&\quad \Rightarrow x_0, x, y, x_1, x_2, x_3, x_4, x_5
\end{align*} \]
Intuition

\[x = 1, \ y = 0 \]

\[x \leq 2, \ x = 0 \]

\[y \geq 2, \ y = 0 \]

\[x = 0, \ y = 2 \]

\[[x] = 1, \ [y] = 0 \]
Intuition

\[x = 1, \ y = 0 \]

(a) \[x \leq 2, \ x = 0 \]

(b) \[x = 0, \ y = 2 \]

(c) \[y \geq 2, \ y = 0 \]

Bad

\[\left\lceil x \right\rceil = 2, \ \left\lceil y \right\rceil = 1 \]

\[x_0, x, y \quad \begin{array}{cccccc}
 x_1 & x_2 & x_3 & x_4 & x_5
\end{array} \]

\[0 \quad 1 \]
Intuition

\[x = 1, \quad y = 0 \]

\[x \leq 2, \quad x := 0 \]

\[x = 0, y = 2 \]

\[y \geq 2, \quad y := 0 \]

\[[x] = 2, \quad [y] = 1 \]

\[2 < v(x) \land \forall i, \{v(x)\} \leq v(x_i) \]
Intuition

A single channel machine whatever the number of clocks!

Additionnal clocks can be handled by a channel machine!

$\lfloor x, y \rfloor = x_0$,

$x, y \geq 0$,

$x_2 = 0$,

$y, x = 3$,

1.
Intuition

A single channel machine whatever the number of clocks!

Additionnal clocks can be handled by a channel machine!

\[\lfloor, \lfloor, y \rfloor = x_1 \]

\[x_1 < y \geq x_2 \]

\(\forall x_0, y \)

\[\mathcal{v}(y) < 2 \wedge \forall i, \{ \mathcal{v}(y) \} \geq \mathcal{v}(x_i) \]
Intuition

\[x = 1, \ y = 0 \quad \rightarrow \quad x \leq 2, \ x := 0 \]

\[y \geq 2, \ y := 0 \]

\[x = 0, \ y = 2 \quad \rightarrow \quad \text{Bad} \]

\[[x] = 0, \ [y] = 0 \]

\[\begin{array}{ccccccc}
0 & x_1, y & x_2 & x_3 & x_4 & x_5 & x & x_0 \\
1 & & & & & & &
\end{array} \]
Intuition

$x < 3 \land (x > 2 \Rightarrow \bigvee_i \{x \leq x_{i+1} < x_{i-1}\})$

$\begin{align*}
&x \leq 2, \; x := 0 \\
y \geq 2, \; y := 0
\end{align*}$

Additionnal clocks can be handled by a channel machine!
Intuition

\[x < 3 \land (x > 2 \Rightarrow \bigvee_i \{x\} \leq x_{i+1} < x_{i-1}) \]

\[x \leq 2, \quad x := 0 \]

\[y \geq 2, \quad y := 0 \]

\[[x] = 0, \quad [y] = 0 \]

\[\Delta, y \quad \Delta \quad \Delta \quad \Delta \quad \Delta \quad x \quad \Delta \]

A single channel machine whatever the number of clocks!
Let \mathcal{A} be a timed automaton, n be an integer.

- For each $0 \leq i < n$, we add a Δ-automaton \mathcal{B}_i involving a fresh clock x_i. We write $X^n = \{x_i \mid 0 \leq i < n\}$.

- We rewrite the guards in \mathcal{A} as follows:

$$x \leq k \quad \sim \quad (x < k + 1) \land (x > k \implies \bigvee_{0 \leq i < n} \{x\} \leq x_{i+1} < x_{i-1})$$

(similarly for $x \geq k$)

Definition

We write $\mathcal{N}^n(\nu)$ for the product of those “timed automata” with initial valuation ν for clocks in X^n.
Clocks in X^n are intended to simulate a “tick” every $1/n$ time unit:

- v^n is the valuation s.t. $v(x_i) = i/n$ for all $0 \leq i < n$;
- N^n is the timed system $N^n(v^n)$.
Networks of timed systems for enlarged semantics

Clocks in X^n are intended to simulate a “tick” every $1/n$ time unit:

- v^n is the valuation s.t. $v(x_i) = i/n$ for all $0 \leq i < n$;
- N^n is the timed system $N^n(v^n)$.

