Verification of Multi-Agent Systems with ATL

Nicolas Markey
Joint work with François Laroussinie and Ghassan Oreiby

Lab. Specification et Verification
ENS Cachan & CNRS, France

FNRS contact day on “Synthesis and Verification”

October 18, 2006
Principles of model checking

system:

property:
Principles of model checking

system:

property:

\[G(\text{request} \Rightarrow F\text{grant}) \]
Principles of model checking

system: ⇒ property:

$G(\text{request} \Rightarrow F\text{grant})$
Principles of model checking

System:

Property:

\[G(\text{request} \Rightarrow F\text{grant}) \]

Model-checking algorithm

Yes/no
Kripke structures and temporal logics

- The system is modeled (for example) as a Kripke structure:
Kripke structures and temporal logics

- The system is modeled (for example) as a Kripke structure:

Example (of a simplified three-floor lift)

- second floor
- first floor
- ground floor
- cabin
Kripke structures and temporal logics

- The system is modeled (for example) as a Kripke structure:

Example (of a simplified three-floor lift)
Kripke structures and temporal logics

- The system is modeled (for example) as a Kripke structure:

Example (of a simplified three-floor lift)

- Cabin:
 - Second floor
 - First floor
 - Ground floor

- Button:
 - Go 2nd floor
 - Go 1st floor
 - Go gnd floor

- Doors:
 - Is open
 - Is closed

- Request:
 - Open?
 - Close?

- Press:
 - Button at floor

- Controller:
 - Up!
Kripke structures and temporal logics

- The system is modeled (for example) as a **Kripke structure**:

Example (of a simplified three-floor lift)

- **cabin**
 - second floor
 - down?
 - up?
 - first floor
 - down?
 - up?
 - ground floor
 - down?
 - up?

- **button**
 - go 2nd floor
 - go 1st floor
 - go gnd floor
 - request
 - open?
 - close?
 - press?
 - call
 - idle

- **doors**
 - is open
 - is closed
 - pb
 - ok

Kripke structures and temporal logics

- The system is modeled (for example) as a Kripke structure:

Example (of a simplified three-floor lift)

- Cabin
- Button
- Doors
- Controller
The system is modeled (for example) as a Kripke structure:
Kripke structures and temporal logics

- The system is modeled (for example) as a Kripke structure:

- The property is expressed in some (formal) specification language, e.g.:
 - propositional logic for describing an invariant of the system;

Example

$$\neg (\text{door}_1.\text{is open} \land \text{door}_2.\text{is open})$$

$$\text{door}_0.\text{is open} \Rightarrow \text{cabin. ground floor}$$
Kripke structures and temporal logics

- The system is modeled (for example) as a Kripke structure:

- The property is expressed in some (formal) specification language, e.g.:
 - propositional logic for describing an invariant of the system;
 - temporal logics, for describing properties of the executions or execution tree of the system;

Example

always (¬(door₁.is open ∧ door₂.is open))

always (button.request₂ ⇒ eventually button.served₂)
Kripke structures and temporal logics

- The system is modeled (for example) as a Kripke structure:

- The property is expressed in some (formal) specification language, e.g.:
 - propositional logic for describing an invariant of the system;
 - temporal logics, for describing properties of the executions or execution tree of the system;
 - μ-calculus, Büchi (tree) automata, ...
Temporal logics: two frameworks

- **linear-time** framework:
 - deals with one single execution at a time;

Example

Any request is eventually granted (along any execution).
Temporal logics: two frameworks

- **linear-time** framework:
 - deals with one single execution at a time;

 Example
 - Any request is eventually granted (along any execution).

- **branching-time** framework:
 - deals with the *computation tree* of the system;
 - quantification on the possible evolutions of the system.

 Example
 - *It is always possible to go to the ground floor.*
Outline of the talk

1. Introduction

2. Computation Tree Logic
 - Definition and examples
 - Expressiveness of CTL
 - CTL model-checking

3. Alternating-time Temporal Logic
 - Why multi-agent systems?
 - Modelling multi-agent systems: ATSSs and CGSSs
 - Alternating-time Temporal Logic
 - ATL model-checking
 - Implicit CGSSs

4. Conclusion
Outline of the talk

1. Introduction

2. Computation Tree Logic
 - Definition and examples
 - Expressiveness of CTL
 - CTL model-checking

3. Alternating-time Temporal Logic
 - Why multi-agent systems?
 - Modelling multi-agent systems: ATSSs and CGSSs
 - Alternating-time Temporal Logic
 - ATL model-checking
 - Implicit CGSSs

4. Conclusion
Definition (Syntax of CTL)

\[
\text{CTL} \ni \phi_s ::= p \mid \neg \phi_s \mid \phi_s \lor \phi_s \mid E \phi_p \mid A \phi_p
\]

\[
\phi_p ::= X \phi_s \mid \phi_s U \phi_s
\]

where \(p \) ranges over the set of atomic propositions.
Computation tree logic

Definition (Syntax of CTL)

\[\text{CTL} \ni \phi_s ::= p \mid \neg \phi_s \mid \phi_s \lor \phi_s \mid \text{E}\phi_p \mid \text{A}\phi_p \]

\[\phi_p ::= \text{X}\phi_s \mid \phi_s \text{U} \phi_s \]

where \(p \) ranges over the set of atomic propositions.

Definition (Semantics of CTL)

Given a state \(q \) of a Kripke structure \(\mathcal{K} = \langle Q, \delta, \ell \rangle \), and an execution \(\rho \) of \(\mathcal{K} \) starting in \(q \), we define:

\[\mathcal{K}, q \models p \iff p \in \ell(q) \]

\[\mathcal{K}, q \models \neg \phi_s \iff \mathcal{K}, q \not\models \phi_s \]

\[\mathcal{K}, q \models \phi_s \lor \psi_s \iff \mathcal{K}, q \models \phi_s \text{ or } \mathcal{K}, q \models \psi_s \]
Computation tree logic

Definition (Syntax of CTL)

\[
\text{CTL} \ni \phi_s ::= \ p \ | \ \neg \phi_s \ | \ \phi_s \lor \phi_s \ | \ E\phi_p \ | \ A\phi_p \\
\phi_p ::= X\phi_s \ | \ \phi_s U \phi_s
\]

where \(p \) ranges over the set of atomic propositions.

Definition (Semantics of CTL)

Given a state \(q \) of a Kripke structure \(K = \langle Q, \delta, \ell \rangle \), and an execution \(\rho \) of \(K \) starting in \(q \), we define:

\[
K, q \models E\phi_p \iff \exists \rho' \text{ starting in } q, \ K, \rho' \models \phi_p \\
K, q \models A\phi_p \iff \forall \rho' \text{ starting in } q, \ K, \rho' \models \phi_p
\]
Computation tree logic

Definition (Syntax of CTL)

\[\text{CTL} \ni \phi_s ::= p \mid \neg \phi_s \mid \phi_s \lor \phi_s \mid E\phi_p \mid A\phi_p \]

\[\phi_p ::= X\phi_s \mid \phi_s U \phi_s \]

where \(p \) ranges over the set of atomic propositions.

