Expressiveness of Temporal Logics

François Laroussinie and Nicolas Markey

Lab. Specification et Verification
ENS Cachan & CNRS, France

August 1, 2006
Outline of today’s lecture

1. LTL+Past and the μ-calculus
2. LTL+Past and Büchi automata
 - Büchi automata
 - From LTL+Past to Büchi automata
 - Büchi automata are more expressive
 - Alternating Büchi automata
 - Application: Succinctness of LTL+Past
3. Stuttering
 - The stuttering principle
 - The generalized stuttering principle
4. Ehrenfeucht-Fraïssé games
 - The rules of the game
 - EF games and the Until-Since hierarchy
Introduction to the second lecture

- In this second course, we focus on discrete time.

- as is usual in that case, we use the following definitions:
 - $LTL = \mathcal{L}(U, X)$,
 - $LTL + \text{Past} = \mathcal{L}(U, S, X, X^{-1})$.

where U and S have their *non-strict* meaning, e.g.:

\[
\varphi U \psi \text{ holds iff }
\begin{align*}
&\text{either } \psi \text{ holds,} \\
&\text{or } \varphi \text{ holds, and } \varphi U \psi \text{ holds in the next location,}
\end{align*}
\]

In other words, we have the following equivalence:

\[
\varphi U \psi \equiv \psi \lor (\varphi \land X(\varphi U \psi)).
\]

- linear structures are seen as (infinite) words over the alphabet 2^{AP}.

Outline of today’s lecture

1. LTL+Past and the μ-calculus
2. LTL+Past and Büchi automata
 - Büchi automata
 - From LTL+Past to Büchi automata
 - Büchi automata are more expressive
 - Alternating Büchi automata
 - Application: Succinctness of LTL+Past
3. Stuttering
 - The stuttering principle
 - The generalized stuttering principle
4. Ehrenfeucht-Fraïssé games
 - The rules of the game
 - EF games and the Until-Since hierarchy
LTL+Past and the μ-calculus

Definition

The *linear-time μ-calculus* is an extension of $L(X)$ with fixpoint operators:

$$\mu\text{-calculus} \ni \phi, \psi ::= \top \mid p \mid \neg p \mid Z \mid \phi \lor \psi \mid \phi \land \psi \mid X \phi \mid X^{-1} \phi \mid \mu Z \phi \mid \nu Z \phi$$

where p ranges over AP and Z ranges over a finite set of variables.
LTL+Past and the μ-calculus

Definition

The *linear-time μ-calculus* is an extension of $\mathcal{L}(X)$ with fixpoint operators:

\[
\mu\text{-calculus} \ni \varphi, \psi ::= \top \mid p \mid \neg p \mid Z \mid \varphi \lor \psi \mid \varphi \land \psi \mid X\psi \mid X^{-1}\psi \mid \mu Z \varphi \mid \nu Z \varphi
\]

where p ranges over AP and Z ranges over a finite set of variables.

Example

\[
\mu Z (\text{green} \lor XZ)
\]
LTL++Past and the μ-calculus

Theorem (Knaster, 1928 & Tarski, 1955)

Let T be a linear structure. Given a formula $\varphi(Z)$, the set of positions satisfying $\mu Z \varphi(Z)$ is

$$\bigcap \{U \subseteq T \mid \varphi(U) \subseteq U\}$$
LTL+Past and the μ-calculus

Theorem (Knaster, 1928 & Tarski, 1955)

Let T be a linear structure. Given a formula $\varphi(Z)$, the set of positions satisfying $\mu Z \varphi(Z)$ is

$$\bigcap \{U \subseteq T \mid \varphi(U) \subseteq U\}$$

Moreover, fixpoints can be computed iteratively:

Theorem (Knaster, 1928 & Tarski, 1955)

The set of positions satisfying $\mu Z \varphi(Z)$ is the limit of the following sequence:

$$\llbracket \mu Z \varphi(Z) \rrbracket_0 = \emptyset$$

$$\llbracket \mu Z \varphi(Z) \rrbracket_{i+1} = \{t \in T \mid \langle T, t \rangle \models \varphi(\llbracket \mu Z \varphi(Z) \rrbracket_i)\}$$
LTL+Past and the μ-calculus

Example

Consider the following linear structure (represented as a word):

$$T = \textcolor{green}{g} \textcolor{red}{r} \textcolor{red}{r} \textcolor{green}{g} \textcolor{green}{g} \textcolor{red}{b} \textcolor{red}{r} \textcolor{red}{b} \textcolor{green}{g} \textcolor{red}{r} \textcolor{red}{r} \textcolor{green}{g} \textcolor{red}{r} \textcolor{red}{r} \textcolor{red}{r} \textcolor{red}{r} \textcolor{red}{r} ...$$

and the following formula:

$$\mu Z (\textcolor{green}{\text{green}} \lor \textcolor{red}{X} Z).$$
LTL+Past and the μ-calculus

Example

Consider the following linear structure (represented as a word):

$$T = g \ r \ r \ g \ g \ b \ r \ b \ g \ r \ r \ g \ r \ r \ r \ r \ r \ r \ r \ r \ r \ r \ r \ r \ r \ ...$$

and the following formula:

$$\mu Z \ (\text{green} \lor X Z).$$

Then:

$$\llbracket \mu Z \ (g \lor X Z) \rrbracket_0 = \emptyset$$
LTL+Past and the μ-calculus

Example

Consider the following linear structure (represented as a word):

$$T = \text{g r r g g b r b g r r g r r r r r r r r ...}$$

and the following formula:

$$\mu Z (\text{green} \lor \mathbf{X} Z).$$

Then:

$$\mu Z (\text{g} \lor \mathbf{X} Z) \equiv_0 \bot$$
LTL+Past and the μ-calculus

Example

Consider the following linear structure (represented as a word):

$$T = \textbf{g} \textbf{r} \textbf{r} \textbf{g} \textbf{g} \textbf{b} \textbf{r} \textbf{b} \textbf{g} \textbf{r} \textbf{r} \textbf{g} \textbf{r} \textbf{r} \textbf{r} \textbf{r} \textbf{r} \textbf{r} \textbf{r} \ldots$$

and the following formula:

$$\mu Z (\text{green} \lor X Z).$$

Then:

$$\llbracket \mu Z (g \lor X Z) \rrbracket_1 = \{ t \in T \mid \langle T, t \rangle \models g \lor X \bot \}$$
Example

Consider the following linear structure (represented as a word):

\[T = \textcolor{green}{g} \textcolor{red}{r} \textcolor{red}{r} \textcolor{green}{g} \textcolor{green}{g} \textcolor{blue}{b} \textcolor{red}{r} \textcolor{blue}{b} \textcolor{green}{g} \textcolor{red}{r} \textcolor{red}{r} \textcolor{green}{g} \textcolor{red}{r} \textcolor{red}{r} \textcolor{red}{r} \textcolor{red}{r} \textcolor{red}{r} \textcolor{red}{r} \textcolor{red}{r} \ldots \]

and the following formula:

\[\mu Z \left(\textcolor{green}{\text{green}} \lor X Z \right). \]

Then:

\[\mu Z \left(g \lor X Z \right) \equiv_1 g \]
Example

Consider the following linear structure (represented as a word):

\[T = \text{g r r g g b r b g r r g r r r r r r ...} \]

and the following formula:

\[\mu Z (\text{green} \lor X Z). \]