Theorem

For any $n \geq 3$,

$$L([A]_{1/n}) \subseteq L([N^n]) \subseteq L([A]_{2/n})$$
Networks of timed systems for enlarged semantics

Clocks in X^n are intended to simulate a “tick” every $1/n$ time unit:

- v^n is the valuation s.t. $v(x_i) = i/n$ for all $0 \leq i < n$;
- \mathcal{N}^n is the timed system $\mathcal{N}^n(v^n)$.

Theorem

For any $n \geq 3$,

$$L(\llbracket \mathcal{A} \rrbracket_{1/n}) \subseteq L(\llbracket \mathcal{N}^n \rrbracket) \subseteq L(\llbracket \mathcal{A} \rrbracket_{2/n})$$

Theorem

For any $\varphi \in \text{MTL}$,

$$\mathcal{A} \models \varphi \iff \exists n \geq 3. \llbracket \mathcal{N}^n \rrbracket \models \varphi.$$
Outline of the talk

1. Introduction

2. A semantical approach to implementability
 - From implementability to robustness
 - Robust model checking for safety properties
 - Robust model checking for LTL properties

3. Timed Robust Model-Checking
 - Alternating timed automata and channel machines
 - A new approach to robust model-checking
 - Robust Model-Checking for CoFlatMTL

4. Conclusion
From networks of timed systems to CAROTs

location:
- location of \mathcal{A}
- integ. part clocks of \mathcal{A}
- clocks (of \mathcal{A}, \mathcal{A}_Δ and $\mathcal{B}_{\neg \varphi}$) with integ. value
 + clocks of \mathcal{A} at **beginning** and **end** of channel

channel:
- config. (loc. + integ. parts) of $\mathcal{B}_{\neg \varphi}$
- order of frac. parts of clocks of \mathcal{A}, \mathcal{A}_Δ and $\mathcal{B}_{\neg \varphi}$
Proposition

There exists a CAROT $C_{A, \lnot \varphi}$ that, starting with initial channel $\langle \Delta \rangle^n$, encodes the joint behaviour of the network N^n and the alternating timed automaton $B_{\lnot \varphi}$.

Theorem

If $\varphi \in \text{BoundedMTL}$, there exist two integers h and N_0 s.t. $A \not\equiv \varphi$ \iff $C_{A, \lnot \varphi}$ has an h-cycle-bounded accepting computation on $\langle \Delta \rangle^{N_0}$. It is PSPACE-complete if the constants are in unary.
Proposition

There exists a CAROT $C_{\mathcal{A}, \neg \varphi}$ that, starting with initial channel $\langle \Delta \rangle^n$, encodes the joint behaviour of the network \mathcal{N}^n and the alternating timed automaton $\mathcal{B}_{\neg \varphi}$.

Proposition

For any $\varphi \in \text{MTL}$,

$\mathcal{A} \not\models \varphi \iff \forall n \geq 3. \ C_{\mathcal{A}, \neg \varphi}$ has an accepting computation on $\langle \Delta \rangle^n$.
Proposition

There exists a CAROT $C_{A, \neg \varphi}$ that, starting with initial channel $\langle \Delta \rangle^n$, encodes the joint behaviour of the network N^n and the alternating timed automaton $B_{\neg \varphi}$.

Proposition

For any $\varphi \in MTL$,

$A \not\equiv \varphi \iff \forall n \geq 3. C_{A, \neg \varphi}$ has an accepting computation on $\langle \Delta \rangle^n$.

Theorem

If $\varphi \in BoundedMTL$, there exist two integers h and N_0 s.t.

$A \not\equiv \varphi \iff C_{A, \neg \varphi}$ has an h-cycle-bounded accepting computation on $\langle \Delta \rangle^{N_0}$.
Theorem

If $\varphi \in \text{BoundedMTL}$, there exist two integers h and N_0 s.t.

$\mathcal{A} \not\equiv \varphi \iff C_{\mathcal{A}, \neg \varphi}$ has an h-cycle-bounded accepting computation on $\langle \Delta \rangle^{N_0}$.

Theorem

BoundedMTL robust model checking is EXPSPACE-complete.

It is PSPACE-complete if the constants are in unary.
CoFlatMTL robust model-checking

When $\varphi \in \text{CoFlatMTL}$, an execution of $[\mathcal{A}]_{1/n} \times [\mathcal{B} - \varphi]$ can be decomposed as follows:

$\omega_1 \omega_2 \omega_3 \omega_4 \omega_5 \omega_6 \omega_7 \omega_8$

- ω_1 to ω_2 have cycle-bounded reachability in \mathcal{A}.
- ω_3 to ω_4 are inactive parts: reachability in $R^* (\mathcal{A} \times F)$.
- ω_5 to ω_8 have the B"uchi condition of F in $R^* (\mathcal{A} \times F)$.