Definition (Semantics of CTL)

Given a state \(q \) of a Kripke structure \(\mathcal{K} = \langle Q, \delta, \ell \rangle \), and an execution \(\rho \) of \(\mathcal{K} \) starting in \(q \), we define:

\[\mathcal{K}, \rho \models X\phi_s \iff \mathcal{K}, \rho_1 \models \phi_s \]

\[\mathcal{K}, \rho \models \phi_s U \psi_s \iff \exists n \geq 0, \mathcal{K}, \rho_n \models \psi_s \]

and \(\forall 0 \leq m < n. \mathcal{K}, \rho_m \models \phi_s \)
Computation tree logic

Definition (Semantics of CTL)

Given a state q of a Kripke structure $\mathcal{K} = \langle Q, \delta, \ell \rangle$, and an execution ρ of \mathcal{K} starting in q, we define:

\[\mathcal{K}, \rho \models X \phi_s \iff \mathcal{K}, \rho_1 \models \phi_s \]
\[\mathcal{K}, \rho \models \phi_s U \psi_s \iff \exists n \geq 0, \mathcal{K}, \rho_n \models \psi_s \]
and $\forall 0 \leq m < n. \mathcal{K}, \rho_m \models \phi_s$

Definition

\[F \phi_s \overset{\text{def}}{=} \text{true U } \phi_s \quad ("eventually" \phi_s) \]
\[G \phi_s \overset{\text{def}}{=} \neg F \neg \phi_s \quad ("always" \phi_s) \]
Examples of CTL properties

Examples

- The cabin is always present when the doors are open:

 \[\text{AG}(\text{door}_0.\text{is open} \Rightarrow \text{cabin.ground floor}) \]
Examples of CTL properties

Examples

- The cabin is always present when the doors are open:
 \[\text{AG}(\text{door}_0.\text{is open} \Rightarrow \text{cabin.ground floor}) \]

- Any request is eventually served
 \[\text{AG}(\text{button}_2.\text{call} \Rightarrow \text{AF door}_2.\text{is open}) \]
Examples of CTL properties

Examples

- The cabin is always present when the doors are open:
 \[\text{AG}(\text{door}_0.\text{is open} \Rightarrow \text{cabin.ground floor}) \]

- Any request is eventually served
 \[\text{AG}(\text{button}_2.\text{call} \Rightarrow \text{AF door}_2.\text{is open}) \]

- It is always possible to go to the ground floor
 \[\text{AG}(\text{EF door}_0.\text{is open}) \]
Examples of CTL properties

Examples

- The cabin is always present when the doors are open:
 \[\text{AG}(\text{door}_0.\text{is open} \Rightarrow \text{cabin.ground floor}) \]

- Any request is eventually served
 \[\text{AG}(\text{button}_2.\text{call} \Rightarrow \text{AF door}_2.\text{is open}) \]

- It is always possible to go to the ground floor
 \[\text{AG}(\neg \text{controller.failure} \Rightarrow \text{E} \left(\neg \text{controller.failure} \mathbin{\text{U}} \left(\text{controller.failure} \mathbin{\lor} \text{door}_0.\text{is open} \right) \right)) \]
Outline of the talk

1. Introduction

2. Computation Tree Logic
 - Definition and examples
 - Expressiveness of CTL
 - CTL model-checking

3. Alternating-time Temporal Logic
 - Why multi-agent systems?
 - Modelling multi-agent systems: ATSSs and CGSSs
 - Alternating-time Temporal Logic
 - ATL model-checking
 - Implicit CGSSs

4. Conclusion
Expressiveness of CTL

Definition

Let $K = (Q, \delta, \ell)$ and $K' = (Q', \delta', \ell')$ be two Kripke structures, and $R \subseteq Q \times Q'$. The relation R is a **bisimulation** if the following conditions hold:

- if $(q, q') \in R$, then $\ell(q) = \ell(q')$;
- for any $(q, q') \in R$, and any $(q, r) \in \delta$, there exists $(q', r') \in \delta'$ s.t. $(r, r') \in R$;
- conversely, for any $(q, q') \in R$, and any $(q', r') \in \delta'$, there exists $(q, r) \in \delta$ s.t. $(r, r') \in R$.

Two states q and q' are bisimilar if there exists a bisimulation R s.t. $(q, q') \in R$.

Expressiveness of CTL

Definition

Let $\mathcal{K} = \langle Q, \delta, \ell \rangle$ and $\mathcal{K'} = \langle Q', \delta', \ell' \rangle$ be two Kripke structures, and $R \subseteq Q \times Q'$. The relation R is a **bisimulation** if the following conditions hold:

- if $(q, q') \in R$, then $\ell(q) = \ell(q')$;
- for any $(q, q') \in R$, and any $(q, r) \in \delta$, there exists $(q', r') \in \delta'$ s.t. $(r, r') \in R$;
- conversely, for any $(q, q') \in R$, and any $(q', r') \in \delta'$, there exists $(q, r) \in \delta$ s.t. $(r, r') \in R$.

Example

![Diagram of two Kripke structures](image-url)
Expressiveness of CTL

Definition

Let $\mathcal{K} = \langle Q, \delta, \ell \rangle$ and $\mathcal{K}' = \langle Q', \delta', \ell' \rangle$ be two Kripke structures, and $R \subseteq Q \times Q'$. The relation R is a bisimulation if the following conditions hold:

1. if $(q, q') \in R$, then $\ell(q) = \ell(q')$;
2. for any $(q, q') \in R$, and any $(q, r) \in \delta$, there exists $(q', r') \in \delta'$ s.t. $(r, r') \in R$;
3. conversely, for any $(q, q') \in R$, and any $(q', r') \in \delta'$, there exists $(q, r) \in \delta$ s.t. $(r, r') \in R$.

Counter-example

Diagram: Two Kripke structures \mathcal{K} and \mathcal{K}' with states and transitions labeled. The image shows an example of a bisimulation relation R between the two structures.
Expressiveness of CTL

- CTL characterizes bisimulation:

Theorem (Hennessy, 1980)

Two states of (finitely-branching) Kripke structures are bisimilar iff they satisfy exactly the same CTL formulas.
Expressiveness of CTL

- CTL characterizes bisimulation:

Theorem (Hennessy, 1980)

Two states of (finitely-branching) Kripke structures are bisimilar iff they satisfy exactly the same CTL formulas.