Then:

\[\llbracket \mu Z (g \lor X Z) \rrbracket_2 = \{ t \in T \mid \langle T, t \rangle \models g \lor X g \} \]
Example

Consider the following linear structure (represented as a word):

\[T = \text{g} \text{r} \text{r} \text{g} \text{g} \text{b} \text{r} \text{b} \text{g} \text{r} \text{r} \text{g} \text{r} \text{r} \text{r} \text{r} \text{r} \text{r} \text{r} \ldots \]

and the following formula:

\[\mu Z (\text{green} \lor X Z) \]

Then:

\[\mu Z (g \lor X Z) \equiv_2 g \lor X g \]
LTL+Past and the μ-calculus

Example

Consider the following linear structure (represented as a word):

$$T = \text{g r r g g b r b b g g r r g r r r r r r ...}$$

and the following formula:

$$\mu Z (\text{green } \lor X Z).$$

Then:

$$\mu Z (g \lor X Z) \equiv_n g \lor X g \lor X X g \lor ... \lor X^{n-1} g$$
LTL+Past and the μ-calculus

Example

Consider the following linear structure (represented as a word):

$T = \text{g r r g g b r b b g r r g g r r r r r r r r ...}$

and the following formula:

$\mu Z (\text{green } \lor X Z)$.

Then:

$\mu Z (g \lor X Z) \equiv F g$
LTL+Past and the μ-calculus

$$\varphi \mathbf{U} \psi \equiv \psi \lor (\varphi \land \mathbf{X}(\varphi \mathbf{U} \psi)).$$

From this equivalence, we get:

$$\varphi \mathbf{U} \psi \equiv \mu Z (\psi \lor (\varphi \land \mathbf{X} Z))$$
LTL+Past and the \(\mu \)-calculus

\[\varphi \mathbf{U} \psi \equiv \psi \lor (\varphi \land \mathbf{X}(\varphi \mathbf{U} \psi)) \].

From this equivalence, we get:

\[\varphi \mathbf{U} \psi \equiv \mu Z (\psi \lor (\varphi \land \mathbf{X} Z)) \]

Thus:

Proposition

\(\mu \)-calculus is at least as expressive as LTL+Past.
LTL+Past and the μ-calculus

In fact:

Proposition

μ-calculus is strictly more expressive than LTL+Past.
LTL+Past and the μ-calculus

In fact:

Proposition

μ-calculus is strictly more expressive than LTL+Past.

Proof.

The negation of

"green occurs at every even position"

is

"\neggreen occurs at some even position"

i.e.

\neggreen \lor \mathbf{XX} \neggreen \lor \mathbf{XXXX} \neggreen \lor ...
LTL+Past and the μ-calculus

In fact:

Proposition

μ-calculus is strictly more expressive than LTL+Past.

Proof.

The negation of

“green occurs at every even position”

is

“\neg green occurs at some even position”

i.e.

\neg green \lor XX \neg green \lor XXXX \neg green \lor ...

It can be written as

$\mu Z (\neg$ green \lor XX Z)
Outline of today’s lecture

1. LTL+Past and the μ-calculus

2. LTL+Past and Büchi automata
 - Büchi automata
 - From LTL+Past to Büchi automata
 - Büchi automata are more expressive
 - Alternating Büchi automata
 - Application: Succinctness of LTL+Past

3. Stuttering
 - The stuttering principle
 - The generalized stuttering principle

4. Ehrenfeucht-Fraïssé games
 - The rules of the game
 - EF games and the Until-Since hierarchy
Outline of today’s lecture

1. LTL+Past and the μ-calculus

2. LTL+Past and Büchi automata
 - Büchi automata
 - From LTL+Past to Büchi automata
 - Büchi automata are more expressive
 - Alternating Büchi automata
 - Application: Succinctness of LTL+Past

3. Stuttering
 - The stuttering principle
 - The generalized stuttering principle

4. Ehrenfeucht-Fraïssé games
 - The rules of the game
 - EF games and the Until-Since hierarchy
LTL+Past and Büchi automata

Finite-state automata are a powerful formalism for defining languages.

Example

G(green ⇒ F red)
LTL+Past and Büchi automata

Finite-state automata are a powerful formalism for defining languages.

Example

\[G(\text{green} \Rightarrow F \text{red}) \]
LTL+Past and Büchi automata

Finite-state automata are a powerful formalism for defining languages.

Example

What is the relationship between automata (on words) and (linear-time) temporal logics?
Büchi automata

Definition

A Büchi automaton is a 5-tuple \(\mathcal{B} = \langle Q, Q_0, \Sigma, \rightarrow, F \rangle \) where

- \(Q \) is the set of states (or locations) of the automaton,
- \(Q_0 \subseteq Q \) is the set of initial states,
- \(\Sigma \) is the alphabet,
- \(\rightarrow \subseteq Q \times \Sigma \times Q \) is the transition relation,
- \(F \subseteq Q \) is the set of repeated states
Büchi automata

Definition

A Büchi automaton is a 5-tuple $B = \langle Q, Q_0, \Sigma, \rightarrow, F \rangle$ where

- Q is the set of states (or locations) of the automaton,
- $Q_0 \subseteq Q$ is the set of initial states,
- Σ is the alphabet,
- $\rightarrow \subseteq Q \times \Sigma \times Q$ is the transition relation,
- $F \subseteq Q$ is the set of repeated states

Example

\[
\begin{align*}
Q &= \{q_0, q_1\}, \quad Q_0 = \{q_0\}, \\
\Sigma &= \{\text{green, red}\}, \\
\rightarrow &= \{(q_0, \text{green, } q_1), (q_1, \text{green, } q_1), \\
&\quad (q_1, \text{red, } q_0), (q_0, \text{red, } q_0)\}, \\
F &= \{q_0\}.
\end{align*}
\]
Büchi automata

Definition

An (infinite) word $w_0 \, w_1 \, ...$ is **accepted** by a Büchi automaton B if there exists an infinite sequence $\pi = (\ell_0, \ell_1, \ldots)$ of states s.t.:

- $\ell_0 \in Q_0$,
- for each i, $(\ell_i, w_i, \ell_{i+1}) \in \rightarrow$;
- at least one state in F occurs infinitely often in π.

<table>
<thead>
<tr>
<th>State Condition</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell_0 \in Q_0$</td>
<td>ℓ_0 starts in Q_0</td>
</tr>
<tr>
<td>For each i, $(\ell_i, w_i, \ell_{i+1}) \in \rightarrow$</td>
<td>Transitions are defined</td>
</tr>
<tr>
<td>At least one state in F occurs infinitely often in π</td>
<td>Infinitely many states in F are visited</td>
</tr>
</tbody>
</table>
Büchi automata

Definition

An (infinite) word $w_0 w_1 \ldots$ is \textit{accepted} by a Büchi automaton B if there exists an infinite sequence $\pi = (\ell_0, \ell_1, \ldots)$ of states s.t.:

- $\ell_0 \in Q_0$,
- for each i, $(\ell_i, w_i, \ell_{i+1}) \in \rightarrow$;
- at least one state in F occurs infinitely often in π.
Büchi automata

Definition

An (infinite) word $w_0 w_1 \ldots$ is accepted by a Büchi automaton B if there exists an infinite sequence $\pi = (\ell_0, \ell_1, \ldots)$ of states s.t.:

- $\ell_0 \in Q_0$,
- for each i, $(\ell_i, w_i, \ell_{i+1}) \in \rightarrow$;
- at least one state in F occurs infinitely often in π.

