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Introduction

• Temporal logics are nice specification languages.
“Any problem is followed eventually by an alarm”

G( problem ⇒ F alarm )

• Past operators make specification easier to write.
“Whenever the alarm rings, then there has been some problem in the past”

G( alarm ⇒ F−1 problem )

We can express this property without F−1:

¬
(

(¬ problem) U (alarm ∧ ¬ problem )
)
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Forgettable past

Sometimes it is useful to forget the past.
Assume the alarm has a reset button.

“After a reset, if the alarm rings, then there has been some problem in the past”

G
(

reset ⇒ G ( alarm ⇒ F−1 problem )
)

Is it the intended specification ? no !

We do not want to take problems that occured before the reset into account.
We want the reset to also reset the past.

The N modality (“from Now on”) allows us to forget these past states:

G
(

reset ⇒ N G ( alarm ⇒ F−1 problem )
)
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Outline
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Definition

NLTL formulae are built from:

• atomic propositions (For ex. problem, alarm),

• boolean combinators (∧, ∨, ¬)

• future modalities: X, U (LTL)

• past modalities: X−1, S (PLTL)

• modality N

• plus all the standard abbreviations:

F ϕ
def
= > U ϕ G ϕ

def
= ¬ F ¬ ϕ

F−1 ϕ
def
= > S ϕ G−1 ϕ

def
= ¬ F−1 ¬ ϕ

Temporal Logic with Forgettable Past – p.5/29



Definition

NLTL formulae are built from:

• atomic propositions (For ex. problem, alarm),

• boolean combinators (∧, ∨, ¬)

• future modalities: X, U (LTL)

• past modalities: X−1, S (PLTL)

• modality N

• plus all the standard abbreviations:

F ϕ
def
= > U ϕ G ϕ

def
= ¬ F ¬ ϕ

F−1 ϕ
def
= > S ϕ G−1 ϕ

def
= ¬ F−1 ¬ ϕ

Temporal Logic with Forgettable Past – p.5/29



Definition

NLTL formulae are built from:

• atomic propositions (For ex. problem, alarm),

• boolean combinators (∧, ∨, ¬)

• future modalities: X, U

(LTL)

• past modalities: X−1, S (PLTL)

• modality N

• plus all the standard abbreviations:

F ϕ
def
= > U ϕ G ϕ

def
= ¬ F ¬ ϕ

F−1 ϕ
def
= > S ϕ G−1 ϕ

def
= ¬ F−1 ¬ ϕ

Temporal Logic with Forgettable Past – p.5/29



Definition

NLTL formulae are built from:

• atomic propositions (For ex. problem, alarm),

• boolean combinators (∧, ∨, ¬)

• future modalities: X, U

(LTL)

• past modalities: X−1, S

(PLTL)

• modality N

• plus all the standard abbreviations:

F ϕ
def
= > U ϕ G ϕ

def
= ¬ F ¬ ϕ

F−1 ϕ
def
= > S ϕ G−1 ϕ

def
= ¬ F−1 ¬ ϕ

Temporal Logic with Forgettable Past – p.5/29



Definition

NLTL formulae are built from:

• atomic propositions (For ex. problem, alarm),

• boolean combinators (∧, ∨, ¬)

• future modalities: X, U

(LTL)

• past modalities: X−1, S

(PLTL)

• modality N

• plus all the standard abbreviations:

F ϕ
def
= > U ϕ G ϕ

def
= ¬ F ¬ ϕ

F−1 ϕ
def
= > S ϕ G−1 ϕ

def
= ¬ F−1 ¬ ϕ

Temporal Logic with Forgettable Past – p.5/29



The N operator

NLTL formulae are interpreted over pairs π, i: a position along a labeled

run (π, ξ).

Semantics of N: Suffix π(i)π(i+ 1) . . .

π, i |= N ϕ iff πi, 0 |= ϕ

Basic properties:

N(ϕ ∨ ψ) ≡ Nϕ ∨ Nψ N¬ϕ ≡ ¬Nϕ

N X−1ϕ ≡ ⊥ N(ϕ S ψ) ≡ Nψ

Nϕ ≡ ϕ if ϕ is pure-future
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Expressive power

We use two notions of equivalence:

• (global) equivalence: ≡

ϕ ≡ ψ
def
⇔ ∀ π, ∀ i,

(

π, i |= ϕ ⇔ π, i |= ψ
)

• initial equivalence: ≡i

ϕ ≡i ψ
def
⇔ ∀ π,

(

π, 0 |= ϕ ⇔ π, 0 |= ψ
)
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Expressive power

• It is well known that past operators do not add expressive power:

“Any PLTL formula is initially equivalent to an LTL formula.”

where PLTL is L(U,X,S,X−1) and LTL is L(U,X) . [Kam68, Gab89]

• This result is based on the separation property:

“Any PLTL formula is equivalent to a boolean combination of pure-future and
pure-past formulae.” (Example)

• Then LTL, PLTL and NLTL have the same expressive power.
(any Nϕ formula is equivalent to a LTL formula)

What about succinctness ?
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Expressive power - succinctness

Theorem: PLTL can be exponentially more succinct than LTL.