- CTL can encode the behavior of a (finite) Kripke structure:

Theorem (Browne, 1988)

Given a Kripke structure \mathcal{K}, there exists a CTL formula $\Phi_\mathcal{K}$ s.t., for any \mathcal{K}',

$$\mathcal{K}' \models \Phi_\mathcal{K} \iff \mathcal{K}' \text{ and } \mathcal{K} \text{ are bisimilar.}$$
Expressiveness of CTL

- CTL characterizes bisimulation:

 Theorem (Hennessy, 1980)

 Two states of (finitely-branching) Kripke structures are bisimilar iff they satisfy exactly the same CTL formulas.

- CTL can encode the behavior of a (finite) Kripke structure:

 Theorem (Browne, 1988)

 Given a Kripke structure \mathcal{K}, there exists a CTL formula $\Phi_{\mathcal{K}}$ s.t., for any \mathcal{K}',

 $$\mathcal{K}' \models \Phi_{\mathcal{K}} \iff \mathcal{K}' \text{ and } \mathcal{K} \text{ are bisimilar.}$$

But:

- CTL can’t express fairness: “formula ϕ holds infinitely often”:

 $$\text{EGF } \phi \neq \text{ EG EF } \phi$$
Outline of the talk

1. Introduction

2. Computation Tree Logic
 - Definition and examples
 - Expressiveness of CTL
 - CTL model-checking

3. Alternating-time Temporal Logic
 - Why multi-agent systems?
 - Modelling multi-agent systems: ATSSs and CGSs
 - Alternating-time Temporal Logic
 - ATL model-checking
 - Implicit CGSs

4. Conclusion
Let $\mathcal{K} = \langle Q, \delta, \ell \rangle$, and $\phi \in \text{CTL}$. Computing the set of states satisfying ϕ is PTIME-complete, and can be achieved in time $O(|\phi| \times |\delta|)$.
Theorem

Let $K = \langle Q, \delta, \ell \rangle$, and $\phi \in CTL$. Computing the set of states satisfying ϕ is PTIME-complete, and can be achieved in time $O(|\phi| \times |\delta|)$.

Proof.

- labeling algorithm: we recursively label each state with the set of subformulas it satisfies;
CTL model-checking

Theorem

Let $\mathcal{K} = \langle Q, \delta, \ell \rangle$, and $\phi \in \text{CTL}$. Computing the set of states satisfying ϕ is PTIME-complete, and can be achieved in time $O(|\phi| \times |\delta|)$.

Proof.

- labeling algorithm: we recursively label each state with the set of subformulas it satisfies;
- sufficient to consider only modalities EX, EG and EU:

\[
\begin{align*}
\text{AX} \phi & \equiv \neg \text{EX} \neg \phi \\
\text{A} \phi \text{ U } \psi & \equiv \neg (\text{E} \neg \psi \text{ U } (\neg \phi \land \neg \psi)) \land \neg \text{EG} \neg \psi
\end{align*}
\]

The number of subformulas only increases linearly.
Theorem

Let $\mathcal{K} = \langle Q, \delta, \ell \rangle$, and $\phi \in \text{CTL}$. Computing the set of states satisfying ϕ is PTIME-complete, and can be achieved in time $O(|\phi| \times |\delta|)$.

Proof.

- labeling algorithm: we recursively label each state with the set of subformulas it satisfies;
- sufficient to consider only modalities EX, EG and EU.
- one labelling procedure for each of those modalities.
Outline of the talk

1. Introduction

2. Computation Tree Logic
 - Definition and examples
 - Expressiveness of CTL
 - CTL model-checking

3. Alternating-time Temporal Logic
 - Why multi-agent systems?
 - Modelling multi-agent systems: ATMs and CGSs
 - Alternating-time Temporal Logic
 - ATL model-checking
 - Implicit CGSs

4. Conclusion
Why multi-agent systems?

Example

The fact that it is always possible to reach the ground floor is expressed in CTL as

\[AG \ EF_{door_0}.is\ open \]

We rather meant

A user has a strategy for reaching the ground floor.
Why multi-agent systems?

Example

The fact that it is always possible to reach the ground floor is expressed in CTL as

\[AG \ EF_{\text{door}_0 \text{.is open}} \]

We rather meant

A user has a strategy for reaching the ground floor.

We’d like to be able to reason about the ability of an agent to achieve some goal against a (hostile) environment.
Outline of the talk

1. Introduction

2. Computation Tree Logic
 - Definition and examples
 - Expressiveness of CTL
 - CTL model-checking

3. Alternating-time Temporal Logic
 - Why multi-agent systems?
 - Modelling multi-agent systems: ATSSs and CGSSs
 - Alternating-time Temporal Logic
 - ATL model-checking
 - Implicit CGSSs

4. Conclusion
Modelling multi-agent systems: ATSs

Definition (AHK97)

A multi-agent system can be modelled as an alternating transition system (ATS) $\mathcal{A} = \langle Q, \delta, \ell, \mathbb{A}, Mv \rangle$ s.t.:

- $\langle Q, \delta, \ell \rangle$ is a Kripke structure,
- $\mathbb{A} = \{ A_1, ..., A_p \}$ is a finite set of agents.
- $Mv: Q \times A \rightarrow P(P(\delta))$ defines, in each state and for each agent, a set of possible moves, with the following requirements:
 - $\forall q, \forall A_i, \forall m \in Mv(q, A_i). m \subseteq \delta \cap \{q\} \times Q$
 - $\forall q, \forall (m_{A_i})_{i \leq p}. m_{A_i} \in Mv(q, A_i)$ is a singleton.
Modelling multi-agent systems: ATSs

Definition (AHK97)

A multi-agent system can be modelled as an alternating transition system (ATS) \(\mathcal{A} = \langle Q, \delta, \ell, A, \text{Mv} \rangle \) s.t.:

- \(\langle Q, \delta, \ell \rangle \) is a Kripke structure,
- \(A = \{ A_1, \ldots, A_p \} \) is a finite set of agents,
- \(\text{Mv}: Q \times A \to \mathcal{P}(\mathcal{P}(\delta)) \) defines, in each state and for each agent, a set of possible moves, with the following requirements:

\[
\forall q, \forall A_i, \forall m \in \text{Mv}(q, A_i). \quad m \subseteq \delta \cap \{ q \} \times Q
\]

\[
\forall q, \forall (m_{A_i}) \text{ s.t. } m_{A_i} \in \text{Mv}(q, A_i). \quad \bigcap_{i \leq p} m_{A_i} \text{ is a singleton.}
\]
Modelling multi-agent systems: ATSSs