We write $L(B)$ for the set of words accepted by B.
Büchi automata

Definition

An (infinite) word $w_0 \ w_1 \ \ldots$ is **accepted** by a Büchi automaton B if there exists an infinite sequence $\pi = (\ell_0, \ell_1, \ldots)$ of states s.t.:

- $\ell_0 \in Q_0$,
- for each i, $(\ell_i, w_i, \ell_{i+1}) \in \rightarrow$;
- at least one state in F occurs infinitely often in π.

We write $L(B)$ for the set of words accepted by B.

Example

$$
\begin{aligned}
\text{green} \cdot \text{red}^\omega &\in L(B), \\
\text{green} \cdot \text{red} \cdot \text{green}^\omega &\notin L(B).
\end{aligned}
$$
Outline of today’s lecture

1. **LTL+Past and the \(\mu \)-calculus**

2. **LTL+Past and Büchi automata**
 - Büchi automata
 - From LTL+Past to Büchi automata
 - Büchi automata are more expressive
 - Alternating Büchi automata
 - Application: Succinctness of LTL+Past

3. **Stuttering**
 - The stuttering principle
 - The generalized stuttering principle

4. **Ehrenfeucht-Fraïssé games**
 - The rules of the game
 - EF games and the Until-Since hierarchy
Theorem (Lichtenstein, Pnueli, Zuck, 1985)

Let \(\varphi \) a formula in LTL+Past. There exists a Büchi automaton \(B_\varphi \) s.t.

\[
\forall w \in (2^{AP})^\omega. \quad w \in \mathcal{L}(B_\varphi) \iff w, 0 \models \varphi.
\]

Sketch of proof.

- each state of the automaton corresponds to a set of subformulas of \(\varphi \) (and negations thereof),
- if a word \(w \) is accepted from a location \(q_0 \), then any subformula represented by that state holds initially along \(w \).
From LTL+Past to Büchi automata

Theorem (Lichtenstein, Pnueli, Zuck, 1985)

Let \(\varphi \) a formula in LTL+Past. There exists a Büchi automaton \(B_\varphi \) s.t.

\[
\forall w \in (2^{AP})^\omega. \quad w \in L(B_\varphi) \iff w, 0 \models \varphi.
\]

Sketch of proof.

- each state of the automaton corresponds to a set of subformulas of \(\varphi \) (and negations thereof),
- if a word \(w \) is accepted from a location \(q_0 \), then any subformula represented by that state holds initially along \(w \).
From LTL+Past to Büchi automata

Theorem (Lichtenstein, Pnueli, Zuck, 1985)

Let φ a formula in LTL+Past. There exists a Büchi automaton B_{φ} s.t.
\[\forall w \in (2^AP)^\omega. \quad w \in \mathcal{L}(B_{\varphi}) \iff w, 0 \models \varphi. \]

Sketch of proof.

- each state of the automaton corresponds to a set of subformulas of φ (and negations thereof),
- if a word w is accepted from a location q_0, then any subformula represented by that state holds initially along w.
Definition

The closure of \(\varphi \), denoted by \(\text{Cl}(\varphi) \), is the smallest set of formulas containing \(\varphi \) and closed under the following rules:

- \(\top \) and \(\bot \) are in \(\text{Cl}(\varphi) \),
- \(\neg \psi \in \text{Cl}(\varphi) \) iff \(\psi \in \text{Cl}(\varphi) \) (identifying \(\neg \neg \psi \) with \(\psi \)),
- if \(\psi_1 \land \psi_2 \) or \(\psi_1 \lor \psi_2 \) is in \(\text{Cl}(\varphi) \), then \(\psi_1 \in \text{Cl}(\varphi) \) and \(\psi_2 \in \text{Cl}(\varphi) \),
- if \(X \psi_1 \) is in \(\text{Cl}(\varphi) \), then so \(\psi_1 \),
- if \(\psi_1 U \psi_2 \) is in \(\text{Cl}(\varphi) \), then so are \(\psi_1, \psi_2, \) and \(X(\psi_1 U \psi_2) \),
- if \(X^{-1} \psi_1 \) is in \(\text{Cl}(\varphi) \), then so \(\psi_1 \),
- if \(\psi_1 S \psi_2 \) is in \(\text{Cl}(\varphi) \), then so are \(\psi_1, \psi_2, \) and \(X^{-1}(\psi_1 S \psi_2) \).
Proposition

The size of $\mathsf{Cl}(\varphi)$ is at most $4|\varphi|$.
Proposition

The size of $\mathcal{C}_I(\varphi)$ is at most $4 |\varphi|$.

Proof.
By induction of the structure of φ:
- clear if φ is an atomic formula,
Proposition

The size of $\text{Cl}(\varphi)$ is at most $4|\varphi|$.

Proof.
By induction of the structure of φ:

- clear if φ is an atomic formula,
- if $\varphi = \psi_1 \land \psi_2$ or $\varphi = \psi_1 \lor \psi_2$, then

 $\text{Cl}(\varphi) = \text{Cl}(\psi_1) \cup \text{Cl}(\psi_2) \cup \{\varphi, \neg \varphi\}$.
From LTL+Past to Büchi automata

Proposition

The size of \(\text{Cl}(\varphi) \) *is at most* \(4|\varphi| \).*

Proof.

By induction of the structure of \(\varphi \):

- clear if \(\varphi \) is an atomic formula,
- if \(\varphi = \psi_1 \land \psi_2 \) or \(\varphi = \psi_1 \lor \psi_2 \), then
 \[
 \text{Cl}(\varphi) = \text{Cl}(\psi_1) \cup \text{Cl}(\psi_2) \cup \{\varphi, \neg \varphi\}.
 \]
- if \(\varphi = \psi_1 \mathbf{U} \psi_2 \), then
 \[
 \text{Cl}(\varphi) = \text{Cl}(\psi_1) \cup \text{Cl}(\psi_2) \cup \{\varphi, \neg \varphi, \mathbf{X} \varphi, \neg \mathbf{X} \varphi\}.
 \]
Proposition

The size of $\text{Cl}(\varphi)$ is at most $4|\varphi|$.

Proof.