Proof: Let {p0, p1, . . . , pn} be a set of atomic propositions.

• The property “any two future states that agree on p1, . . . , pn also agree on p0”
can only be expressed by PLTL (or LTL) formulae of size at least Ω(2n).
[EVW97].

• The PLTL formula

Φ
def
= G

[( n∧

i=1

(
pi ⇔ F−1(¬X−1> ∧ pi)

))

⇒
(

p0 ⇔ F−1(¬X−1> ∧ p0)
)]

states that “any future state that agrees with the initial state on p1, . . . , pn

also agrees on p0”. Let Ψ be an LTL formula initially equivalent to Φ.

• Therefore (G Ψ) expresses the first property and |Ψ| is in Ω(2n) !
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Expressive power - succinctness

Theorem: NLTL can be exponentially more succinct than PLTL.

Proof: Let {p0, p1, . . . , pn} be a set of atomic propositions.
We still write

Φ = G
[( n∧

i=1

(
pi ⇔ F−1(¬X−1> ∧ pi)

))

⇒
(

p0 ⇔ F−1(¬X−1> ∧ p0)
)]

The NLTL formula G N Φ clearly states that “any two future states that agree on
p1, . . . , pn also agree on p0”.
Then any equivalent PLTL formula has a size Ω(2n).
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Verification problems

We are interested in:

• Satisfiability: Given φ, is there some π, i such that: π, i |= φ ?

• Initial satisfiability: Given φ, is there some π such that: π, 0 |= φ ?

• Model checking: Given φ and a Kripke structure K, do we have, for

any run π of K: π, 0 |= φ ?

• . . .
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Deciding satisfiability for linear time TL

• Let Φ be an LTL or PLTL formula. [VW94]

Build a Büchi automaton AΦ = 〈Q,→, F 〉 with Q = 2SubF(Φ).
Φ is satisfiable ⇔ there exists an accepting run in AΦ.

|AΦ| is in O(2|Φ|)

Emptiness in BA is NLOGSPACE-complete

}

⇒ Algorithm in PSPACE.

• Let Φ be an LTL formula. [Var94]
Build an Alternating Büchi automaton AΦ = 〈Q, δ, F 〉 with Q = SubF(Φ).
Φ is satisfiable ⇔ there exists an accepting run in AΦ.

|AΦ| is in O(|Φ|)

Emptiness for ABA is PSPACE-complete

}

⇒ Algorithm in PSPACE.

These algorithms are optimal: LTL satisfiability is PSPACE-hard.
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Deciding satisfiability for LTL

SubF(Φ) = set of Φ subformulae + negations + X( U ).
States are Atoms: coherent subsets of SubF(Φ)

aUb, Xc,
X(aUb),a

aUb, a, c,
X(aUb),Xc

aUb, b,
c, Xc

+ fairness conditions for Until formulae.

ϕ ∈ SubF(Φ) is satisfiable iff there is an accepting run going through A 3 ϕ.
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Deciding satisfiability for PLTL

SubF(Φ) = set of Φ subformulae + . . . + X−1( S ) + X−1>.

aUb, a,
X(aUb)

aUb, X−1a,
X(aUb),a, Xc

aUb, a, X−1a
X(aUb),Xc, c

aUb, b, X−1a
X(aUb),Xc, c

aUb, b, c
X(aUb),Xc
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And NLTL ?

π, i |= ψ

πi, 0 |= ϕ σi ∈ 2AP : atomic propositions of π(i).

π

•••

ψ, . . .
Nϕ

. . .

. . .

. . .

σi

σi+1

σi

σi+2

σi+1 πi

¬X−1>
ϕ,. . .

. . .

. . .

σi
σi+1

σi+2

Temporal Logic with Forgettable Past – p.15/29



And NLTL ?

π, i |= ψ

πi, 0 |= ϕ

σi ∈ 2AP : atomic propositions of π(i).

π

•••

ψ, . . .
Nϕ

. . .

. . .

. . .

σi

σi+1

σi

σi+2

σi+1 πi

¬X−1>
ϕ,. . .

. . .

. . .

σi
σi+1

σi+2

Temporal Logic with Forgettable Past – p.15/29



And NLTL ?

