
Temporal Logic with Forgettable Past

F. Laroussinie, N. Markey, Ph. Schnoebelen

{fl,markey,phs}@lsv.ens-cachan.fr

LSV, ENS de Cachan & CNRS UMR8643

Temporal Logic with Forgettable Past – p.1/29

Introduction

• Temporal logics are nice specification languages.
“Any problem is followed eventually by an alarm”

G(problem ⇒ F alarm)

• Past operators make specification easier to write.
“Whenever the alarm rings, then there has been some problem in the past”

G(alarm ⇒ F−1 problem)

We can express this property without F−1:

¬
(

(¬ problem) U (alarm ∧ ¬ problem)
)

Temporal Logic with Forgettable Past – p.2/29

Introduction

• Temporal logics are nice specification languages.
“Any problem is followed eventually by an alarm”

G(problem ⇒ F alarm)

• Past operators make specification easier to write.
“Whenever the alarm rings, then there has been some problem in the past”

G(alarm ⇒ F−1 problem)

We can express this property without F−1:

¬
(

(¬ problem) U (alarm ∧ ¬ problem)
)

Temporal Logic with Forgettable Past – p.2/29

Introduction

• Temporal logics are nice specification languages.
“Any problem is followed eventually by an alarm”

G(problem ⇒ F alarm)

• Past operators make specification easier to write.
“Whenever the alarm rings, then there has been some problem in the past”

G(alarm ⇒ F−1 problem)

We can express this property without F−1:

¬
(

(¬ problem) U (alarm ∧ ¬ problem)
)

Temporal Logic with Forgettable Past – p.2/29

Forgettable past

Sometimes it is useful to forget the past.
Assume the alarm has a reset button.

“After a reset, if the alarm rings, then there has been some problem in the past”

G
(

reset ⇒ G (alarm ⇒ F−1 problem)
)

Is it the intended specification ? no !

We do not want to take problems that occured before the reset into account.
We want the reset to also reset the past.

The N modality (“from Now on”) allows us to forget these past states:

G
(

reset ⇒ N G (alarm ⇒ F−1 problem)
)

Temporal Logic with Forgettable Past – p.3/29

Forgettable past

Sometimes it is useful to forget the past.
Assume the alarm has a reset button.

“After a reset, if the alarm rings, then there has been some problem in the past”

G
(

reset ⇒ G (alarm ⇒ F−1 problem)
)

Is it the intended specification ?

no !

We do not want to take problems that occured before the reset into account.
We want the reset to also reset the past.

The N modality (“from Now on”) allows us to forget these past states:

G
(

reset ⇒ N G (alarm ⇒ F−1 problem)
)

Temporal Logic with Forgettable Past – p.3/29

Forgettable past

Sometimes it is useful to forget the past.
Assume the alarm has a reset button.

“After a reset, if the alarm rings, then there has been some problem in the past”

G
(

reset ⇒ G (alarm ⇒ F−1 problem)
)

Is it the intended specification ? no !

We do not want to take problems that occured before the reset into account.
We want the reset to also reset the past.

The N modality (“from Now on”) allows us to forget these past states:

G
(

reset ⇒ N G (alarm ⇒ F−1 problem)
)

Temporal Logic with Forgettable Past – p.3/29

Forgettable past

Sometimes it is useful to forget the past.
Assume the alarm has a reset button.

“After a reset, if the alarm rings, then there has been some problem in the past”

G
(

reset ⇒ G (alarm ⇒ F−1 problem)
)

Is it the intended specification ? no !

We do not want to take problems that occured before the reset into account.
We want the reset to also reset the past.

The N modality (“from Now on”) allows us to forget these past states:

G
(

reset ⇒ N G (alarm ⇒ F−1 problem)
)

Temporal Logic with Forgettable Past – p.3/29

Outline

• Definitions

• Expressive power

− Comparing expressive power of LTL and LTL+Past
− Comparing expressive power of LTL+Past and LTL+Past+Now

• Decision procedures

− Satisfiability, model checking
− Complexity
− Model checking a path

• Conclusion

Temporal Logic with Forgettable Past – p.4/29

Definition

NLTL formulae are built from:

• atomic propositions (For ex. problem, alarm),

• boolean combinators (∧, ∨, ¬)

• future modalities: X, U (LTL)

• past modalities: X−1, S (PLTL)

• modality N

• plus all the standard abbreviations:

F ϕ
def
= > U ϕ G ϕ

def
= ¬ F ¬ ϕ

F−1 ϕ
def
= > S ϕ G−1 ϕ

def
= ¬ F−1 ¬ ϕ

Temporal Logic with Forgettable Past – p.5/29

Definition

NLTL formulae are built from:

• atomic propositions (For ex. problem, alarm),

• boolean combinators (∧, ∨, ¬)

• future modalities: X, U (LTL)

• past modalities: X−1, S (PLTL)

• modality N

• plus all the standard abbreviations:

F ϕ
def
= > U ϕ G ϕ

def
= ¬ F ¬ ϕ

F−1 ϕ
def
= > S ϕ G−1 ϕ

def
= ¬ F−1 ¬ ϕ

Temporal Logic with Forgettable Past – p.5/29

Definition

NLTL formulae are built from:

• atomic propositions (For ex. problem, alarm),

• boolean combinators (∧, ∨, ¬)

• future modalities: X, U

(LTL)

• past modalities: X−1, S (PLTL)

• modality N

• plus all the standard abbreviations:

F ϕ
def
= > U ϕ G ϕ

def
= ¬ F ¬ ϕ

F−1 ϕ
def
= > S ϕ G−1 ϕ

def
= ¬ F−1 ¬ ϕ

Temporal Logic with Forgettable Past – p.5/29

Definition

NLTL formulae are built from:

• atomic propositions (For ex. problem, alarm),

• boolean combinators (∧, ∨, ¬)

• future modalities: X, U

(LTL)

• past modalities: X−1, S

(PLTL)

• modality N

• plus all the standard abbreviations:

F ϕ
def
= > U ϕ G ϕ

def
= ¬ F ¬ ϕ

F−1 ϕ
def
= > S ϕ G−1 ϕ

def
= ¬ F−1 ¬ ϕ

Temporal Logic with Forgettable Past – p.5/29

Definition

NLTL formulae are built from:

• atomic propositions (For ex. problem, alarm),

• boolean combinators (∧, ∨, ¬)

• future modalities: X, U

(LTL)

• past modalities: X−1, S

(PLTL)

• modality N

• plus all the standard abbreviations:

F ϕ
def
= > U ϕ G ϕ

def
= ¬ F ¬ ϕ

F−1 ϕ
def
= > S ϕ G−1 ϕ

def
= ¬ F−1 ¬ ϕ

Temporal Logic with Forgettable Past – p.5/29

The N operator

NLTL formulae are interpreted over pairs π, i: a position along a labeled

run (π, ξ).