By induction of the structure of φ:

- Clear if φ is an atomic formula,
- If $\varphi = \psi_1 \land \psi_2$ or $\varphi = \psi_1 \lor \psi_2$, then

 $$\text{Cl}(\varphi) = \text{Cl}(\psi_1) \cup \text{Cl}(\psi_2) \cup \{\varphi, \neg \varphi}\}.$$

- If $\varphi = \psi_1 \mathbf{U} \psi_2$, then

 $$\text{Cl}(\varphi) = \text{Cl}(\psi_1) \cup \text{Cl}(\psi_2) \cup \{\varphi, \neg \varphi, \mathbf{X} \varphi, \neg \mathbf{X} \varphi\}.$$

- The other cases are similar.
From LTL+Past to Büchi automata

Example

Consider formula $\varphi = G(green \Rightarrow (F\ red \lor G^{-1}\ green))$. Then:

$$Cl(\varphi) = \{\varphi, \neg \varphi, \quad \text{green} \Rightarrow (F\ red \lor G^{-1}\ green), \quad \neg (green \Rightarrow (F\ red \lor G^{-1}\ green)), \quad F\ red \lor G^{-1}\ green, \quad \neg (F\ red \lor G^{-1}\ green), \quad F\ red, \neg F\ red, X\ F\ red, \neg X\ F\ red, \quad G^{-1}\ green, \neg G^{-1}\ green, \quad X^{-1}\ G^{-1}\ green, \neg X^{-1}\ G^{-1}\ green, \quad \text{green}, \neg \text{green}, \text{red}, \neg \text{red}, \top, \bot \}.$$
From LTL+Past to Büchi automata

Definition

A subset S of $\text{Cl}(\varphi)$ is *maximal consistent* if:

- $\top \in S$,
- for any $\psi \in \text{Cl}(\varphi)$, $\psi \in S$ iff $\neg \psi \notin S$,
- for any $\psi = \psi_1 \land \psi_2 \in \text{Cl}(\varphi)$: $\psi \in S$ iff $\psi_1 \in S$ and $\psi_2 \in S$,
- for any $\psi = \psi_1 \lor \psi_2 \in \text{Cl}(\varphi)$: $\psi \in S$ iff $\psi_1 \in S$ or $\psi_2 \in S$,
- for any $\psi = \psi_1 \mathbf{U} \psi_2 \in \text{Cl}(\varphi)$:
 $\psi \in S$ iff $\psi_2 \in S$, or both ψ_1 and $X(\psi_1 \mathbf{U} \psi_2)$ are in S,
- for any $\psi = \psi_1 \mathbf{S} \psi_2 \in \text{Cl}(\varphi)$:
 $\psi \in S$ iff $\psi_2 \in S$, or both ψ_1 and $X^{-1}(\psi_1 \mathbf{S} \psi_2)$ are in S.
Example

The set

\[
\{ \varphi, \neg (\text{green} \Rightarrow (F \text{ red} \lor G^{-1} \text{ green})), \\
\neg (F \text{ red} \lor G^{-1} \text{ green}), \\
\neg F \text{ red}, \neg X F \text{ red}, \neg G^{-1} \text{ green}, \neg X^{-1} G^{-1} \text{ green}, \\
\text{green}, \neg \text{red} \}
\]

is maximal consistent.
From LTL+Past to Büchi automata

Example

The set

\[
\{ \varphi, \neg (\text{green} \Rightarrow (F \text{red} \lor G^{-1} \text{green})), \\
\neg (F \text{red} \lor G^{-1} \text{green}), \\
\neg F \text{red}, \neg X F \text{red}, \neg G^{-1} \text{green}, \neg X^{-1} G^{-1} \text{green}, \\
\text{green}, \neg \text{red} \}
\]

is maximal consistent.

Proposition

There are at most \(2^{4|\varphi|}\) maximal consistent subsets of \(\text{Cl}(\varphi)\).
From LTL+Past to Büchi automata

Example

The set

\{\varphi, \neg (\text{green} \Rightarrow (F \text{ red} \lor G^{-1} \text{ green})),\}
\neg (F \text{ red} \lor G^{-1} \text{ green}),
\neg F \text{ red}, \neg X F \text{ red}, \neg G^{-1} \text{ green}, \neg X^{-1} G^{-1} \text{ green},
green, \neg \text{ red}\}

is maximal consistent.

Proposition

There are at most $2^{|\varphi|}$ maximal consistent subsets of $\text{Cl}(\varphi)$.

Maximal consistent subsets are the states of our Büchi automaton.
Given two maximal consistent subsets \(S \) and \(T \) of \(\text{Cl}(\varphi) \), and a “letter” \(\sigma \subseteq \text{AP} \), there is a transition \((S, \sigma, T)\) iff:

- for any \(p \in \text{AP} \), we have \(p \in S \) iff \(p \in \sigma \),
- for any subformula \(X \varphi_1 \in \text{Cl}(\varphi) \):
 \[X \varphi_1 \text{ is in } S \text{ iff } \varphi_1 \in T, \]
- for any subformula \(X^{-1} \varphi_1 \in \text{Cl}(\varphi) \):
 \[\varphi_1 \text{ is in } S \text{ iff } X^{-1} \varphi_1 \in T. \]
From LTL+Past to Büchi automata

Given two maximal consistent subsets S and T of $\text{Cl}(\varphi)$, and a “letter” $\sigma \subseteq \text{AP}$, there is a transition (S, σ, T) iff:

- for any $p \in \text{AP}$, we have $p \in S$ iff $p \in \sigma$,
- for any subformula $X \varphi_1 \in \text{Cl}(\varphi)$:
 - $X \varphi_1$ is in S iff $\varphi_1 \in T$,
- for any subformula $X^{-1} \varphi_1 \in \text{Cl}(\varphi)$:
 - φ_1 is in S iff $X^{-1} \varphi_1 \in T$.

Example

\[S: \]
\[
\begin{align*}
 \ldots \\
 \neg X \, F \, \text{red} \\
 \neg G^{-1} \, \text{green} \\
 \text{green}
\end{align*}
\]

\[T: \]
\[
\begin{align*}
 \ldots \\
 \neg F \, \text{red} \\
 \neg X^{-1} \, G^{-1} \, \text{green} \\
 \neg \text{red}
\end{align*}
\]
Example

For formula $G(\text{green} \Rightarrow (F \text{red} \lor G^{-1}\text{green}))$, we get (only "useful" states are displayed):
From LTL+Past to Büchi automata

We use (generalized) Büchi acceptance condition is used to enforce that eventualities eventually occur:

- For each subformula $\psi = \varphi_1 U \varphi_2$, we write
 $$F_\psi = \{ l \in Q \mid \varphi_2 \in l \lor \psi \in l \}$$

- a word is accepted if it has a trajectory whose repeated states intersect F_ψ for each U-subformula ψ.
We use (generalized) Büchi acceptance condition is used to enforce that eventualities eventually occur:

- For each subformula $\psi = \varphi_1 \mathbf{U} \varphi_2$, we write

 $$F_\psi = \{ l \in Q \mid \varphi_2 \in l \text{ or } \psi \in l \}$$

- A word is accepted if it has a trajectory whose repeated states intersect F_ψ for each \mathbf{U}-subformula ψ.

- Initial states are those where all \mathbf{X}^{-1}-subformulas are false.
From LTL+Past to Büchi automata

Example

For formula $G(\text{green } \Rightarrow (F \text{ red } \lor G^{-1} \text{ green}))$, we get:
From LTL+Past to Büchi automata

Theorem

For any LTL+Past formula \(\varphi \), there exists a Büchi automaton \(A \) s.t.
- a word is accepted by \(A \) iff if satisfies \(\varphi \);
- \(A \) has at most \(2^{4|\varphi|} \) states.

This result is extremely important in computer science: it provides a nice way of verifying that an automaton satisfies an LTL+Past formula. In particular:

Theorem

Satisfiability of an LTL+Past formula is PSPACE-complete.
Outline of today’s lecture

1. LTL+Past and the μ-calculus

2. LTL+Past and Büchi automata
 - Büchi automata
 - From LTL+Past to Büchi automata
 - Büchi automata are more expressive
 - Alternating Büchi automata
 - Application: Succinctness of LTL+Past

3. Stuttering
 - The stuttering principle
 - The generalized stuttering principle

4. Ehrenfeucht-Fraïssé games
 - The rules of the game
 - EF games and the Until-Since hierarchy
Büchi automata are more expressive

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Büchi automata are strictly more expressive than $\text{LTL}+\text{Past}$.</td>
</tr>
</tbody>
</table>
Büchi automata are more expressive

Theorem

Büchi automata are strictly more expressive than LTL+Past.