Example

\[\mathbb{A} = \{\text{Prime, Even}\} \]

\[
\begin{align*}
\text{Mv}(q, \text{Prime}) &= \{\{q_2, q_3\}, \{q_1, q_4\}\} \\
\text{Mv}(q, \text{Even}) &= \{\{q_2, q_4\}, \{q_1, q_3\}\}
\end{align*}
\]
Modelling multi-agent systems: ATSS

Example

\[\mathbb{A} = \{\text{Prime, Even}\} \]

\[\text{Mv}(q, \text{Prime}) = \{\{q_2, q_3\}, \{q_1, q_4\}\} \]

\[\text{Mv}(q, \text{Even}) = \{\{q_2, q_4\}, \{q_1, q_3\}\} \]
Modelling multi-agent systems: ATSS

Example

\[\mathbb{A} = \{\text{Prime, Even}\} \]

\[Mv(q, \text{Prime}) = \{\{q_2, q_3\}, \{q_1, q_4\}\} \]

\[Mv(q, \text{Even}) = \{\{q_2, q_4\}, \{q_1, q_3\}\} \]
Strategies and outcomes

Definition

- Next\((q) = \{ q' \mid \exists (m_{A_i})_{i \text{ s.t.}} \forall i. \ m_{A_i} \in Mv(q, A_i) \text{ and } \bigcap_i m_{A_i} = \{ q \rightarrow q' \}\};\)
Strategies and outcomes

Definition

- \(\text{Next}(q) = \{ q' \mid \exists (m_{A_i}) \text{s.t.} \) \(\forall i. m_{A_i} \in \text{Mv}(q, A_i) \) \(\text{and } \bigcap_i m_{A_i} = \{q \rightarrow q'\}\);

- An **execution** of an ATS is an infinite sequence \(\rho = q_0 \ q_1 \ q_2 \ldots \) s.t. \(q_{j+1} \in \text{Next}(q_j) \) for all \(j \);
Strategies and outcomes

Definition

- \(\text{Next}(q) = \{ q' \mid \exists (m_{A_i}) \text{s.t.} \) \\
 \quad \forall i. \ m_{A_i} \in Mv(q, A_i) \) and \(\bigcap_i m_{A_i} = \{ q \to q' \} \); \\
- An execution of an ATS is an infinite sequence \(\rho = q_0 q_1 q_2 \ldots \) \\
 s.t. \(q_{j+1} \in \text{Next}(q_j) \) for all \(j \); \\
- A strategy for player \(A_i \) is a function \(f_{A_i} : Q^* \to \delta \) s.t. \\
 \forall q_0, q_1, \ldots, q_k. \ f_{A_i}(q_0, q_1, \ldots, q_k) \in Mv(q_k, A_i) \).
Strategies and outcomes

Definition

- **Next**(q) = \{ q' | \exists (m_{A_i})_i s.t.
 \[\forall i. \text{ } m_{A_i} \in Mv(q, A_i) \text{ and } \bigcap_i m_{A_i} = \{ q \rightarrow q' \} \}; \]

- An **execution** of an ATS is an infinite sequence $\rho = q_0 q_1 q_2 \ldots$ s.t. $q_{j+1} \in \text{Next}(q_j)$ for all j;

- A **strategy** for player A_i is a function $f_{A_i} : Q^* \rightarrow \delta$ s.t.
 \[\forall q_0, q_1, \ldots, q_k. \text{ } f_{A_i}(q_0, q_1, \ldots, q_k) \in Mv(q_k, A_i). \]

- The **outcomes** of a strategy f_{A_i} from q are the executions $\rho = q_0 q_1 q_2 \ldots$ s.t. $q_0 = q$ and
 \[\forall j. \text{ } (q_j, q_{j+1}) \in f_{A_i}(q_0, q_1, \ldots, q_j). \]
Strategies and outcomes

Definition

- Next(q) = { q' | ∃(mA_i) s.t.
 \[\forall i. \ mA_i \in Mv(q, A_i) \text{ and } \bigcap_i mA_i = \{q \rightarrow q'\} \}; \]

- An execution of an ATS is an infinite sequence \(\rho = q_0 q_1 q_2 ... \) s.t. \(q_{j+1} \in \text{Next}(q_j) \) for all \(j \);

- A strategy for player \(A_i \) is a function \(f_{A_i} : Q^* \rightarrow \delta \) s.t.
 \[\forall q_0, q_1, ..., q_k. \quad f_{A_i}(q_0, q_1, ..., q_k) \in Mv(q_k, A_i). \]

- The outcomes of a strategy \(f_{A_i} \) from \(q \) are the executions \(\rho = q_0 q_1 q_2 ... \) s.t. \(q_0 = q \) and
 \[\forall j. \quad (q_j, q_{j+1}) \in f_{A_i}(q_0, q_1, ..., q_j). \]

Remark

The notion of strategy extend to coalitions of agent: a strategy for coalition \(\{A_{i_1}, ..., A_{i_n}\} \) is a set of individual strategies \(\{f_{A_{i_1}}, ..., f_{A_{i_n}}\} \).
Modelling multi-agent systems: ATSSs

Example

$\mathbb{A} = \{\text{Prime, Even}\}$

$Mv(q, \text{Prime}) = \{\{q_2, q_3\}, \{q_1, q_4\}\}$

$Mv(q, \text{Even}) = \{\{q_2, q_4\}, \{q_1, q_3\}\}$

$Mv(q_i, \ast) = \{\{q\}\}$
Example

\[A = \{\text{Prime}, \text{Even}\} \]

\[
\begin{align*}
Mv(q, \text{Prime}) &= \{\{q_2, q_3\}, \{q_1, q_4\}\} \\
Mv(q, \text{Even}) &= \{\{q_2, q_4\}, \{q_1, q_3\}\} \\
Mv(q_i, \ast) &= \{\{q\}\}
\end{align*}
\]

Player Even has a strategy to never the same \(q_i\) twice consecutively:

\[
\begin{align*}
f_{\text{Even}}(\ldots, q_1, q) &= \{q_2, q_4\} \\
f_{\text{Even}}(\ldots, q_2, q) &= \{q_1, q_3\} \\
f_{\text{Even}}(\ldots, q_3, q) &= \{q_2, q_4\} \\
f_{\text{Even}}(\ldots, q_4, q) &= \{q_1, q_3\}
\end{align*}
\]
Modelling multi-agent systems: AT斯

Example

\[\mathbb{A} = \{ \text{Prime, Even} \} \]

\[
\begin{align*}
\text{Mv}(q, \text{Prime}) &= \{ \{ q_2, q_3 \}, \{ q_1, q_4 \} \} \\
\text{Mv}(q, \text{Even}) &= \{ \{ q_2, q_4 \}, \{ q_1, q_3 \} \} \\
\text{Mv}(q_i, \ast) &= \{ \{ q \} \}
\end{align*}
\]