Semantics of N: Suffix π(i)π(i+ 1) . . .

π, i |= N ϕ iff πi, 0 |= ϕ

Basic properties:

N(ϕ ∨ ψ) ≡ Nϕ ∨ Nψ N¬ϕ ≡ ¬Nϕ

N X−1ϕ ≡ ⊥ N(ϕ S ψ) ≡ Nψ

Nϕ ≡ ϕ if ϕ is pure-future

Temporal Logic with Forgettable Past – p.6/29

The N operator

NLTL formulae are interpreted over pairs π, i: a position along a labeled

run (π, ξ).

Semantics of N: Suffix π(i)π(i+ 1) . . .

π, i |= N ϕ iff πi, 0 |= ϕ

Basic properties:

N(ϕ ∨ ψ) ≡ Nϕ ∨ Nψ N¬ϕ ≡ ¬Nϕ

N X−1ϕ ≡ ⊥ N(ϕ S ψ) ≡ Nψ

Nϕ ≡ ϕ if ϕ is pure-future

Temporal Logic with Forgettable Past – p.6/29

Expressive power

We use two notions of equivalence:

• (global) equivalence: ≡

ϕ ≡ ψ
def
⇔ ∀ π, ∀ i,

(

π, i |= ϕ ⇔ π, i |= ψ
)

• initial equivalence: ≡i

ϕ ≡i ψ
def
⇔ ∀ π,

(

π, 0 |= ϕ ⇔ π, 0 |= ψ
)

Temporal Logic with Forgettable Past – p.7/29

Expressive power

We use two notions of equivalence:

• (global) equivalence: ≡

ϕ ≡ ψ
def
⇔ ∀ π, ∀ i,

(

π, i |= ϕ ⇔ π, i |= ψ
)

• initial equivalence: ≡i

ϕ ≡i ψ
def
⇔ ∀ π,

(

π, 0 |= ϕ ⇔ π, 0 |= ψ
)

Temporal Logic with Forgettable Past – p.7/29

Expressive power

• It is well known that past operators do not add expressive power:

“Any PLTL formula is initially equivalent to an LTL formula.”

where PLTL is L(U,X,S,X−1) and LTL is L(U,X) . [Kam68, Gab89]

• This result is based on the separation property:

“Any PLTL formula is equivalent to a boolean combination of pure-future and
pure-past formulae.” (Example)

• Then LTL, PLTL and NLTL have the same expressive power.
(any Nϕ formula is equivalent to a LTL formula)

What about succinctness ?

Temporal Logic with Forgettable Past – p.8/29

Expressive power

• It is well known that past operators do not add expressive power:

“Any PLTL formula is initially equivalent to an LTL formula.”

where PLTL is L(U,X,S,X−1) and LTL is L(U,X) . [Kam68, Gab89]

• This result is based on the separation property:

“Any PLTL formula is equivalent to a boolean combination of pure-future and
pure-past formulae.” (Example)

• Then LTL, PLTL and NLTL have the same expressive power.
(any Nϕ formula is equivalent to a LTL formula)

What about succinctness ?

Temporal Logic with Forgettable Past – p.8/29

Expressive power

• It is well known that past operators do not add expressive power:

“Any PLTL formula is initially equivalent to an LTL formula.”

where PLTL is L(U,X,S,X−1) and LTL is L(U,X) . [Kam68, Gab89]

• This result is based on the separation property:

“Any PLTL formula is equivalent to a boolean combination of pure-future and
pure-past formulae.” (Example)

• Then LTL, PLTL and NLTL have the same expressive power.
(any Nϕ formula is equivalent to a LTL formula)

What about succinctness ?

Temporal Logic with Forgettable Past – p.8/29

Expressive power

• It is well known that past operators do not add expressive power:

“Any PLTL formula is initially equivalent to an LTL formula.”

where PLTL is L(U,X,S,X−1) and LTL is L(U,X) . [Kam68, Gab89]

• This result is based on the separation property:

“Any PLTL formula is equivalent to a boolean combination of pure-future and
pure-past formulae.” (Example)

• Then LTL, PLTL and NLTL have the same expressive power.
(any Nϕ formula is equivalent to a LTL formula)

What about succinctness ?

Temporal Logic with Forgettable Past – p.8/29

Expressive power - succinctness

Theorem: PLTL can be exponentially more succinct than LTL.

Proof: Let {p0, p1, . . . , pn} be a set of atomic propositions.

• The property “any two future states that agree on p1, . . . , pn also agree on p0”
can only be expressed by PLTL (or LTL) formulae of size at least Ω(2n).
[EVW97].

• The PLTL formula

Φ
def
= G

[(n∧

i=1

(
pi ⇔ F−1(¬X−1> ∧ pi)

))

⇒
(

p0 ⇔ F−1(¬X−1> ∧ p0)
)]

states that “any future state that agrees with the initial state on p1, . . . , pn

also agrees on p0”. Let Ψ be an LTL formula initially equivalent to Φ.

• Therefore (G Ψ) expresses the first property and |Ψ| is in Ω(2n) !

Temporal Logic with Forgettable Past – p.9/29

Expressive power - succinctness

Theorem: PLTL can be exponentially more succinct than LTL.

Proof: Let {p0, p1, . . . , pn} be a set of atomic propositions.

• The property “any two future states that agree on p1, . . . , pn also agree on p0”
can only be expressed by PLTL (or LTL) formulae of size at least Ω(2n).
[EVW97].

• The PLTL formula

Φ
def
= G

[(n∧

i=1

(
pi ⇔ F−1(¬X−1> ∧ pi)

))

⇒
(

p0 ⇔ F−1(¬X−1> ∧ p0)
)]

states that “any future state that agrees with the initial state on p1, . . . , pn

also agrees on p0”. Let Ψ be an LTL formula initially equivalent to Φ.