Proof.

The following Büchi automaton accepts words where *green* holds (at least) at even positions:

![Automaton Diagram](image)
Outline of today’s lecture

1. LTL+Past and the μ-calculus

2. LTL+Past and Büchi automata
 - Büchi automata
 - From LTL+Past to Büchi automata
 - Büchi automata are more expressive
 - Alternating Büchi automata
 - Application: Succinctness of LTL+Past

3. Stuttering
 - The stuttering principle
 - The generalized stuttering principle

4. Ehrenfeucht-Fraïssé games
 - The rules of the game
 - EF games and the Until-Since hierarchy
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.

Example
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.

Example
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.

Example
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.

Example
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.

Example
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.

Example

\[\text{\begin{tikzpicture}[->,>=stealth',auto,node distance=2cm,every state/.style={thick},shorten >=0pt]
 \node[initial,state] (1) {1};
 \node[state] (2) [right of=1] {2};
 \node[state] (3) [below of=1] {3};
 \node[state] (4) [right of=3] {4};

 \path
 (1) edge node {green} (2)
 (1) edge node {red} (3)
 (1) edge [loop above] node {\ast} (1)
 (2) edge node {\ast} (3)
 (3) edge node {blue} (4)
 (4) edge [loop below] node {\ast} (4);
\end{tikzpicture}}\]
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.

Example
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.

Example

```
1 ←→ 2 ←→ 4 ←→ 3
1 ←→ 2 ←→ 4 ←→ 3
```

```
1  2  1  2  2
3  4  3  4  1
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```

```
1  2  1  2  2
3  2  3  2  2
```
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.

Example

```
1 — green — 2 — * — 3
| | red | | blue |
| |    |    |      |
| v blue | v |
3 — * — 4
```