- Player Even has no strategy to never visit \(q_3 \) and \(q_4 \).
- Player Prime has no strategy to eventually visit \(q_3 \) or \(q_4 \).
Modelling multi-agent systems: ATSs

Example

\[
\mathbb{A} = \{\text{Prime, Even}\}
\]

\[
Mv(q, \text{Prime}) = \{\{q_2, q_3\}, \{q_1, q_4\}\}
\]

\[
Mv(q, \text{Even}) = \{\{q_2, q_4\}, \{q_1, q_3\}\}
\]

\[
Mv(q_i, \ast) = \{\{q\}\}
\]

Remarks

- Games played on ATSs are not determined.
Modelling multi-agent systems: ATSSs

Example

![ATSS Diagram]

$\mathcal{A} = \{\text{Prime, Even}\}$

$\text{Mv}(q, \text{Prime}) = \{\{q_2, q_3\}, \{q_1, q_4\}\}$

$\text{Mv}(q, \text{Even}) = \{\{q_2, q_4\}, \{q_1, q_3\}\}$

$\text{Mv}(q_i, *) = \{\{q\}\}$

Remarks

- Games played on ATSSs are not determined.
- Turn-based ATSSs are a special case of ATSSs where, in each state,
 - the moves of one of the players is a set of singletons,
 - the other players have only one move, containing all the possible transitions from the current state.
Definition (AHK02)

A multi-agent system can be modelled as an concurrent game structure (CGS) $\mathcal{C} = \langle Q, \delta, \ell, \mathbb{A}, M_v, Edg \rangle$ s.t.:

- $\langle Q, \delta, \ell \rangle$ is a Kripke structure;
Modelling multi-agent systems: CGSs

Definition (AHK02)

A multi-agent system can be modelled as an concurrent game structure (CGS) \(C = \langle Q, \delta, \ell, A, Mv, Edg \rangle \) s.t.:

- \(\langle Q, \delta, \ell \rangle \) is a Kripke structure;
- \(A = \{A_1, \ldots, A_p\} \) is a finite set of agents,
- \(Mv: Q \times A \rightarrow \mathcal{P}(\mathbb{Z}^+) \),
- \(Edg: Q \times \mathbb{Z}^+ \rightarrow \delta \) is the transition table.
Modelling multi-agent systems: CGSs

Example

\[
\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle
\]

<table>
<thead>
<tr>
<th>Even</th>
<th>Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q₁</td>
</tr>
<tr>
<td>1</td>
<td>q₃</td>
</tr>
</tbody>
</table>
Modelling multi-agent systems: CGSs

Example

- **Graphical Representation**
 - Nodes: \(q, q_1, q_2, q_3, q_4 \)
 - Edges: \(q \) to \(q_1, q_2, q_3, q_4 \)

- **Transition Table**
<table>
<thead>
<tr>
<th>(\text{Even})</th>
<th>(\text{Prime})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(q_1)</td>
</tr>
<tr>
<td>1</td>
<td>(q_3)</td>
</tr>
</tbody>
</table>

\(\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle \)
Modelling multi-agent systems: CGSs

Example

$$\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle$$

<table>
<thead>
<tr>
<th>Prime</th>
<th>Even</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>q_1</td>
</tr>
<tr>
<td>1</td>
<td>q_3</td>
</tr>
<tr>
<td>1</td>
<td>q_2</td>
</tr>
</tbody>
</table>

$q_1 \rightarrow q \rightarrow q_2 \rightarrow q_3 \rightarrow q_4$
Modelling multi-agent systems: CGSs

Example

- States: q_1, q_2, q_3, q_4
- Transitions:
 - $q_1 \xrightarrow{0,0} q$
 - $q_2 \xrightarrow{1,1} q$
 - $q_3 \xrightarrow{1,0} q$
 - $q_4 \xrightarrow{0,1} q$

- Transition Table:

<table>
<thead>
<tr>
<th>Prime</th>
<th>Even</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>q_1</td>
</tr>
<tr>
<td>1</td>
<td>q_3</td>
</tr>
</tbody>
</table>
The notions of successor, execution, strategy and outcome are defined similarly to the case of ATSs.
How do ATSSs and CGSSs compare?

Definition (AHKV98)

Let B_1 and B_2 be two models of concurrent games over the same set \mathbb{A} of agents. Then $R \subseteq Q_1 \times Q_2$ is an alternating bisimulation when, for any $(q, q') \in R$, the following conditions hold:

- $\ell_1(q) = \ell_2(q')$;
- for any coalition $A \subseteq \mathbb{A}$, we have
 \[
 \forall m : A \rightarrow Mv_1(q, A). \exists m' : A \rightarrow Mv_2(q', A).
 \]
 \[
 \forall r' \in \text{Next}_2(q', A, m'). \exists r \in \text{Next}_1(q, A, m). (r, r') \in R.
 \]
- symmetrically, for any coalition $A \subseteq \mathbb{A}$, we have
 \[
 \forall m' : A \rightarrow Mv_2(q', A). \exists m : A \rightarrow Mv_1(q, A).
 \]
 \[
 \forall r \in \text{Next}_1(q, A, m). \exists r' \in \text{Next}_2(q', A, m'). (r, r') \in R.
 \]
How do ATSSs and CGSSs compare?

Theorem

ATSs and CGSSs have the same expressive power w.r.t. alternating bisimulation.
How do ATSSs and CGSSs compare?

Theorem

ATSs and CGSs have the same expressive power w.r.t. alternating bisimulation.

Proof.

- translating an ATS into a CGS is easy.

Example

\[
\begin{align*}
\mathcal{M}_v(q, \text{Prime}) &= \left\{ \{q_2, q_3\}, \{q_1, q_4\} \right\} \\
\mathcal{M}_v(q, \text{Even}) &= \left\{ \{q_2, q_4\}, \{q_1, q_3\} \right\}
\end{align*}
\]
How do ATSs and CGSs compare?

Theorem

ATSs and CGSs have the same expressive power w.r.t. alternating bisimulation.

Proof.

- translating an ATS into a CGS is easy.

Example

\[
Mv(q, \text{Prime}) = \{\{q_2, q_3\}, \{q_1, q_4\}\}
\]

\[
Mv(q, \text{Even}) = \{\{q_2, q_4\}, \{q_1, q_3\}\}
\]
How do ATSSs and CGSSs compare?

Theorem

ATSs and CGSSs have the same expressive power w.r.t. alternating bisimulation.

Proof.

- translating an ATSS into a CGSS is easy.

Example

\[
\begin{align*}
Mv(q, \text{Prime}) &= \{\{q_2, q_3\}, \{q_1, q_4\}\} \\
Mv(q, \text{Even}) &= \{\{q_2, q_4\}, \{q_1, q_3\}\}
\end{align*}
\]
How do ATSs and CGSs compare?