• Therefore (G Ψ) expresses the first property and |Ψ| is in Ω(2n) !

Temporal Logic with Forgettable Past – p.9/29

Expressive power - succinctness

Theorem: PLTL can be exponentially more succinct than LTL.

Proof: Let {p0, p1, . . . , pn} be a set of atomic propositions.

• The property “any two future states that agree on p1, . . . , pn also agree on p0”
can only be expressed by PLTL (or LTL) formulae of size at least Ω(2n).
[EVW97].

• The PLTL formula

Φ
def
= G

[(n∧

i=1

(
pi ⇔ F−1(¬X−1> ∧ pi)

))

⇒
(

p0 ⇔ F−1(¬X−1> ∧ p0)
)]

states that “any future state that agrees with the initial state on p1, . . . , pn

also agrees on p0”. Let Ψ be an LTL formula initially equivalent to Φ.

• Therefore (G Ψ) expresses the first property and |Ψ| is in Ω(2n) !

Temporal Logic with Forgettable Past – p.9/29

Expressive power - succinctness

Theorem: PLTL can be exponentially more succinct than LTL.

Proof: Let {p0, p1, . . . , pn} be a set of atomic propositions.

• The property “any two future states that agree on p1, . . . , pn also agree on p0”
can only be expressed by PLTL (or LTL) formulae of size at least Ω(2n).
[EVW97].

• The PLTL formula

Φ
def
= G

[(n∧

i=1

(
pi ⇔ F−1(¬X−1> ∧ pi)

))

⇒
(

p0 ⇔ F−1(¬X−1> ∧ p0)
)]

states that “any future state that agrees with the initial state on p1, . . . , pn

also agrees on p0”. Let Ψ be an LTL formula initially equivalent to Φ.

• Therefore (G Ψ) expresses the first property and |Ψ| is in Ω(2n) !

Temporal Logic with Forgettable Past – p.9/29

Expressive power - succinctness

Theorem: PLTL can be exponentially more succinct than LTL.

Proof: Let {p0, p1, . . . , pn} be a set of atomic propositions.

• The property “any two future states that agree on p1, . . . , pn also agree on p0”
can only be expressed by PLTL (or LTL) formulae of size at least Ω(2n).
[EVW97].

• The PLTL formula

Φ
def
= G

[(n∧

i=1

(
pi ⇔ F−1(¬X−1> ∧ pi)

))

⇒
(

p0 ⇔ F−1(¬X−1> ∧ p0)
)]

states that “any future state that agrees with the initial state on p1, . . . , pn

also agrees on p0”. Let Ψ be an LTL formula initially equivalent to Φ.

• Therefore (G Ψ) expresses the first property and |Ψ| is in Ω(2n) !

Temporal Logic with Forgettable Past – p.9/29

Expressive power - succinctness

Theorem: NLTL can be exponentially more succinct than PLTL.

Proof: Let {p0, p1, . . . , pn} be a set of atomic propositions.
We still write

Φ = G
[(n∧

i=1

(
pi ⇔ F−1(¬X−1> ∧ pi)

))

⇒
(

p0 ⇔ F−1(¬X−1> ∧ p0)
)]

The NLTL formula G N Φ clearly states that “any two future states that agree on
p1, . . . , pn also agree on p0”.
Then any equivalent PLTL formula has a size Ω(2n).

Temporal Logic with Forgettable Past – p.10/29

Expressive power - succinctness

Theorem: NLTL can be exponentially more succinct than PLTL.

Proof: Let {p0, p1, . . . , pn} be a set of atomic propositions.
We still write

Φ = G
[(n∧

i=1

(
pi ⇔ F−1(¬X−1> ∧ pi)

))

⇒
(

p0 ⇔ F−1(¬X−1> ∧ p0)
)]

The NLTL formula G N Φ clearly states that “any two future states that agree on
p1, . . . , pn also agree on p0”.
Then any equivalent PLTL formula has a size Ω(2n).

Temporal Logic with Forgettable Past – p.10/29

Verification problems

We are interested in:

• Satisfiability: Given φ, is there some π, i such that: π, i |= φ ?

• Initial satisfiability: Given φ, is there some π such that: π, 0 |= φ ?

• Model checking: Given φ and a Kripke structure K, do we have, for

any run π of K: π, 0 |= φ ?

• . . .

Temporal Logic with Forgettable Past – p.11/29

Deciding satisfiability for linear time TL

• Let Φ be an LTL or PLTL formula. [VW94]

Build a Büchi automaton AΦ = 〈Q,→, F 〉 with Q = 2SubF(Φ).
Φ is satisfiable ⇔ there exists an accepting run in AΦ.

|AΦ| is in O(2|Φ|)

Emptiness in BA is NLOGSPACE-complete

}

⇒ Algorithm in PSPACE.

• Let Φ be an LTL formula. [Var94]
Build an Alternating Büchi automaton AΦ = 〈Q, δ, F 〉 with Q = SubF(Φ).
Φ is satisfiable ⇔ there exists an accepting run in AΦ.

|AΦ| is in O(|Φ|)

Emptiness for ABA is PSPACE-complete

}

⇒ Algorithm in PSPACE.

These algorithms are optimal: LTL satisfiability is PSPACE-hard.

Temporal Logic with Forgettable Past – p.12/29

Deciding satisfiability for linear time TL

• Let Φ be an LTL or PLTL formula. [VW94]

Build a Büchi automaton AΦ = 〈Q,→, F 〉 with Q = 2SubF(Φ).
Φ is satisfiable ⇔ there exists an accepting run in AΦ.

|AΦ| is in O(2|Φ|)

Emptiness in BA is NLOGSPACE-complete

}

⇒ Algorithm in PSPACE.

• Let Φ be an LTL formula. [Var94]
Build an Alternating Büchi automaton AΦ = 〈Q, δ, F 〉 with Q = SubF(Φ).
Φ is satisfiable ⇔ there exists an accepting run in AΦ.

|AΦ| is in O(|Φ|)

Emptiness for ABA is PSPACE-complete

}

⇒ Algorithm in PSPACE.