```
1 — green — 1 — green — 1 — red — 2
| | green | | green | | red |
| |      | |      | |    |
| v blue | v blue |
3 — red — 2 — blue — 2 — 2
```
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.

Example
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.

Example

![Diagram of an alternating Büchi automaton]

- States: 1, 2, 3, 4
- Transitions:
 - From 1 to 2: green
 - From 1 to 3: red
 - From 2 to 3: blue
 - From 3 to 4: blue
 - From 4 to 3: blue
 - From 1 to 1: green
 - From 2 to 2: red
 - From 3 to 3: red
 - From 4 to 4: blue
Alternating Büchi automata

Alternation

Alternating automata are automata in which non-deterministic “choices” can be both disjunctive (as usual) and conjunctive.

Example

![Diagram of Alternating Büchi automata]
Alternating Büchi automata

Definition

An alternating automaton is 1-weak if there exists a total order on its set of states such that transitions are always “decreasing”.
Alternating Büchi automata

Definition
An alternating automaton is *1-weak* if there exists a total order on its set of states such that transitions are always “decreasing”.

Example

![Diagram of an alternating Büchi automaton](image-url)
Alternating Büchi automata

Definition
An alternating automaton is \textit{1-weak} if there exists a total order on its set of states such that transitions are always “decreasing”.

Example
\[
\begin{array}{c}
\text{1} \rightarrow \text{2} \\
\text{4} \rightarrow \text{3}
\end{array}
\]
\[
\begin{array}{c}
\text{red} \\
\text{green} \\
\text{blue} \\
\text{F blue}
\end{array}
\]
\[
(\text{green} \land \text{F blue}) \cup \text{red}
\]
Alternating Büchi automata

Theorem (Vardi, 1994)

Any LTL formula φ can be transformed into a 1-weak alternating Büchi automaton B_φ s.t.

- a word is accepted by B_φ iff it satisfies φ,
- B_φ has at most $|\varphi|$ states.
Alternating Büchi automata

Theorem (Vardi, 1994)

Any LTL formula φ can be transformed into a 1-weak alternating Büchi automaton B_φ s.t.
- a word is accepted by B_φ iff it satisfies φ,
- B_φ has at most $|\varphi|$ states.

Conversely:

Theorem (Rohde, 1997)

A 1-weak alternating Büchi automaton B can be transformed into an LTL formula φ_B s.t.
- a word is accepted by φ iff it satisfies φ_B,
- φ_B has size exponential in the size of B.
Outline of today’s lecture

1. LTL+Past and the μ-calculus

2. LTL+Past and Büchi automata
 - Büchi automata
 - From LTL+Past to Büchi automata
 - Büchi automata are more expressive
 - Alternating Büchi automata
 - Application: Succinctness of LTL+Past

3. Stuttering
 - The stuttering principle
 - The generalized stuttering principle

4. Ehrenfeucht-Fraïssé games
 - The rules of the game
 - EF games and the Until-Since hierarchy
Succinctness of LTL+Past

Consider the following property, built on $\text{AP} = \{p_0, \ldots, p_n\}$:

(\mathcal{P}): any two states that agree on propositions p_1 to p_n also agree on proposition p_0.

Succinctness of LTL+Past

Consider the following property, built on \(\text{AP} = \{ p_0, \ldots, p_n \} \):

\((P)\): any two states that agree on propositions \(p_1 \) to \(p_n \) also agree on proposition \(p_0 \).

It can be expressed in LTL by enumerating the possible valuations for \(p_0 \) to \(p_n \):

\[
\bigwedge_{(b_0, \ldots, b_n) \in \{ \top, \bot \}^{n+1}} \left(\mathbf{F} \left(\bigwedge_{i \geq 0} p_i = b_i \right) \Rightarrow \mathbf{G} \left(\left(\bigwedge_{i \geq 1} p_i = b_i \right) \Rightarrow p_0 = b_0 \right) \right)
\]

The size of this formula is exponential in \(n \).
Succinctness of LTL+Past

(\(\mathcal{P}\)): any two states that agree on propositions \(p_1\) to \(p_n\) also agree on proposition \(p_0\).

Let \(\mathcal{A}\) be a Büchi automaton corresponding to property (\(\mathcal{P}\)).

Let \(\Sigma = \{a_0, a_1, ..., a_{2^n-1}\}\) be the subsets of \(\{p_1, ..., p_n\}\).
Succinctness of LTL+Past

\((\mathcal{P})\): any two states that agree on propositions \(p_1\) to \(p_n\) also agree on proposition \(p_0\).

For each \(K \subseteq \{0, \ldots, 2^n - 1\}\), we define \(w_K = b_0 \ldots b_{2^n-1}\) with

\[
\begin{align*}
b_i &= \begin{cases} a_i & \text{if } i \in K \\ a_i \cup \{p_0\} & \text{otherwise} \end{cases}
\end{align*}
\]
Succinctness of LTL+Past

\((\mathcal{P})\): any two states that agree on propositions \(p_1\) to \(p_n\) also agree on proposition \(p_0\).

For each \(K \subseteq \{0, ..., 2^n - 1\}\), we define \(w_K = b_0...b_{2^n - 1}\) with

\[
\begin{align*}
 b_i &= \begin{cases}
 a_i & \text{if } i \in K \\
 a_i \cup \{p_0\} & \text{otherwise}
 \end{cases}
\end{align*}
\]

Lemma

There are \(2^{2^n}\) different such words.
Succinctness of LTL+Past

\((P)\): any two states that agree on propositions \(p_1\) to \(p_n\) also agree on proposition \(p_0\).

For each \(K \subseteq \{0, \ldots, 2^n - 1\}\), we define \(w_K = b_0 \ldots b_{2^n-1}\) with

\[
b_i = \begin{cases} a_i & \text{if } i \in K \\ a_i \cup \{p_0\} & \text{otherwise} \end{cases}
\]

Lemma

For any \(K \subseteq \{0, \ldots, 2^n - 1\}\), the word \(w_K^\omega\) is accepted by \(A\).
Succinctness of LTL+Past

(\mathcal{P})$: any two states that agree on propositions p_1 to p_n also agree on proposition p_0.

For each $K \subseteq \{0, ..., 2^n - 1\}$, we define $w_K = b_0...b_{2^n-1}$ with

$$b_i = \begin{cases} a_i & \text{if } i \in K \\ a_i \cup \{p_0\} & \text{otherwise} \end{cases}$$

Lemma

For any $K \subseteq \{0, ..., 2^n - 1\}$, the word w_K^ω is accepted by A.

Lemma

For any $K \neq K'$, the word $w_{K'} \cdot w_K^\omega$ is not accepted by A.
(P): any two states that agree on propositions \(p_1 \) to \(p_n \) also agree on proposition \(p_0 \).

Lemma

For any \(K \subseteq \{0, \ldots, 2^n - 1\} \), the word \(w^\omega_K \) is accepted by \(A \).

Lemma

For any \(K \neq K' \), the word \(w_{K'} \cdot w^\omega_K \) is not accepted by \(A \).

For any \(K \neq K' \), the states reached after reading \(w_K \) and after reading \(w_{K'} \) must be different.
Succinctness of LTL+Past

\((\mathcal{P})\): any two states that agree on propositions \(p_1\) to \(p_n\) also agree on proposition \(p_0\).

Lemma

For any \(K \subseteq \{0, ..., 2^n - 1\}\), the word \(w_K^\omega\) is accepted by \(A\).

Lemma

For any \(K \neq K'\), the word \(w_{K'} \cdot w_K^\omega\) is not accepted by \(A\).

For any \(K \neq K'\), the states reached after reading \(w_K\) and after reading \(w_{K'}\) must be different.

Theorem

Any Büchi automaton \(A\) characterizing property \((\mathcal{P})\) has at least \(2^{2^n}\) states.
Succinctness of LTL+Past

(\mathcal{P})$: any two states that agree on propositions p_1 to p_n also agree on proposition p_0.

Theorem

Any Büchi automaton A characterizing property (\mathcal{P}) has at least 2^{2^n} states.

Corollary

Any LTL formula expressing property (\mathcal{P}) has size at least 2^{n-1}.
Succinctness of LTL+Past

Consider now the following property, slightly different:

\((\mathcal{P}'):\) any state that agrees on propositions \(p_1\) to \(p_n\) with the initial state also agrees on proposition \(p_0\).
Succinctness of LTL+Past

Consider now the following property, slightly different:

\((P') \): any state that agrees on propositions \(p_1 \) to \(p_n \) with the initial state also agrees on proposition \(p_0 \).

This can be expressed in LTL+Past by the following (polynomial-size) formula:

\[
G \left(\bigwedge_{i \geq 1} p_i \Leftrightarrow F^{-1} G^{-1} p_i \right) \Rightarrow (p_0 \Leftrightarrow F^{-1} G^{-1} p_0)
\]
Succinctness of LTL+Past

Consider now the following property, slightly different:

\((P')\): any state that agrees on propositions \(p_1\) to \(p_n\) with the initial state also agrees on proposition \(p_0\).

This can be expressed in LTL+Past by the following (polynomial-size) formula:

\[
\mathbf{G} \left(\left(\bigwedge_{i \geq 1} p_i \iff \mathbf{F}^{-1} \mathbf{G}^{-1} p_i \right) \Rightarrow (p_0 \iff \mathbf{F}^{-1} \mathbf{G}^{-1} p_0) \right).
\]

Let \(\varphi\) be an LTL formula expressing property \((P')\). Then \(\mathbf{G} \varphi\) precisely expresses property \((P)\), and thus has size at least \(2^{n-1}\).
Outline of today’s lecture

1. LTL+Past and the μ-calculus

2. LTL+Past and Büchi automata
 - Büchi automata
 - From LTL+Past to Büchi automata
 - Büchi automata are more expressive
 - Alternating Büchi automata
 - Application: Succinctness of LTL+Past

3. Stuttering
 - The stuttering principle
 - The generalized stuttering principle

4. Ehrenfeucht-Fraïssé games
 - The rules of the game
 - EF games and the Until-Since hierarchy
The stuttering principle

Definition

Let \(w = w_0 w_1 \ldots \) be a word over AP. A letter \(a = w_i \) is stuttering in \(w \) if it appears several consecutive times, i.e., if \(a = w_i = w_{i+1} \).
The stuttering principle

Definition

Let $w = w_0 w_1 \ldots$ be a word over AP. A letter $a = w_i$ is **stuttering** in w if it appears several consecutive times, i.e., if $a = w_i = w_{i+1}$.

Example

\[
 w = g \cdot r \cdot \underbrace{g \cdot g \cdot g \cdot g \cdot g}_{b} \cdot b \cdot r \ldots
\]
The stuttering principle

Definition

Let \(w = w_0 w_1 \ldots \) be a word over AP. A letter \(a = w_i \) is *stuttering* in \(w \) if it appears several consecutive times, i.e., if \(a = w_i = w_{i+1} \).

Definition

The relation \(\preccurlyeq \) is defined as follows:

\[
\begin{align*}
 w \preccurlyeq w' & \iff w \text{ is obtained from } w' \text{ by removing} \\
 & \text{one copy of a stuttering letter.}
\end{align*}
\]
The stuttering principle

Definition
Let \(w = w_0 w_1 \ldots \) be a word over AP. A letter \(a = w_i \) is stuttering in \(w \) if it appears several consecutive times, i.e., if \(a = w_i = w_{i+1} \).

Definition
The relation \(\preceq \) is defined as follows:

\[w \preceq w' \iff w \text{ is obtained from } w' \text{ by removing one copy of a stuttering letter.} \]

Example
\[
\begin{array}{c}
g \cdot r \cdot \underbrace{g \cdot g \cdot g \cdot b \cdot r \ldots} \preceq g \cdot r \cdot \underbrace{g \cdot g \cdot g \cdot g \cdot b \cdot r \ldots}
\end{array}
\]
Definition

Stuttering equivalence is the least equivalence relation that subsumes \ll.
The stuttering principle

Definition

Stuttering equivalence is the least equivalence relation that subsumes \preceq.

Example

The words $g \cdot (b \cdot b \cdot r)\omega$ and $g \cdot (b \cdot r \cdot r)\omega$ are stuttering equivalent.
The stuttering principle

Definition

Stuttering equivalence is the least equivalence relation that subsumes \subseteq.

Theorem

Two words are stuttering-equivalent iff they cannot be distinguished by any formula of $\mathcal{L}(U)$.
The stuttering principle

Definition

Stuttering equivalence is the least equivalence relation that subsumes \prec.

Theorem

Two words are stuttering-equivalent iff they cannot be distinguished by any formula of $\mathcal{L}(U)$.

Corollary

$\mathcal{L}(U, X)$ has strictly more distinguishing power than $\mathcal{L}(U)$.
A subword $w[i, j]$ of a word w is (m, n)-redundant if the subword $w[i + j, mj - m + 1 + n]$ is a prefix of $w[i, j]^{\omega}$.
The generalized stuttering principle

Definition
A subword $w[i, j]$ of a word w is (m, n)-redundant if the subword $w[i + j, mj - m + 1 + n]$ is a prefix of $w[i, j]^\omega$.

Example