π, i |= ψ

πi, 0 |= ϕ

σi ∈ 2AP : atomic propositions of π(i).

π

•••

ψ, . . .
Nϕ

. . .

. . .

. . .

σi

σi+1

σi

σi+2

σi+1

πi

¬X−1>
ϕ,. . .

. . .

. . .

σi
σi+1

σi+2

Temporal Logic with Forgettable Past – p.15/29



And NLTL ?

π, i |= ψ

πi, 0 |= ϕ σi ∈ 2AP : atomic propositions of π(i).

π

•••

ψ, . . .
Nϕ

. . .

. . .

. . .
σi

σi+1

σi

σi+2

σi+1 πi

¬X−1>
ϕ,. . .

. . .

. . .

σi
σi+1

σi+2

Temporal Logic with Forgettable Past – p.15/29



Alternating Büchi automata for NLTL formulae

AΦ = 〈Σ, S, ρ, S0,F〉 is defined as follows:

• Σ = 2AP , S = Atom(Φ), S0 = {A ∈ Atom(Φ) | ¬X−1> ∈ A},

• ρ(A, σ) =
∨

A′∈Succ(A,σ)

(

A′ ∧
∨

A′′∈Now(A′)

A′′
)

with:

Succ(A, σA)
def
= {A′ ∈ Atom(Φ) | X−1> ∈ A′ and

∀Xα ∈ SubF(Φ), Xα ∈ A⇔ α ∈ A′ and

∀X−1α ∈ SubF(Φ), α ∈ A⇔ X−1α ∈ A′}

Now(A′)
def
= {A′′ ∈ S0 | ∀Nα ∈ SubF(Φ),Nα ∈ A′ ⇔ Nα, α ∈ A′′}

• F = {F1, . . . , Fk} with:

Fi
def
= {A ∈ Atom(Φ) | ¬X−1> ∈ A or ψi ∈ A or ¬(ϕiUψi) ∈ A}
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• ρ(A, σ) =
∨

A′∈Succ(A,σ)

(

A′ ∧
∨

A′′∈Now(A′)

A′′
)

with:

Succ(A, σA)
def
= {A′ ∈ Atom(Φ) | X−1> ∈ A′ and

∀Xα ∈ SubF(Φ), Xα ∈ A⇔ α ∈ A′ and

∀X−1α ∈ SubF(Φ), α ∈ A⇔ X−1α ∈ A′}
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An accepting run π

Initial atomξ(π(i)) = σi

σ1

z

σ2

σ3

x
ϕ

y

•••
|x| = i = 3

|z| = i0 = 1

posr(x) = i0 = 1

Lemma: πi0 , i− i0 |= ϕ ⇔ ∃ x s.t.
(

|x| = i, posr(x) = i0, ϕ ∈ x
)
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Alternating Büchi automata for NLTL formulae

Proposition: Let Φ be an NLTL formula, then Φ is satisfiable iff there

exists an accepting run in AFΦ starting from a node containing FΦ.

Proposition: Non-emptiness problem of alternating Büchi automaton

can be solved in space polynomial in the size of the automaton. [VW94]

Theorem: Satisfiability for NLTL formulae can be decided in

EXPSPACE.

Theorem: Model checking Kripke structures for NLTL formulae can be

decided in EXPSPACE.
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EXPSPACE-hardness of NLTL model checking

Proposition: Satisfiability and model checking for NLTL are EXPSPACE-hard.

Let M = 〈Σ, QM, q0, qF , T 〉 be a Turing machine that operates in exponential
space. The run of M on some input word w of length n can be described by an
NLTL-formula Φ:

• The set AP contains Σ, QM, and {c1, ..., cn}.

• A configuration of M is a sequence of 2n states:

p=0

σ0

q

¬cn

...

¬c3
¬c2
¬c1

p=1

σ1

c1

...

¬c2
¬c3

¬cn

p=2

σ2

¬c1

...

c2
¬c3

¬cn

p=3

σ3

c1

...

c2
¬c3

¬cn

p=2n−2

�

¬c1

...

c2
c3

cn

p=2n−1

�

c1

...

c2
c3

cn

w

Temporal Logic with Forgettable Past – p.19/29



EXPSPACE-hardness of NLTL model checking

Proposition: Satisfiability and model checking for NLTL are EXPSPACE-hard.

Let M = 〈Σ, QM, q0, qF , T 〉 be a Turing machine that operates in exponential
space. The run of M on some input word w of length n can be described by an
NLTL-formula Φ:

• The set AP contains Σ, QM, and {c1, ..., cn}.

• A configuration of M is a sequence of 2n states:

p=0

σ0

q

¬cn

...