These algorithms are optimal: LTL satisfiability is PSPACE-hard.

Temporal Logic with Forgettable Past – p.12/29

Deciding satisfiability for linear time TL

• Let Φ be an LTL or PLTL formula. [VW94]

Build a Büchi automaton AΦ = 〈Q,→, F 〉 with Q = 2SubF(Φ).
Φ is satisfiable ⇔ there exists an accepting run in AΦ.

|AΦ| is in O(2|Φ|)

Emptiness in BA is NLOGSPACE-complete

}

⇒ Algorithm in PSPACE.

• Let Φ be an LTL formula. [Var94]
Build an Alternating Büchi automaton AΦ = 〈Q, δ, F 〉 with Q = SubF(Φ).
Φ is satisfiable ⇔ there exists an accepting run in AΦ.

|AΦ| is in O(|Φ|)

Emptiness for ABA is PSPACE-complete

}

⇒ Algorithm in PSPACE.

These algorithms are optimal: LTL satisfiability is PSPACE-hard.

Temporal Logic with Forgettable Past – p.12/29

Deciding satisfiability for LTL

SubF(Φ) = set of Φ subformulae + negations + X(U).
States are Atoms: coherent subsets of SubF(Φ)

aUb, Xc,
X(aUb),a

aUb, a, c,
X(aUb),Xc

aUb, b,
c, Xc

+ fairness conditions for Until formulae.

ϕ ∈ SubF(Φ) is satisfiable iff there is an accepting run going through A 3 ϕ.

Temporal Logic with Forgettable Past – p.13/29

Deciding satisfiability for LTL

SubF(Φ) = set of Φ subformulae + negations + X(U).
States are Atoms: coherent subsets of SubF(Φ)

aUb, Xc,
X(aUb),a

aUb, a, c,
X(aUb),Xc

aUb, b,
c, Xc

+ fairness conditions for Until formulae.

ϕ ∈ SubF(Φ) is satisfiable iff there is an accepting run going through A 3 ϕ.

Temporal Logic with Forgettable Past – p.13/29

Deciding satisfiability for LTL

SubF(Φ) = set of Φ subformulae + negations + X(U).
States are Atoms: coherent subsets of SubF(Φ)

aUb, Xc,
X(aUb),a

aUb, a, c,
X(aUb),Xc

aUb, b,
c, Xc

+ fairness conditions for Until formulae.

ϕ ∈ SubF(Φ) is satisfiable iff there is an accepting run going through A 3 ϕ.

Temporal Logic with Forgettable Past – p.13/29

Deciding satisfiability for PLTL

SubF(Φ) = set of Φ subformulae + . . . + X−1(S) + X−1>.

aUb, a,
X(aUb)

aUb, X−1a,
X(aUb),a, Xc

aUb, a, X−1a
X(aUb),Xc, c

aUb, b, X−1a
X(aUb),Xc, c

aUb, b, c
X(aUb),Xc

Temporal Logic with Forgettable Past – p.14/29

And NLTL ?

π, i |= ψ

πi, 0 |= ϕ σi ∈ 2AP : atomic propositions of π(i).

π

•••

ψ, . . .
Nϕ

. . .

. . .

. . .

σi

σi+1

σi

σi+2

σi+1 πi

¬X−1>
ϕ,. . .

. . .

. . .

σi
σi+1

σi+2

Temporal Logic with Forgettable Past – p.15/29

And NLTL ?

π, i |= ψ

πi, 0 |= ϕ

σi ∈ 2AP : atomic propositions of π(i).

π

•••

ψ, . . .
Nϕ

. . .

. . .

. . .

σi

σi+1

σi

σi+2

σi+1 πi

¬X−1>
ϕ,. . .

. . .

. . .

σi
σi+1

σi+2

Temporal Logic with Forgettable Past – p.15/29

And NLTL ?

π, i |= ψ

πi, 0 |= ϕ

σi ∈ 2AP : atomic propositions of π(i).

π

•••

ψ, . . .
Nϕ

. . .

. . .

. . .

σi

σi+1

σi

σi+2

σi+1

πi

¬X−1>
ϕ,. . .

. . .

. . .

σi
σi+1

σi+2

Temporal Logic with Forgettable Past – p.15/29

And NLTL ?

π, i |= ψ

πi, 0 |= ϕ σi ∈ 2AP : atomic propositions of π(i).

π

•••

ψ, . . .
Nϕ

. . .

. . .

. . .
σi

σi+1

σi

σi+2

σi+1 πi

¬X−1>
ϕ,. . .

. . .

. . .

σi
σi+1

σi+2

Temporal Logic with Forgettable Past – p.15/29

Alternating Büchi automata for NLTL formulae

AΦ = 〈Σ, S, ρ, S0,F〉 is defined as follows:

• Σ = 2AP , S = Atom(Φ), S0 = {A ∈ Atom(Φ) | ¬X−1> ∈ A},

• ρ(A, σ) =
∨

A′∈Succ(A,σ)

(

A′ ∧
∨

A′′∈Now(A′)

A′′
)

with:

Succ(A, σA)
def
= {A′ ∈ Atom(Φ) | X−1> ∈ A′ and

∀Xα ∈ SubF(Φ), Xα ∈ A⇔ α ∈ A′ and

∀X−1α ∈ SubF(Φ), α ∈ A⇔ X−1α ∈ A′}

Now(A′)
def
= {A′′ ∈ S0 | ∀Nα ∈ SubF(Φ),Nα ∈ A′ ⇔ Nα, α ∈ A′′}

• F = {F1, . . . , Fk} with:

Fi
def
= {A ∈ Atom(Φ) | ¬X−1> ∈ A or ψi ∈ A or ¬(ϕiUψi) ∈ A}

Temporal Logic with Forgettable Past – p.16/29

Alternating Büchi automata for NLTL formulae

AΦ = 〈Σ, S, ρ, S0,F〉 is defined as follows:

• Σ = 2AP , S = Atom(Φ), S0 = {A ∈ Atom(Φ) | ¬X−1> ∈ A},

• ρ(A, σ) =
∨

A′∈Succ(A,σ)

(

A′ ∧
∨

A′′∈Now(A′)

A′′
)

with:

Succ(A, σA)
def
= {A′ ∈ Atom(Φ) | X−1> ∈ A′ and

∀Xα ∈ SubF(Φ), Xα ∈ A⇔ α ∈ A′ and

∀X−1α ∈ SubF(Φ), α ∈ A⇔ X−1α ∈ A′}

Now(A′)
def
= {A′′ ∈ S0 | ∀Nα ∈ SubF(Φ),Nα ∈ A′ ⇔ Nα, α ∈ A′′}

• F = {F1, . . . , Fk} with:

Fi
def
= {A ∈ Atom(Φ) | ¬X−1> ∈ A or ψi ∈ A or ¬(ϕiUψi) ∈ A}

Temporal Logic with Forgettable Past – p.16/29

Alternating Büchi automata for NLTL formulae

AΦ = 〈Σ, S, ρ, S0,F〉 is defined as follows:

• Σ = 2AP , S = Atom(Φ), S0 = {A ∈ Atom(Φ) | ¬X−1> ∈ A},

• ρ(A, σ) =
∨

A′∈Succ(A,σ)

(

A′ ∧
∨

A′′∈Now(A′)

A′′
)

with:

Succ(A, σA)
def
= {A′ ∈ Atom(Φ) | X−1> ∈ A′ and

∀Xα ∈ SubF(Φ), Xα ∈ A⇔ α ∈ A′ and

∀X−1α ∈ SubF(Φ), α ∈ A⇔ X−1α ∈ A′}

Now(A′)
def
= {A′′ ∈ S0 | ∀Nα ∈ SubF(Φ),Nα ∈ A′ ⇔ Nα, α ∈ A′′}

• F = {F1, . . . , Fk} with:

Fi
def
= {A ∈ Atom(Φ) | ¬X−1> ∈ A or ψi ∈ A or ¬(ϕiUψi) ∈ A}

Temporal Logic with Forgettable Past – p.16/29

An accepting run π

Initial atomξ(π(i)) = σi

σ1

z

σ2

σ3

x
ϕ

y

•••
|x| = i = 3

|z| = i0 = 1

posr(x) = i0 = 1

Lemma: πi0 , i− i0 |= ϕ ⇔ ∃ x s.t.
(

|x| = i, posr(x) = i0, ϕ ∈ x
)

Temporal Logic with Forgettable Past – p.17/29

An accepting run π

Initial atomξ(π(i)) = σi

σ1

z

σ2

σ3

x
ϕ

y

•••
|x| = i = 3

|z| = i0 = 1

posr(x) = i0 = 1

Lemma: πi0 , i− i0 |= ϕ ⇔ ∃ x s.t.
(

|x| = i, posr(x) = i0, ϕ ∈ x
)

Temporal Logic with Forgettable Past – p.17/29

An accepting run π

Initial atomξ(π(i)) = σi

σ1

z

σ2

σ3

x
ϕ

y

•••
|x| = i = 3

|z| = i0 = 1

posr(x) = i0 = 1

Lemma: πi0 , i− i0 |= ϕ ⇔ ∃ x s.t.
(

|x| = i, posr(x) = i0, ϕ ∈ x
)

Temporal Logic with Forgettable Past – p.17/29

An accepting run π

Initial atomξ(π(i)) = σi

σ1

z

σ2

σ3

x
ϕ

y

•••

|x| = i = 3

|z| = i0 = 1

posr(x) = i0 = 1

Lemma: πi0 , i− i0 |= ϕ ⇔ ∃ x s.t.
(

|x| = i, posr(x) = i0, ϕ ∈ x
)

Temporal Logic with Forgettable Past – p.17/29

An accepting run π

Initial atomξ(π(i)) = σi

σ1

z

σ2

σ3

x
ϕ

y

•••
|x| = i = 3

|z| = i0 = 1

posr(x) = i0 = 1

Lemma: πi0 , i− i0 |= ϕ ⇔ ∃ x s.t.
(

|x| = i, posr(x) = i0, ϕ ∈ x
)

Temporal Logic with Forgettable Past – p.17/29

An accepting run π

Initial atomξ(π(i)) = σi

σ1

z

σ2

σ3

x
ϕ

y

•••
|x| = i = 3

|z| = i0 = 1

posr(x) = i0 = 1

Lemma: πi0 , i− i0 |= ϕ ⇔ ∃ x s.t.
(

|x| = i, posr(x) = i0, ϕ ∈ x
)

Temporal Logic with Forgettable Past – p.17/29

An accepting run π

Initial atomξ(π(i)) = σi

σ1

z

σ2

σ3

x
ϕ

y

•••
|x| = i = 3

|z| = i0 = 1

posr(x) = i0 = 1

Lemma: πi0 , i− i0 |= ϕ ⇔ ∃ x s.t.
(

|x| = i, posr(x) = i0, ϕ ∈ x
)

Temporal Logic with Forgettable Past – p.17/29

Alternating Büchi automata for NLTL formulae

Proposition: Let Φ be an NLTL formula, then Φ is satisfiable iff there

exists an accepting run in AFΦ starting from a node containing FΦ.

Proposition: Non-emptiness problem of alternating Büchi automaton

can be solved in space polynomial in the size of the automaton. [VW94]

Theorem: Satisfiability for NLTL formulae can be decided in

EXPSPACE.

Theorem: Model checking Kripke structures for NLTL formulae can be

decided in EXPSPACE.

Temporal Logic with Forgettable Past – p.18/29

EXPSPACE-hardness of NLTL model checking

Proposition: Satisfiability and model checking for NLTL are EXPSPACE-hard.

Let M = 〈Σ, QM, q0, qF , T 〉 be a Turing machine that operates in exponential
space. The run of M on some input word w of length n can be described by an
NLTL-formula Φ:

• The set AP contains Σ, QM, and {c1, ..., cn}.

• A configuration of M is a sequence of 2n states:

p=0

σ0

q

¬cn

...

¬c3
¬c2
¬c1

p=1

σ1

c1

...

¬c2
¬c3

¬cn

p=2

σ2

¬c1

...

c2
¬c3

¬cn

p=3

σ3

c1

...

c2
¬c3

¬cn

p=2n−2

�

¬c1

...

c2
c3

cn

p=2n−1

�

c1

...

c2
c3

cn

w

Temporal Logic with Forgettable Past – p.19/29

EXPSPACE-hardness of NLTL model checking

Proposition: Satisfiability and model checking for NLTL are EXPSPACE-hard.