```
  r r g g r g r r g r r g r r g r r g g r
```
The generalized stuttering principle

Definition
A subword $w[i, j]$ of a word w is (m, n)-redundant if the subword $w[i + j, mj - m + 1 + n]$ is a prefix of $w[i, j]^\omega$.

Example

r r g g g g g r r g r r g r r g r g g g g r
The generalized stuttering principle

Definition

A subword $w[i, j]$ of a word w is (m, n)-redundant if the subword $w[i + j, mj - m + 1 + n]$ is a prefix of $w[i, j]^\omega$.

Example

$r \ r \ g \ g \ g \ g \ r \ g \ r \ g \ g \ r \ g \ r \ g \ r \ g \ g \ g \ r$

$w[5, 3]^\omega = \begin{array}{cccccccccccc}
 r & g & r & r & g & r & r & g & r & r & g & r & r & g & r \\
\end{array}$
The generalized stuttering principle

Definition
A subword $w[i,j]$ of a word w is (m,n)-redundant if the subword $w[i+j, mj - m + 1 + n]$ is a prefix of $w[i,j]^{\omega}$.

Example

$w[5, 3]^{\omega} = \text{r g r r g r r g r r g r r g r r g r}$

$w[5, 3]$ is (0,8)-redundant, but also (3,2)-redundant.
The generalized stuttering principle

Definition

Given two words w and w', and two integers m and n, we define:

$$w \preceq_{m,n} w' \iff w \text{ is obtained from } w' \text{ by removing } (m, n)\text{-redundant subwords.}$$
The generalized stuttering principle

Definition

Given two words w and w', and two integers m and n, we define:

$$w \preceq_{m,n} w' \iff w \text{ is obtained from } w' \text{ by removing } (m, n)\text{-redundant subwords.}$$

Definition

(m, n)-stuttering equivalence is the least equivalence relation that subsumes $\preceq_{m,n}$.
The generalized stuttering principle

Definition

Given two words w and w', and two integers m and n, we define:

$$w \preceq_{m,n} w' \iff w \text{ is obtained from } w' \text{ by removing } (m, n)\text{-redundant subwords.}$$

Definition

(m, n)-stuttering equivalence is the least equivalence relation that subsumes $\preceq_{m,n}$.

Example

$$rrgg \ rgr \ rgr \ ggr \ldots \preceq_{3,2} rrgg \ rgr \ rgr \ rgr \ rgr \ ggr \ldots$$
The generalized stuttering principle

Definition

We write $\mathcal{L}(U^m, X^n)$ for the fragment of LTL where nesting identical modalities is bounded (by m and n for U and X, respectively).
The generalized stuttering principle

Example

The following formula is in $\mathcal{L}(U^2, X^4)$:

$$\text{green } U (X(\text{red } U \text{ green } \land X \text{ blue})) \lor X X X X X \text{ red}$$
The generalized stuttering principle

Example

The following formula is in $\mathcal{L}(U^2, X^4)$:

$$\text{green } U (X(\text{red } U \text{ green } \land X \text{ blue})) \lor X X X X X \text{ red}$$
The generalized stuttering principle

Theorem (Kučera, Strejček, 2005)

If two words are \((m, n)\)-stuttering equivalent, then they can’t be distinguished by formulas of \(\mathcal{L}(U^m, X^n)\).
The generalized stuttering principle

Theorem (Kučera, Strejček, 2005)

If two words are \((m, n)\)-stuttering equivalent, then they can’t be distinguished by formulas of \(L(U^m, X^n)\).

Corollary

For any \(m\) and \(n\), there exists formulas in \(L(U^m, X^n)\) that can be expressed neither in \(L(U^{m-1}, X)\) nor in \(L(U^m, X^{n-1})\).
The generalized stuttering principle

Example

We illustrate the case where $m = 3$ and $n = 2$: let

$$\varphi = F(green \land F(red \land F(blue \land XX green))).$$

and

$$w = brg brg brg \ y^\omega$$
$$w' = brg brg \ y^\omega$$

Then $w, 0 \models \varphi$ and $w', 0 \not\models \varphi$.

w and w' are $(2, 2)$- and $(3, 1)$-stutter equivalent, and thus can be distinguished neither by formulas in $L(U^2, X^2)$ nor by formulas in $L(U^3, X^1)$.
The generalized stuttering principle

Theorem

The family $\mathcal{L}(U^m, X^n)$ form a strict hierarchy w.r.t. expressive power.
The generalized stuttering principle

Theorem

The family $\mathcal{L}(U^m, X^n)$ form a strict hierarchy w.r.t. expressive power.

⚠️ It seems natural to conjecture that

if a property can be expressed in $\mathcal{L}(U^{m+1}, X^n)$ and in $\mathcal{L}(U^m, X^{n+1})$, then it can be expressed in $\mathcal{L}(U^m, X^n)$.

This is false: for instance, $F(green \land F \neg green)$ and $F(green \land X \neg green)$ are equivalent, but cannot be expressed in $\mathcal{L}(U^1)$.
Outline of today’s lecture

1. LTL+Past and the μ-calculus

2. LTL+Past and Büchi automata
 - Büchi automata
 - From LTL+Past to Büchi automata
 - Büchi automata are more expressive
 - Alternating Büchi automata
 - Application: Succinctness of LTL+Past

3. Stuttering
 - The stuttering principle
 - The generalized stuttering principle

4. Ehrenfeucht-Fraïssé games
 - The rules of the game
 - EF games and the Until-Since hierarchy
Ehrenfeucht-Fraïssé games

EF games are 2-player games used to show that two linear structures T and U can (or cannot) be distinguished by a logic.
Ehrenfeucht-Fraïssé games

EF games are 2-player games used to show that two linear structures T and U can (or cannot) be distinguished by a logic.

Definition

A *configuration* of the game is a couple $\langle t, u \rangle$ where $t \in T$ and $u \in U$.
Ehrenfeucht-Fraïssé games

EF games are 2-player games used to show that two linear structures T and U can (or cannot) be distinguished by a logic.

Definition
A configuration of the game is a couple $\langle t, u \rangle$ where $t \in T$ and $u \in U$.

Definition
From a configuration $\langle t_0, u_0 \rangle$, the rules of a k-round EF game is defined recursively as follows:

- when $k = 0$, player A wins if t_0 and u_0 are labeled by exactly the same atomic propositions;
- when $k \geq 1$, two cases may arise:
 - if t_0 and u_0 are not labeled by the same atomic propositions, then the game stops and player A is declared the winner;
 - otherwise, player A plays an U-move or a S-move.
Ehrenfeucht-Fraïssé games

EF games are 2-player games used to show that two linear structures T and U can (or cannot) be distinguished by a logic.

Definition

An U-move from configuration $\langle t, u \rangle$ is played as follows:

- player A selects the structure he wants to play on (say T), and an element t' of that structure s.t. $t \leq t'$;
- player B responds by choosing an element u' in the other structure s.t. $u \leq u'$;
- player A has then two choices:
 - either he sets the new configuration to $\langle t', u' \rangle$;
 - or he selects a position u'' in U s.t. $u \leq u'' < u'$, player B chooses t'' in T with $t \leq t'' < t'$, and the new configuration is $\langle t'', u'' \rangle$.

S-moves are symmetric.
Ehrenfeucht-Fraïssé games

Example

Initial configuration
Ehrenfeucht-Fraïssé games

Example

Player \mathcal{A} plays an \textbf{U}-move on the first structure.
Ehrenfeucht-Fraïssé games

Example

Player B responds on the other structure.
Ehrenfeucht-Fraïssé games

Example

This is the new configuration.
Ehrenfeucht-Fraïssé games

Example

Player A plays an U-move on the first structure.
Ehrenfeucht-Fraïssé games

Example

Player B responds on the other structure...
Ehrenfeucht-Fraïssé games

Example

Player B responds on the other structure... and loses.
Ehrenfeucht-Fraïssé games

Example

Initial configuration
Ehrenfeucht-Fraïssé games

Example

Player A plays an U-move on the first structure.
Ehrenfeucht-Fraïssé games

Example

Player B responds on the other structure.
Ehrenfeucht-Fraïssé games

Example

This is the new configuration.
Ehrenfeucht-Fraïssé games

Example

Player A plays a S-move on the second structure.
Ehrenfeucht-Fraïssé games

Example

Player \mathcal{B} responds on the other structure.
Ehrenfeucht-Fraïssé games

Example

Player A picks an intermediary position on the first structure.
Ehrenfeucht-Fraïssé games

Example

Player B responds...
Ehrenfeucht-Fraïssé games

Example

Player B responds... and loses.
EF games and the Until-Since hierarchy

Definition

We write $\mathcal{L}(\{\textbf{U}, \textbf{S}\}^k)$ for the fragment of $\mathcal{L}(\textbf{U}, \textbf{S})$ where the temporal height is bounded by k.
EF games and the Until-Since hierarchy

Definition

We write $\mathcal{L}(\{U, S\}^k)$ for the fragment of $\mathcal{L}(U, S)$ where the temporal height is bounded by k.

Example

$\text{green } U ((\text{green } S \text{ red}) S (\text{red } U \text{ green } \land (\text{green } U \text{ blue})))$
Definition

We write $\mathcal{L}(\{U, S\}^k)$ for the fragment of $\mathcal{L}(U, S)$ where the temporal height is bounded by k.

Example

$$\text{green } U ((\text{green } S \text{ red}) \ S (\text{red } U \text{ green } \land (\text{green } U \text{ blue})))$$
EF games and the Until-Since hierarchy

Definition

We write $\mathcal{L}(\{\text{U}, \text{S}\}^k)$ for the fragment of $\mathcal{L}(\text{U}, \text{S})$ where the temporal height is bounded by k.

Example

$\text{green U (\text{green S red) S (red U green } \land (\text{green U blue}))}$

![Diagram representing the example formula]
EF games and the Until-Since hierarchy

Definition

We write $\mathcal{L}(\{U, S\}^k)$ for the fragment of $\mathcal{L}(U, S)$ where the temporal height is bounded by k.

Theorem (Etessami & Wilke, 2000)

Player B has a winning strategy in the k-round game from a configuration $\langle t, u \rangle$ iff, for any formula $\varphi \in \mathcal{L}(\{U, S\}^k)$, we have

$$\langle T, t \rangle \models \varphi \iff \langle U, u \rangle \models \varphi.$$
EF games and the Until-Since hierarchy

Now, consider the following two structures:

\[T_k = ((r b)^{k-1} g b)^{k-1} (r b)^k g b ((r b)^{k-1} g b)^{k-1} y^\omega \]

\[U_k = ((r b)^{k-1} g b)^{k-1} (r b)^{k-1} g b ((r b)^{k-1} g b)^{k-1} y^\omega \]
EF games and the Until-Since hierarchy

Now, consider the following two structures:

\[T_k = ((r \ b)^{k-1} g \ b)^{k-1} (r \ b)^k \ g \ b ((r \ b)^{k-1} g \ b)^{k-1} y^\omega \]
\[U_k = ((r \ b)^{k-1} g \ b)^{k-1} (r \ b)^{k-1} g \ b ((r \ b)^{k-1} g \ b)^{k-1} y^\omega \]

For instance:

\[T_3 = rbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgby^\omega \]
\[U_3 = rbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgby^\omega \]
EF games and the Until-Since hierarchy

Now, consider the following two structures:

\[
T_k = ((r b)^{k-1} g b)^{k-1} (r b)^k g b ((r b)^{k-1} g b)^{k-1} y^\omega
\]
\[
U_k = ((r b)^{k-1} g b)^{k-1} (r b)^{k-1} g b ((r b)^{k-1} g b)^{k-1} y^\omega
\]

For instance:

\[
T_3 = rbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgby^\omega
\]
\[
U_3 = rbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgby^\omega
\]

Lemma

Player B has a winning strategy in the k-round game based on \(T_k\) *and* \(U_k\) *from configuration* \(\langle 0, 0 \rangle\).
EF games and the Until-Since hierarchy

Now, consider the following two structures:

\[T_k = ((rb)^{k-1} gb)^{k-1} (rb)^k gb ((rb)^{k-1} gb)^{k-1} y^\omega \]
\[U_k = ((rb)^{k-1} gb)^{k-1} (rb)^{k-1} gb ((rb)^{k-1} gb)^{k-1} y^\omega \]

For instance:

\[T_3 = rbbrbgbbrb
EF games and the Until-Since hierarchy

Now, consider the following two structures:

\[T_k = ((r \ b)^{k-1} g b)^{k-1} (r \ b)^k g b ((r \ b)^{k-1} g b)^{k-1} y^\omega \]
\[U_k = ((r \ b)^{k-1} g b)^{k-1} (r \ b)^{k-1} g b ((r \ b)^{k-1} g b)^{k-1} y^\omega \]

For instance:

\[T_3 = rbrbgbrbrbgbrbrbrbgbrbrbgbrbrbgbrbrbgby^\omega \]
\[U_3 = rbrbgbrbrbgbrbrbgbrbrbgbrbrbgbrbrbgby^\omega \]

Lemma

There exists a formula \(\varphi \in L(\{U, S\}^{k+1}) \) that distinguishes between \(\langle T_k, 0 \rangle \) and \(\langle U_k, 0 \rangle \).

For instance:

\[\top \ U (b \land (b \ S (r \land r \ S b)) \land (b \ U (r \land r \ U (b \land b \ U r)))) \]
Theorem (Etessami & Wilke, 2000)

The hierarchy $\mathcal{L}(\{U, S\}^k)$ is strict (w.r.t. distinguishing power).
EF games and the Until-Since hierarchy

Theorem (Etessami & Wilke, 2000)

The hierarchy $\mathcal{L}(\{U, S\}^k)$ *is strict (w.r.t. distinguishing power).*

Similar techniques can be used to prove that:

Theorem (Etessami & Wilke, 2000)

The hierarchy $\mathcal{L}(\{U, S\}^k, \{X, F, X^{-1}, F^{-1}\}^r)$ *is strict (w.r.t. distinguishing power).*