Theorem: CoFlatMTL robust model-checking is EXPSPACE-complete.

skip proof
When $\varphi \in \text{CoFlatMTL}$, an execution of $[\mathcal{A}]_{1/n} \times [\mathcal{B} \neg \varphi]$ can be decomposed as follows:

- **Active parts:** cycle-bounded reachability in C_A.
- **Inactive parts:** reachability in $R^*(A \times F)$.
- **Final part:** Büchi condition of F in $R^*(A \times F)$.

Theorem: CoFlatMTL robust model-checking is EXPSPACE-complete. Skip proof.
CoFlatMTL robust model-checking

When $\varphi \in \text{CoFlatMTL}$, an execution of $\llbracket A \rrbracket_{1/n} \times \llbracket B \neg \varphi \rrbracket$ can be decomposed as follows:

Active parts: cycle-bounded reachability in C_A.

Inactive parts: reachability in $R^* (A \times F)$.

Final part: Büchi condition of F in $R^* (A \times F)$.

Theorem

CoFlatMTL robust model-checking is EXPSPACE-complete.
Some intuition about the proof

Theorem

For any $n \geq 3$,

$$L([\mathcal{A}]_{1/n}) \subseteq L([\mathcal{N}^n]) \subseteq L([\mathcal{A}]_{2/n})$$

Proof. The relation $(\ell, v) \prec (\ell, v|_{X})$ is a simulation relation proving that $[\mathcal{N}^n] \sqsubseteq [\mathcal{A}]_{2/n}$.

Similarly, the relation $(\ell, v|_{X}) \prec (\ell, v)$ for v satisfying $v(x_{i+1}) - v(x_i) = 1/n$ is a simulation relation. \qed
Some intuition about the proof

Theorem

BoundedMTL and *CoFlatMTL* robust model-checking is \(\text{EXPSPACE-complete} \).

Proof.

- **BoundedMTL**: cycle-bounded reachability in the associated CAROT.
- **CoFlatMTL**:

\[
\begin{align*}
\varpi_1 & \leq h \\
\varpi_6 & \geq 2^{|\varphi|}(2W+1)
\end{align*}
\]
Some intuition about the proof

Theorem

BoundedMTL and *CoFlatMTL* robust model-checking is **EXPSPACE-complete**.

Proof.

- **BoundedMTL**: cycle-bounded reachability in the associated CAROT.
- **CoFlatMTL**: cycle-bounded reachability in C_A.

Active parts: cycle-bounded reachability in C_A.

Inactive parts: the behaviour of $\mathcal{B}_{\neg \varphi}$ is the behaviour of a non-deterministic Büchi automaton $\mathcal{F}_{\neg \varphi}$.

\leadsto reachability in $R^*(A \times \mathcal{F}_{\neg \varphi})$.

Final part: Büchi condition of $\mathcal{F}_{\neg \varphi}$ in $R^*(A \times \mathcal{F}_{\neg \varphi})$.
Outline of the talk

1. Introduction

2. A semantical approach to implementability
 - From implementability to robustness
 - Robust model checking for safety properties
 - Robust model checking for LTL properties

3. Timed Robust Model-Checking
 - Alternating timed automata and channel machines
 - A new approach to robust model checking
 - Robust Model-Checking for CoFlatMTL

4. Conclusion
Conclusion

- **Implementability and robust model checking:**
 - relax the strict semantics of timed automata;
 - new techniques, but similar complexity results;
- Future work: develop a fully CAROT-based technique; MITL robust model checking; zone-based approach, efficient algorithms, applications; synthesis of robust controllers.
Conclusion

- **Implementability and robust model checking:**
 - relax the strict semantics of timed automata;
 - new techniques, but similar complexity results;

- **Recent extension to robust verification of timed properties:**
 - new techniques for handling robustness, using networks of timed systems;
 - (partly) uses the power of CAROTs;
 - also heavily relies on earlier results about robustness.
Conclusion

- **Implementability and robust model checking:**
 - relax the strict semantics of timed automata;
 - new techniques, but similar complexity results;

- **Recent extension to robust verification of timed properties:**
 - new techniques for handling robustness, using networks of timed systems;
 - (partly) uses the power of CAROTs;
 - also heavily relies on earlier results about robustness.

- **Future work**
 - develop a fully CAROT-based technique;
 - MITL robust model checking;
 - zone-based approach, efficient algorithms, applications.
 - synthesis of robust controllers.