Let M = 〈Σ, QM, q0, qF , T 〉 be a Turing machine that operates in exponential
space. The run of M on some input word w of length n can be described by an
NLTL-formula Φ:

• The set AP contains Σ, QM, and {c1, ..., cn}.

• A configuration of M is a sequence of 2n states:

p=0

σ0

q

¬cn

...

¬c3
¬c2
¬c1

p=1

σ1

c1

...

¬c2
¬c3

¬cn

p=2

σ2

¬c1

...

c2
¬c3

¬cn

p=3

σ3

c1

...

c2
¬c3

¬cn

p=2n−2

�

¬c1

...

c2
c3

cn

p=2n−1

�

c1

...

c2
c3

cn

w

Temporal Logic with Forgettable Past – p.19/29

EXPSPACE-hardness of NLTL model checking

The formula Φ has to state that:

• each state contains exactly one proposition from Σ;

• exactly one control state occurs in each configuration of M;

• the 2n cells of the tape are all present, in increasing order:

G
(

(c1 ⇔ X¬c1) ∧
n∧

i=2

(

(¬(ci ⇔ Xci)) ⇔ (ci−1 ∧ X¬ci−1)
))

Temporal Logic with Forgettable Past – p.20/29

EXPSPACE-hardness of NLTL model checking

The formula Φ has to state that:

• each state contains exactly one proposition from Σ;

• exactly one control state occurs in each configuration of M;

• the 2n cells of the tape are all present, in increasing order:

G
(

(c1 ⇔ X¬c1) ∧
n∧

i=2

(

(¬(ci ⇔ Xci)) ⇔ (ci−1 ∧ X¬ci−1)
))

Temporal Logic with Forgettable Past – p.20/29

EXPSPACE-hardness of NLTL model checking

The formula Φ has to state that:

• each state contains exactly one proposition from Σ;

• exactly one control state occurs in each configuration of M;

• the 2n cells of the tape are all present, in increasing order:

G
(

(c1 ⇔ X¬c1) ∧
n∧

i=2

(

(¬(ci ⇔ Xci)) ⇔ (ci−1 ∧ X¬ci−1)
))

Temporal Logic with Forgettable Past – p.20/29

EXPSPACE-hardness of NLTL model checking

• The transitions (a, b, c) → b′ of M are respected.

We define

φp=0
def
=

n∧

i=1

¬ci φsv
def
=

n∧

i=1

(ci ⇔ F−1(¬X−1> ∧ ci))

and write

GN
(∧

(a,b,c)→b′

(a ∧ Xb ∧ X2c) ⇒ (¬φp=0U(φp=0 ∧ X(¬φp=0U(φsv ∧ Xb′))
)

This is to check whether we
can apply the transition.

This ensures that we go to
the very next configuration.

Here we control that the transi-
tion has been correctly applied.

Temporal Logic with Forgettable Past – p.21/29

EXPSPACE-hardness of NLTL model checking

• The transitions (a, b, c) → b′ of M are respected.

We define

φp=0
def
=

n∧

i=1

¬ci φsv
def
=

n∧

i=1

(ci ⇔ F−1(¬X−1> ∧ ci))

and write

GN
(∧

(a,b,c)→b′

(a ∧ Xb ∧ X2c) ⇒ (¬φp=0U(φp=0 ∧ X(¬φp=0U(φsv ∧ Xb′))
)

This is to check whether we
can apply the transition.

This ensures that we go to
the very next configuration.

Here we control that the transi-
tion has been correctly applied.

Temporal Logic with Forgettable Past – p.21/29

EXPSPACE-hardness of NLTL model checking

• The transitions (a, b, c) → b′ of M are respected.

We define

φp=0
def
=

n∧

i=1

¬ci φsv
def
=

n∧

i=1

(ci ⇔ F−1(¬X−1> ∧ ci))

and write

GN
(∧

(a,b,c)→b′

(a ∧ Xb ∧ X2c) ⇒ (¬φp=0U(φp=0 ∧ X(¬φp=0U(φsv ∧ Xb′))
)

This is to check whether we
can apply the transition.

This ensures that we go to
the very next configuration.

Here we control that the transi-
tion has been correctly applied.

Temporal Logic with Forgettable Past – p.21/29

Model checking a path

Theorem: Model checking an NLTL-formula φ along an ultimately-periodic path
can be done in polynomial-time.

For LTL, we can directly apply CTL algorithm since each state has exactly one
successor.

· · · . . .

¬aa X−1a ?

But this does not apply for PLTL because some states don’t have exactly one
predecessor.

Temporal Logic with Forgettable Past – p.22/29

Model checking a path

Theorem: Model checking an NLTL-formula φ along an ultimately-periodic path
can be done in polynomial-time.

For LTL, we can directly apply CTL algorithm since each state has exactly one
successor.

· · · . . .
¬aa X−1a ?

But this does not apply for PLTL because some states don’t have exactly one
predecessor.

Temporal Logic with Forgettable Past – p.22/29

Model checking a path

A loop of type (m, p) is an ultimately periodic KS where the initial part has length m
and the periodic part has length p.

m
︷ ︸︸ ︷

p
︷ ︸︸ ︷

.

. . .

. . .

Lemma: For any loop L of type (m, p), for any NLTL formula φ with at most h(φ)
nested past-time modalities, and for any k ≥ m+ p · h(φ), we have

π, k |= φ ⇔ π, k + p |= φ.

Temporal Logic with Forgettable Past – p.23/29

Model checking a path

A loop of type (m, p) is an ultimately periodic KS where the initial part has length m
and the periodic part has length p.

m
︷ ︸︸ ︷

p
︷ ︸︸ ︷

.

. . .

. . .

Lemma: For any loop L of type (m, p), for any NLTL formula φ with at most h(φ)
nested past-time modalities, and for any k ≥ m+ p · h(φ), we have

π, k |= φ ⇔ π, k + p |= φ.

Temporal Logic with Forgettable Past – p.23/29

Model checking a path

A loop of type (m, p) is an ultimately periodic KS where the initial part has length m
and the periodic part has length p.

m
︷ ︸︸ ︷

p
︷ ︸︸ ︷

.

. . .

. . .