Theorem

ATSs and CGSs have the same expressive power w.r.t. alternating bisimulation.

Proof.

- translating an ATS into a CGS is easy.

Example

\[
\begin{align*}
Mv(q, \text{Prime}) &= \{ \{q_2, q_3\}, \{q_1, q_4\} \} \\
Mv(q, \text{Even}) &= \{ \{q_2, q_4\}, \{q_1, q_3\} \}
\end{align*}
\]
How do ATSs and CGSs compare?

Theorem

ATSs and CGSs have the same expressive power w.r.t. alternating bisimulation.

Proof.

- translating an ATS into a CGS is easy.

Example

![Diagram of states and transitions](image)

\[Mv(q, \text{Prime}) = \{\{q_2, q_3\}, \{q_1, q_4\}\} \]

\[Mv(q, \text{Even}) = \{\{q_2, q_4\}, \{q_1, q_3\}\} \]
How do ATSSs and CGSSs compare?

Theorem

ATSs and CGSSs have the same expressive power w.r.t. alternating bisimulation.

Proof.

- translating an ATS into a CGS is easy.

Example

\[
M_v(q, \text{Prime}) = \{\{q_2, q_3\}, \{q_1, q_4\}\}
\]

\[
M_v(q, \text{Even}) = \{\{q_2, q_4\}, \{q_1, q_3\}\}
\]
How do ATSs and CGSs compare?

Theorem

ATSs and CGSs have the same expressive power w.r.t. alternating bisimulation.

Proof.
- translating an ATS into a CGS is easy.
- the other direction is more involved:

Example

[Diagram showing the states A, B, C, D with transitions labeled as pairs of numbers like ⟨1,2⟩, ⟨2,2⟩, etc.]
How do ATSs and CGSs compare?

Theorem

ATSs and CGSs have the same expressive power w.r.t. alternating bisimulation.

Proof.

- translating an ATS into a CGS is easy.
- the other direction is more involved:

Example

Naive approach

<table>
<thead>
<tr>
<th>Move</th>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{B, D}</td>
<td>{A, B, D}</td>
</tr>
<tr>
<td>2</td>
<td>{C, D}</td>
<td>{C, D}</td>
</tr>
<tr>
<td>3</td>
<td>{A, D}</td>
<td>{C, D}</td>
</tr>
</tbody>
</table>
How do ATSs and CGSs compare?

Theorem

ATSs and CGSs have the same expressive power w.r.t. alternating bisimulation.

Proof.

- translating an ATS into a CGS is easy.
- the other direction is more involved:

Example

![Diagram](image)

Correct approach

<table>
<thead>
<tr>
<th>Move</th>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{B_{1.1}, D_{1.2}, D_{1.3}}</td>
<td>{A_{3.1}, B_{1.1}, D_{2.1}}</td>
</tr>
<tr>
<td>2</td>
<td>{C_{2.2}, C_{2.3}, D_{2.1}}</td>
<td>{C_{2.2}, D_{1.2}, D_{3.2}}</td>
</tr>
<tr>
<td>3</td>
<td>{A_{3.1}, D_{3.2}, D_{3.3}}</td>
<td>{C_{2.3}, D_{1.3}, D_{3.3}}</td>
</tr>
</tbody>
</table>
How do ATSSs and CGSSs compare?

Theorem

ATSs and CGSSs have the same expressive power w.r.t. alternating bisimulation.

Proof.

- translating an ATS into a CGS is easy.
- the other direction is more involved.

Remark

This translation of an ATS into a CGS yields an exponential blowup.
This translation of a CGS into an ATS is quadratic.
Outline of the talk

1. Introduction

2. Computation Tree Logic
 - Definition and examples
 - Expressiveness of CTL
 - CTL model-checking

3. Alternating-time Temporal Logic
 - Why multi-agent systems?
 - Modelling multi-agent systems: ATSSs and CGSSs
 - Alternating-time Temporal Logic
 - ATL model-checking
 - Implicit CGSSs

4. Conclusion
Alternating-time Temporal Logic

Definition (Syntax of ATL [AHK97, AHK02])

$$\text{ATL } \ni \phi_s ::= p \mid \neg \phi_s \mid \phi_s \lor \phi_s \mid \langle A \rangle \phi_p$$

$$\phi_p ::= X \phi_s \mid G \phi_s \mid \phi_s U \phi_s$$

where p ranges over 2^{AP}, and A ranges over 2^A.
Alternating-time Temporal Logic

Definition (Syntax of ATL [AHK97,AHK02])

\[
\text{ATL} \ni \phi_s ::= p \mid \neg \phi_s \mid \phi_s \lor \phi_s \mid \langle A \rangle \phi_p
\]

\[
\phi_p ::= X \phi_s \mid G \phi_s \mid \phi_s U \phi_s
\]

where \(p \) ranges over \(2^{\text{AP}} \), and \(A \) ranges over \(2^{\text{A}} \).

Definition (Semantics of ATL)

The semantics is similar to that of CTL, except:

\[
\mathcal{B},q \models \langle A \rangle \phi_p \iff \exists f_A \in \text{Strategy}(A).
\]

\[
\forall \rho \in \text{Outcomes}(q,f_A). \mathcal{B},\rho \models \phi_p
\]
Alternating-time Temporal Logic

Definition (Semantics of ATL)

The semantics is similar to that of CTL, except:

\[
B, q \models \langle A \rangle \phi_p \iff \exists f_A \in \text{Strategy}(A).
\]

\[
\forall \rho \in \text{Outcomes}(q, f_A). B, \rho \models \phi_p
\]

ATL subsumes CTL:

\[
E \phi_p \equiv \langle A \rangle \phi_p
\]

\[
A \phi_p \equiv \langle \emptyset \rangle \phi_p
\]
Theorem

\[\langle A \rangle \phi_s W \psi_s \text{ cannot be expressed in ATL, where } \]
\[\phi_s W \psi_s \overset{\text{def}}{=} \phi_s U \psi_s \lor G \psi_s. \]
Expressiveness of ATL

Theorem

\(\langle A \rangle \phi_s W \psi_s \) cannot be expressed in ATL, where

\[\phi_s W \psi_s \overset{\text{def}}{=} \phi_s U \psi_s \lor G \psi_s. \]

This is surprising since, in CTL, we have:

\[
E \phi W \psi \equiv E \phi U \psi \lor EG \phi
\]

\[
A \phi W \psi \equiv \neg E(\neg \psi) U (\neg \phi \land \neg \psi).
\]

But:

\(\langle A \rangle (G \phi \lor \phi U \psi) \) is not an ATL formula

\(\langle A \rangle \phi U \psi \lor \langle A \rangle G \phi \not\equiv \langle A \rangle \phi W \psi. \)
Expressiveness of ATL

Theorem

$\langle A \rangle \phi_s W \psi_s$ cannot be expressed in ATL.