¬c3
¬c2
¬c1

p=1

σ1

c1

...

¬c2
¬c3

¬cn

p=2

σ2

¬c1

...

c2
¬c3

¬cn

p=3

σ3

c1

...

c2
¬c3

¬cn

p=2n−2

�

¬c1

...

c2
c3

cn

p=2n−1

�

c1

...

c2
c3

cn

w

Temporal Logic with Forgettable Past – p.19/29



EXPSPACE-hardness of NLTL model checking

The formula Φ has to state that:

• each state contains exactly one proposition from Σ;

• exactly one control state occurs in each configuration of M;

• the 2n cells of the tape are all present, in increasing order:

G
(

(c1 ⇔ X¬c1) ∧
n∧

i=2

(

(¬(ci ⇔ Xci)) ⇔ (ci−1 ∧ X¬ci−1)
))
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EXPSPACE-hardness of NLTL model checking

• The transitions (a, b, c) → b′ of M are respected.

We define

φp=0
def
=

n∧

i=1

¬ci φsv
def
=

n∧

i=1

(ci ⇔ F−1(¬X−1> ∧ ci))

and write

GN
( ∧

(a,b,c)→b′

(a ∧ Xb ∧ X2c) ⇒ (¬φp=0U(φp=0 ∧ X(¬φp=0U(φsv ∧ Xb′))
)

This is to check whether we
can apply the transition.

This ensures that we go to
the very next configuration.

Here we control that the transi-
tion has been correctly applied.
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Model checking a path

Theorem: Model checking an NLTL-formula φ along an ultimately-periodic path
can be done in polynomial-time.

For LTL, we can directly apply CTL algorithm since each state has exactly one
successor.

· · · . . .

¬aa X−1a ?

But this does not apply for PLTL because some states don’t have exactly one
predecessor.
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Model checking a path

A loop of type (m, p) is an ultimately periodic KS where the initial part has length m
and the periodic part has length p.

m
︷ ︸︸ ︷

p
︷ ︸︸ ︷

. . . . . .

. . .

. . .

Lemma: For any loop L of type (m, p), for any NLTL formula φ with at most h(φ)
nested past-time modalities, and for any k ≥ m+ p · h(φ), we have

π, k |= φ ⇔ π, k + p |= φ.
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Model checking a path

Proposition Model checking NLTL along one path is PTIME-hard.

Proof: Reduction from Circuit-Value.

n10 ∨ n11∨ n12∨

n5

∧
n6

∧
n7

∧ n8∧
n9

∧

n2

∨
n3

∨
n4

∨

n1

∧

n13 0 n141level 0:

level 1:

level 2:

level 3:

level 4:

n1 n2 n3 n13 n14···

ϕ0
def
= 1

ϕ2k+1
def
= NF(φnext ∧ ϕ2k)

ϕ2k+2
def
= NG(φnext ⇒ ϕ2k+1)

where φnext
def
=

∨

(n,n′)∈E

(n′ ∧ F−1(n ∧ ¬X−1>))
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Conclusion

• NLTL can make specifications easier and more natural.

• That NLTL offers more expressive power can be stated formally as a
succinctness gap. The same holds between PLTL and LTL.

• Satisfiability and model checking are EXPSPACE-complete for NLTL.

There is a price for N !

• Model checking a path is PTIME-complete.
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Examples of separation

G( alarm ⇒ F−1 problem )

≡

F−1problem ∨ ¬
(

(¬ problem) U (alarm ∧ ¬ problem )
)

≡i

¬
(

(¬ problem) U (alarm ∧ ¬ problem )
)

And:

G
(

reset ⇒ N G ( alarm ⇒ F−1 problem )
)

≡i

G
[

reset ⇒ ¬
(

(¬ problem) U (alarm ∧ ¬ problem )
)
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Proof of the result of [EVW97]

Claim: Let φn be a PLTL formula expressing the following property:

“any two future positions that agree on p1, . . . , pn also agree on p0.”

We denote Ln = {u ∈ {p0, . . . , pn} | u |= φn}. From [VW86], we know that Ln is

recognized by a Generalized Büchi Automaton B with 2O(|φn|) states.

Let {a0, . . . , a2n−1} be a sequence containing all subsets of {p1, . . . , pn}.

For K ⊆ {0, . . . , 2n − 1}, wK = b0 · · · b2n−1 with

{

bi = ai if i ∈ K

bi = ai ∪ {p0} otherwise

There are 22n

such words.

Assume K 6= K ′. Then wω
K |= φn and wK′wω

K 6|= φn. The executions of B on wK

and wK′ cannot lead to the same state. The automaton thus needs at least 22n

states...
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