Lemma: For any loop L of type (m, p), for any NLTL formula φ with at most h(φ)
nested past-time modalities, and for any k ≥ m+ p · h(φ), we have

π, k |= φ ⇔ π, k + p |= φ.

Temporal Logic with Forgettable Past – p.23/29

Model checking a path

A loop of type (m, p) is an ultimately periodic KS where the initial part has length m
and the periodic part has length p.

m
︷ ︸︸ ︷

p
︷ ︸︸ ︷

.

. . .

. . .

Lemma: For any loop L of type (m, p), for any NLTL formula φ with at most h(φ)
nested past-time modalities, and for any k ≥ m+ p · h(φ), we have

π, k |= φ ⇔ π, k + p |= φ.

Temporal Logic with Forgettable Past – p.23/29

Model checking a path

A loop of type (m, p) is an ultimately periodic KS where the initial part has length m
and the periodic part has length p.

m
︷ ︸︸ ︷

p
︷ ︸︸ ︷

p
︷ ︸︸ ︷

p
︷ ︸︸ ︷

.

.
· · ·

.

.
· · ·

.

m

+

p







Lemma: For any loop L of type (m, p), for any NLTL formula φ with at most h(φ)
nested past-time modalities, and for any k ≥ m+ p · h(φ), we have

π, k |= φ ⇔ π, k + p |= φ.

Temporal Logic with Forgettable Past – p.24/29

Model checking a path

A loop of type (m, p) is an ultimately periodic KS where the initial part has length m
and the periodic part has length p.

m
︷ ︸︸ ︷

p
︷ ︸︸ ︷

p
︷ ︸︸ ︷

p
︷ ︸︸ ︷

.

.

· · ·
.

.
· · ·

.

m

+

p







Lemma: For any loop L of type (m, p), for any NLTL formula φ with at most h(φ)
nested past-time modalities, and for any k ≥ m+ p · h(φ), we have

π, k |= φ ⇔ π, k + p |= φ.

Temporal Logic with Forgettable Past – p.24/29

Model checking a path

A loop of type (m, p) is an ultimately periodic KS where the initial part has length m
and the periodic part has length p.

m
︷ ︸︸ ︷

p
︷ ︸︸ ︷

p
︷ ︸︸ ︷

p
︷ ︸︸ ︷

.

.
· · ·

.

.
· · ·

.

m

+

p







Lemma: For any loop L of type (m, p), for any NLTL formula φ with at most h(φ)
nested past-time modalities, and for any k ≥ m+ p · h(φ), we have

π, k |= φ ⇔ π, k + p |= φ.

Temporal Logic with Forgettable Past – p.24/29

Model checking a path

A loop of type (m, p) is an ultimately periodic KS where the initial part has length m
and the periodic part has length p.

m
︷ ︸︸ ︷

p
︷ ︸︸ ︷

p
︷ ︸︸ ︷

p
︷ ︸︸ ︷

.

.
· · ·

.

.

· · ·
.

m

+

p







Lemma: For any loop L of type (m, p), for any NLTL formula φ with at most h(φ)
nested past-time modalities, and for any k ≥ m+ p · h(φ), we have

π, k |= φ ⇔ π, k + p |= φ.

Temporal Logic with Forgettable Past – p.24/29

Model checking a path

A loop of type (m, p) is an ultimately periodic KS where the initial part has length m
and the periodic part has length p.

m
︷ ︸︸ ︷

p
︷ ︸︸ ︷

p
︷ ︸︸ ︷

p
︷ ︸︸ ︷

.

.
· · ·

.

.
· · ·

.

m

+

p







Lemma: For any loop L of type (m, p), for any NLTL formula φ with at most h(φ)
nested past-time modalities, and for any k ≥ m+ p · h(φ), we have

π, k |= φ ⇔ π, k + p |= φ.

Temporal Logic with Forgettable Past – p.24/29

Model checking a path

Proposition Model checking NLTL along one path is PTIME-hard.

Proof: Reduction from Circuit-Value.

n10 ∨ n11∨ n12∨

n5

∧
n6

∧
n7

∧ n8∧
n9

∧

n2

∨
n3

∨
n4

∨

n1

∧

n13 0 n141level 0:

level 1:

level 2:

level 3:

level 4:

n1 n2 n3 n13 n14···

ϕ0
def
= 1

ϕ2k+1
def
= NF(φnext ∧ ϕ2k)

ϕ2k+2
def
= NG(φnext ⇒ ϕ2k+1)

where φnext
def
=

∨

(n,n′)∈E

(n′ ∧ F−1(n ∧ ¬X−1>))

Temporal Logic with Forgettable Past – p.25/29

Model checking a path

Proposition Model checking NLTL along one path is PTIME-hard.

Proof: Reduction from Circuit-Value.

n10 ∨ n11∨ n12∨

n5

∧
n6

∧
n7

∧ n8∧
n9

∧

n2

∨
n3

∨
n4

∨

n1

∧

n13 0 n141level 0:

level 1:

level 2:

level 3:

level 4: n1 n2 n3 n13 n14···

ϕ0
def
= 1

ϕ2k+1
def
= NF(φnext ∧ ϕ2k)

ϕ2k+2
def
= NG(φnext ⇒ ϕ2k+1)

where φnext
def
=

∨

(n,n′)∈E

(n′ ∧ F−1(n ∧ ¬X−1>))

Temporal Logic with Forgettable Past – p.25/29

Model checking a path

Proposition Model checking NLTL along one path is PTIME-hard.

Proof: Reduction from Circuit-Value.

n10 ∨ n11∨ n12∨

n5

∧
n6

∧
n7

∧ n8∧
n9

∧

n2

∨
n3

∨
n4

∨

n1

∧

n13 0 n141level 0:

level 1:

level 2:

level 3:

level 4: n1 n2 n3 n13 n14···

ϕ0
def
= 1

ϕ2k+1
def
= NF(φnext ∧ ϕ2k)

ϕ2k+2
def
= NG(φnext ⇒ ϕ2k+1)

where φnext
def
=

∨

(n,n′)∈E

(n′ ∧ F−1(n ∧ ¬X−1>))

Temporal Logic with Forgettable Past – p.25/29

Model checking a path

Proposition Model checking NLTL along one path is PTIME-hard.