Proof.

\[S_1' \]

\[(3.1), (4.2) \]

\[a \]

\[(1.2), (1.3), (2.1), (3.2), (3.3) \]

\[b \]

\[a_i \]

\[(2.2) \]

\[(2.3) \]

\[(4.3) \]

\[s_{i-1}' \]

\[(1.1) \]

\[a \]

\[(1.1) \]

\[(2.2) \]

\[(2.3) \]

\[(1.1) \]

\[b \]

\[a_{i-1} \]

\[a \]

\[(2.2) \]

\[(2.3) \]

\[(1.1) \]

\[s_i \]

\[(3.1), (4.2) \]

\[a \]

\[(2.2) \]

\[(2.3) \]

\[(1.1) \]

\[b \]

\[a_1 \]

\[(1.2), (1.3), (2.1), (3.2), (3.3) \]

\[b \]

\[a_1 \]

\[(2.2) \]

\[(2.3) \]

\[(1.1) \]

\[a \]

\[(3.1) \]

\[s_1 \]

\[(1.2), (1.3), (2.1), (3.2), (3.3) \]

\[a \]

\[(3.1) \]

\[s_1 \]

\[(1.2), (1.3), (2.1), (3.2), (3.3) \]

\[\neg a, \neg b \]
Expressiveness of ATL

Theorem

\[\langle A \rangle \phi_s \mathbf{W} \psi_s \text{ cannot be expressed in ATL.} \]

In the sequel, we use the following definition of ATL:

Definition

\[
\begin{align*}
\text{ATL} \ni \phi_s & ::= p \mid \neg \phi_s \mid \phi_s \lor \phi_s \mid \langle A \rangle \phi_p \\
\phi_p & ::= X\phi_s \mid \phi_s \mathbf{W} \psi_s \mid \phi_s \mathbf{U} \phi_s
\end{align*}
\]

where \(p \) ranges over \(2^{\text{AP}} \), and \(A \) ranges over \(2^{\text{A}} \).

Equivalently, we could have defined and added:

\[
[A] \phi_s \overset{\text{def}}{=} \neg \langle A \rangle \neg \phi_s.
\]
Outline of the talk

1. Introduction

2. Computation Tree Logic
 - Definition and examples
 - Expressiveness of CTL
 - CTL model-checking

3. Alternating-time Temporal Logic
 - Why multi-agent systems?
 - Modelling multi-agent systems: ATSSs and CGSSs
 - Alternating-time Temporal Logic
 - ATL model-checking
 - Implicit CGSSs

4. Conclusion
<table>
<thead>
<tr>
<th>Model-checking ATL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorem (AHK02)</td>
</tr>
<tr>
<td>ATL model-checking over CGSs is PTIME-complete.</td>
</tr>
</tbody>
</table>
Theorem (AHK02)

ATL model-checking over CGSs is PTIME-complete.

Proof.

- recursive labeling algorithm, similar to that of CTL;
Model-checking ATL

Theorem (AHK02)

ATL model-checking over CGSs is PTIME-complete.

Proof.

- recursive labeling algorithm, similar to that of CTL;
- \(\text{CPre}(A, L) = \{ q \mid \exists m_A \cdot \text{Next}(q, A, m_A) \subseteq L \} \)
Model-checking ATL

Theorem (AHK02)

ATL model-checking over CGSs is PTIME-complete.

Proof.

- recursive labeling algorithm, similar to that of CTL;
- \(\text{CPre}(A, L) = \{ q \mid \exists m_A \cdot \text{Next}(q, A, m_A) \subseteq L \} \)
- labeling e.g. with \(\langle A \rangle \phi_s U \psi_s \):
 - first label the states satisfying \(\psi_2 \);
 - then compute the controllable predecessors of the labeled states, and label those satisfying \(\phi_s \), until the fixpoint is reached.
Model-checking ATL

Theorem (AHK02)

ATL model-checking over CGSs is PTIME-complete.

Proof.

- recursive labeling algorithm, similar to that of CTL;
- $\text{CPre}(A, L) = \{ q \mid \exists m_A \cdot \text{Next}(q, A, m_A) \subseteq L \}$
- labeling e.g. with $\langle A \rangle \phi_s U \psi_s$:
 - first label the states satisfying ψ_2;
 - then compute the controllable predecessors of the labeled states, and label those satisfying ϕ_s, until the fixpoint is reached.

Remark

This algorithm runs in time $O(|\phi| \times |\text{Edg}|)$.
ATL model-checking over ATSs is PTIME-complete.
Model-checking ATL

Theorem (AHK97)

ATL model-checking over ATSs is PTIME-complete.

This theorem is not correct: the algorithm (similar to the previous one) is linear **only in the size of the underlying CGS**.
Theorem (AHK97)

ATL model-checking over ATSs is PTIME-complete.

This theorem is not correct: the algorithm (similar to the previous one) is linear only in the size of the underlying CGS.

Theorem (AHK97, corrected)

ATL model-checking over ATSs is PTIME-complete in the following cases:

- when the number of player is fixed;
- when the ATS is turn-based.
Theorem

\[\text{ATL model-checking over ATSSs is } \Delta_2^P\text{-complete}. \]
Model-checking ATL

Theorem

ATL model-checking over ATSs is Δ^P_2-complete.

\[
\begin{align*}
\Delta^P_3 &= \text{PTIME}^{\Sigma^P_2} \\
\Sigma^P_2 &= \text{NP}^{\Sigma^P_1} \\
\Pi^P_2 &= \text{coNP}^{\Sigma^P_1} \\
\Delta^P_2 &= \text{PTIME}^{\Sigma^P_1} \\
\Sigma^P_1 &= \text{NP} \\
\Pi^P_1 &= \text{coNP}
\end{align*}
\]

\[\text{PTIME}^{\Sigma^P_1} = \text{PTIME}^{\text{NP}} = \text{can be computed in polynomial time by a Turing machine having access to an NP oracle.}\]
Model-checking ATL

Theorem

ATL model-checking over ATSs is Δ^P_2-complete.

Proof.

- Δ^P_2-algorithm: computing $CPre$ can be achieved in NP.
Model-checking ATL

Theorem

ATL model-checking over ATSs is Δ_2^P-complete.

Proof.

- Δ_2^P-algorithm: computing CPre can be achieved in NP.
- We sketch the proof of NP-hardness, using 3SAT:
Model-checking ATL

Theorem

ATL model-checking over ATSs is Δ_2^P-complete.

Proof.