Proof: Reduction from Circuit-Value.

n10 ∨ n11∨ n12∨

n5

∧
n6

∧
n7

∧ n8∧
n9

∧

n2

∨
n3

∨
n4

∨

n1

∧

n13 0 n141level 0:

level 1:

level 2:

level 3:

level 4: n1 n2 n3 n13 n14···

ϕ0
def
= 1

ϕ2k+1
def
= NF(φnext ∧ ϕ2k)

ϕ2k+2
def
= NG(φnext ⇒ ϕ2k+1)

where φnext
def
=

∨

(n,n′)∈E

(n′ ∧ F−1(n ∧ ¬X−1>))

Temporal Logic with Forgettable Past – p.25/29

Model checking a path

Proposition Model checking NLTL along one path is PTIME-hard.

Proof: Reduction from Circuit-Value.

n10 ∨ n11∨ n12∨

n5

∧
n6

∧
n7

∧ n8∧
n9

∧

n2

∨
n3

∨
n4

∨

n1

∧

n13 0 n141level 0:

level 1:

level 2:

level 3:

level 4: n1 n2 n3 n13 n14···

ϕ0
def
= 1

ϕ2k+1
def
= NF(φnext ∧ ϕ2k)

ϕ2k+2
def
= NG(φnext ⇒ ϕ2k+1)

where φnext
def
=

∨

(n,n′)∈E

(n′ ∧ F−1(n ∧ ¬X−1>))

Temporal Logic with Forgettable Past – p.25/29

Model checking a path

Proposition Model checking NLTL along one path is PTIME-hard.

Proof: Reduction from Circuit-Value.

n10 ∨ n11∨ n12∨

n5

∧
n6

∧
n7

∧ n8∧
n9

∧

n2

∨
n3

∨
n4

∨

n1

∧

n13 0 n141level 0:

level 1:

level 2:

level 3:

level 4: n1 n2 n3 n13 n14···

ϕ0
def
= 1

ϕ2k+1
def
= NF(φnext ∧ ϕ2k)

ϕ2k+2
def
= NG(φnext ⇒ ϕ2k+1)

where φnext
def
=

∨

(n,n′)∈E

(n′ ∧ F−1(n ∧ ¬X−1>))

Temporal Logic with Forgettable Past – p.25/29

Conclusion

• NLTL can make specifications easier and more natural.

• That NLTL offers more expressive power can be stated formally as a
succinctness gap. The same holds between PLTL and LTL.

• Satisfiability and model checking are EXPSPACE-complete for NLTL.

There is a price for N !

• Model checking a path is PTIME-complete.

Temporal Logic with Forgettable Past – p.26/29

Bibliographie

[EVW97] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two

variables and unary temporal logic. In LICS’97, pages 228–235, Warsaw, Poland, 1997.

12th Annual IEEE Symposium on Logic in Computer Science, IEEE Comp. Soc. Press.

[Gab89] Dov M. Gabbay. The declarative past and imperative future: Executable temporal logic

for interactive systems. In Behnam Banieqbal, Howard Barringer, and Amir Pnueli,

editors, Conference on Temporal Logic in Specification, volume 398 of Lect. Notes in

Comp. Sci., pages 409–448. Springer, 1989.

[Kam68] Hans W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, Los

Angeles, CA, USA, 1968.

[Var94] Moshe Y. Vardi. Nontraditional applications of automata theory. In Masami Hagiya and

John C. Mitchell, editors, TACS’94, volume 789 of Lect. Notes in Comp. Sci., pages

575–597, Sendai, Japan, 1994. International Conference on Theoretical Aspects of

Computer Software, Springer.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic

program verification. In LICS’86, pages 332–344, Cambridge, Massachusets, 1986. 1st

Annual IEEE Symposium on Logic in Computer Science, IEEE Comp. Soc. Press.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Information

and Computation, 115(1):1–37, 1994.

Temporal Logic with Forgettable Past – p.27/29

Examples of separation

G(alarm ⇒ F−1 problem)

≡

F−1problem ∨ ¬
(

(¬ problem) U (alarm ∧ ¬ problem)
)

≡i

¬
(

(¬ problem) U (alarm ∧ ¬ problem)
)

And:

G
(

reset ⇒ N G (alarm ⇒ F−1 problem)
)

≡i

G
[

reset ⇒ ¬
(

(¬ problem) U (alarm ∧ ¬ problem)
)

Temporal Logic with Forgettable Past – p.28/29

Proof of the result of [EVW97]

Claim: Let φn be a PLTL formula expressing the following property:

“any two future positions that agree on p1, . . . , pn also agree on p0.”

We denote Ln = {u ∈ {p0, . . . , pn} | u |= φn}. From [VW86], we know that Ln is

recognized by a Generalized Büchi Automaton B with 2O(|φn|) states.

Let {a0, . . . , a2n−1} be a sequence containing all subsets of {p1, . . . , pn}.

For K ⊆ {0, . . . , 2n − 1}, wK = b0 · · · b2n−1 with

{

bi = ai if i ∈ K

bi = ai ∪ {p0} otherwise

There are 22n

such words.

Assume K 6= K ′. Then wω
K |= φn and wK′wω

K 6|= φn. The executions of B on wK

and wK′ cannot lead to the same state. The automaton thus needs at least 22n

states...

Temporal Logic with Forgettable Past – p.29/29

	Introduction
	Forgettable past
	Outline
	Definition
	The N {} operator
	Expressive power
	Expressive power
	Expressive power - succinctness
	Expressive power - succinctness
	Verification problems
	Deciding satisfiability for linear time TL
	Deciding satisfiability for dGGreen {ltl }
	Deciding satisfiability for dGGreen {pltl }
	And dGGreen {
ltl } ?
	Alternating Büchi automata for dGGreen {
ltl } formulae
	An accepting run $pi $
	Alternating Büchi automata for dGGreen {
ltl } formulae
	EXPSPACE-hardness of $
ltl $ model checking
	EXPSPACE-hardness of $
ltl $ model checking
	EXPSPACE-hardness of $
ltl $ model checking
	Model checking a path
	Model checking a path
	Model checking a path
	Model checking a path
	Conclusion
	Bibliographie
	Examples of separation
	Proof of the result of~	extcolor {blue}{cite {LTL:EVW97}}