- Δ_2^P-algorithm: computing CPre can be achieved in NP.
- We sketch the proof of NP-hardness, using 3SAT:

\[
C = p \lor \neg q \lor r \quad \leadsto \quad \begin{cases}
 c_0 = \neg p \lor \neg q \lor \neg r \\
 c_1 = \neg p \lor \neg q \lor r \\
 c_2 = \neg p \lor q \lor \neg r \\
 c_3 = \neg p \lor q \lor r \\
 c_4 = p \lor \neg q \lor \neg r \\
 c_5 = p \lor \neg q \lor r \\
 c_6 = p \lor q \lor \neg r \\
 c_7 = p \lor q \lor r
\end{cases}
\]
Model-checking ATL

Theorem

ATL model-checking over ATSs is Δ^P_2-complete.
Model-checking ATL

Theorem

ATL model-checking over ATSs is Δ^P_2-complete.

1 player (P_1 to P_k) per atomic proposition:

- $P_l \leadsto \{ c^i_j | c^i_j \text{ not made true by } P_l \}$
- $\neg P_l \leadsto \{ c^i_j | c^i_j \text{ not made true by } \neg P_l \}$
Model-checking ATL

Theorem

ATL model-checking over ATSs is Δ^P_2-complete.

1 player (P_1 to P_k) per atomic proposition:

- $P_l \rightsquigarrow \{ c^i_j \mid c^i_j \text{ not made true by } P_l \}$
- $\neg P_l \rightsquigarrow \{ c^i_j \mid c^i_j \text{ not made true by } \neg P_l \}$

Once those players have chosen their moves, exactly one clause c^i_j per original clause C^i belongs to the intersection of the chosen sets.

\[
\begin{align*}
p &= \top \\
q &= \top \\
r &= \bot
\end{align*}
\]

E.g. $\Rightarrow \neg p \lor \neg q \lor r$

\[\begin{array}{c}
C^1 \\
C^2 \\
\vdots \\
C^n
\end{array} \begin{array}{c}
c^1_0 \\
c^1_1 \\
c^1_2 \\
c^1_3 \\
c^1_4 \\
c^1_5 \text{ yellow} \\
c^1_6 \\
c^1_7 \\
\vdots \\
c^n_0 \\
c^n_1 \\
c^n_2 \\
c^n_3 \text{ yellow} \\
c^n_4 \\
c^n_5 \\
c^n_6 \\
c^n_7 \\
\end{array} \]

(q0)
Model-checking ATL

Theorem

ATL model-checking over ATSSs is Δ^P_2-complete.

1 player (P_1 to P_k) per atomic proposition:
- $P_l \leadsto \{ c^i_j \mid c^i_j \text{ not made true by } P_l \}$
- $\neg P_l \leadsto \{ c^i_j \mid c^i_j \text{ not made true by } \neg P_l \}$

1 extra player chooses one set among \(\{c^1_0, \ldots, c^1_7\} \) to \(\{c^n_0, \ldots, c^n_7\} \)
Model-checking ATL

Theorem

ATL model-checking over ATSSs is \(\Delta_2^P\)-complete.

1 player (\(P_1\) to \(P_k\)) per atomic proposition:
- \(P_l \leadsto \{ c^i_j \mid c^i_j \text{ not made true by } P_l \}\)
- \(\neg P_l \leadsto \{ c^i_j \mid c^i_j \text{ not made true by } \neg P_l \}\)

1 extra player chooses one set among \(\{c^1_0, ..., c^1_7\}\) to \(\{c^n_0, ..., c^n_7\}\)

Lemma

The 3-SAT instance is true iff

\[q_0 \models \langle P_1, ..., P_k \rangle \mathbf{X} \neg \]
Outline of the talk

1. Introduction

2. Computation Tree Logic
 - Definition and examples
 - Expressiveness of CTL
 - CTL model-checking

3. Alternating-time Temporal Logic
 - Why multi-agent systems?
 - Modelling multi-agent systems: ATs and CGs
 - Alternating-time Temporal Logic
 - ATL model-checking
 - Implicit CGs

4. Conclusion
Implicit CGSs

Definition

An implicit CGS is a CGS where

- The transition function: in each q, it is given
 $$((\phi_0, q_0), \cdots, (\phi_n, q_n))$$ where $q_i \in Q$, ϕ_i is a boolean combination of propositions $m_{A_j} = c$, and $\phi_n = \top$;

- $\text{Edg}(q, m_{A_1}, \cdots, m_{A_k}) = q_j$ s.t.
 $$j = \min \{ i \mid \phi_i(q, m_{A_1}, \cdots, m_{A_k}) = \top \}$$
Implicit CGSs

Definition

An **implicit CGS** is a CGS where

- The transition function: in each \(q \), it is given
 \(((\phi_0, q_0), \cdots, (\phi_n, q_n))\) where \(q_i \in Q \), \(\phi_i \) is a boolean combination of propositions \(m_{A_j} = c \), and \(\phi_n = \top \);
- \(\text{Edg}(q, m_{A_1}, \cdots, m_{A_k}) = q_j \) s.t.
 \[
 j = \min\{i \mid \phi_i(q, m_{A_1}, \cdots, m_{A_k}) = \top\}
 \]

Theorem

ATL model-checking on implicit CGSs is \(\Delta^P_3 \)-complete.
Implicit CGSs

Definition

An **implicit CGS** is a CGS where

- The transition function: in each q, it is given
 $((\phi_0, q_0), \cdots, (\phi_n, q_n))$ where $q_i \in Q$, ϕ_i is a boolean combination of propositions $m_{A_j} = c$, and $\phi_n = \top$;

- $\text{Edg}(q, m_{A_1}, \cdots, m_{A_k}) = q_j$ s.t.
 $$j = \min \{i \mid \phi_i(q, m_{A_1}, \cdots, m_{A_k}) = \top\}$$

[Diagram showing relationships between explicit and implicit CGSs and ATS with annotations for exponential, quadratic, linear, and cubic.]

Conclusion

- **multi-agent systems:**
 - nice framework for modeling the interactions of several agents acting on a system;
 - useful for checking controllability and synthesizing controllers;
 - several different models.

- **alternating-time temporal logic:**
 - extension of CTL for dealing with strategies;
 - reasonable complexity, exponential in the number of agents.
Conclusion

- **multi-agent systems:**
 - nice framework for modeling the interactions of several agents acting on a system;
 - useful for checking controllability and synthesizing controllers;
 - several different models.

- **alternating-time temporal logic:**
 - extension of CTL for dealing with strategies;
 - reasonable complexity, exponential in the number of agents.

Future works:
- extending ATL with fairness: EATL, EATL⁺;
- timed models for multi-agent systems;
- timed extensions of ATL.