
CMI (BSc II)/BVRao Analysis, Notes 7 2014

Cantor Construction of Reals:

So far we have:
• R0, the set of Cauchy sequences of rational numbers.
• R the set of equivalence classes, where two Cauchy sequences x, y are

equivalent if d(xn, yn) = |xn − yn| → 0.
• [x]+ [y] = [x+ y]; zero element is the equivalence class, still denoted by

0, containing the Cauchy sequence: {0, 0, 0, 0 · · ·}— all terms of the sequence
are zero. of course this class contains other sequences too, for example

(an = 1/n); (bn = −1/n); (cn = 1/n19); (dn = 1/n!) · · · · · · ;

but NOT the sequence (exp{−n}) or (1/√n) and so on simply because these
are not sequences of rational numbers.

• [x] · [y] = [xy]; unit element is the equivalence class containing the
sequence: {1, 1, 1, · · ·} — all terms equal to one. This class contains other
sequences too, for example, you can add any of the above sequences to this
sequence.

• R is a field with above operations.
• [x] < [y] if there is a rational r > 0 and N such that xn + r ≤ yn for all

n > N . [x] ≤ [y] if either [x] = [y] or [x] < [y].

We shall show that ≤ is a linear order.

(i) [x] ≤ [x].
This is clear because [x] = [x] and see the definition of ≤.

(ii) If [x] ≤ [y] and [y] ≤ [x] then [x] = [y].
In the two hypotheses, if equality holds somewhere then there is nothing

to be proved. We now show that strict inequality at both places is not
possible, this will complete the proof.

If possible [x] < [y] and [y] < [x]. Get one N and r > 0 and s > 0 such
that

n > N ⇒ xn + r ≤ yn; yn + s ≤ xn.

This is impossible because if we take any one n > N we should have

xn + r + s ≤ yn + s ≤ xn; r + s > 0.
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We know enough about rationals.

[irrelevant discussion: In the first para, why did he say ‘if equality holds
in some hypothesis’; can equality hold in one hypothesis and strict inequal-
ity hold in the other hypothesis. Such doubts are natural to arise, if you
are thinking. But you need not worry. As far as our proof is concerned
this question has no consequence. We have proved our claim. It is all that
matters. You can, of course, return to your doubt; yes, you are right.]

(iii) [x] ≤ [y] and [y] ≤ [z] implies [x] ≤ [z].
Repeat above argument to show, with obvious notation, xn + r + s ≤ zn

for n > N .

(iv) Either [x] ≤ [y] or [y] ≤ [x] holds.
Suppose that both [x] < [y], [y] < [x] fail. We show that [x] = [y] holds.

Start observing that the assumption implies

(∀r > 0) (∀N) (∃n > N) xn + r > yn; (♠)

(∀r > 0) (∀N) (∃n > N) yn + r > xn. (♣)

We need to show that |xn − yn| → 0. Fix any r > 0. Remembering that x
and y are Cauchy sequences, fix N so that

n,m ≥ N ⇒ |xn − xm| < r/4; |yn − ym| < r/4.

To complete proof, we shall show |xn − yn| < r for n > N . First, for this N
and r/4, using (♠), (♣) fix i > N and j > N so that

xi +
r

4
> yi; yj +

r

4
> xj;

The subtle point is that at this stage we do not know if i and j are same in
the inequalities above.

Now take any n ≥ N . Then

xn ≤ xj +
r

4
≤ yj +

r

4
+

r

4
≤ yn +

r

4
+

r

4
+

r

4

and
yn ≤ yi +

r

4
≤ xi +

r

4
+

r

4
≤ xn +

r

4
+

r

4
+

r

4

as promised.
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(v) For every pair exactly one of the following hold: [x] < [y] or [x] = [y]
or [y] < [x].

This is already in the above arguments.

(vi) The order is friendly with addition and multiplication. [x] < [y] im-
plies [x] + [z] < [y] + [z]. Also [0] < [x], [0] < [y] imply [0] < [x][y]. These
follow from definition of order.

We shall now identify Q as a subset of R. Define for q ∈ Q, ϕ(q) to
be the equivalence class containing the constant sequence {q, q, q, q, q, · · ·}.
This map is one-to-one, respects (?) addition, multiplication and also order.
We simply think of Q as a subset of our R. This needs to be said because,
after all, elements of R are not rational numbers; they are not even Cauchy
sequences of rational numbers; they are bags where each bag contains a col-
lection of Cauchy sequences.

We make a useful observation. Given [x] < [y] there is a rational q such
that [x] < q < [y]. Here is the proof. Fix r > 0 and N such that

n ≥ N ⇒ xn + r ≤ yn

If necessary by taking a larger N , we can also assume that

n,m ≥ N ⇒ |xn − xm| <
r

4
.

Let
q = xN +

r

2
.

We show this will do. Observe that this is a rational (our sequences are
sequences of rational numbers). Let n > N .

q +
r

4
= xN +

r

2
+

r

4
≤ xn +

r

4
+

r

2
+

r

4
≤ yn

showing that q < [y]. Also

xn +
r

4
≤ xN +

r

4
+

r

4
= q

showing [x] < q.

To complete our construction, we show now that every non-empty subset
of R which is bounded above has a supremum. We shall repeat the arguments
used in the Dedikind construction. To avoid giving any wrong impression let
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me add, it is not as though Cantor borrowed the Dedikind construction, they
both did around the same time.

Thus let S be a non-empty set bounded above. Take any upper bound [a]
and get a rational q such that [a] < q < [a] + 1. Similarly if [x] ∈ S, take a
rational p such that p < [x]. Here we are using the observation made above.
And also we identify rational with the constant sequence or more precisely,
the class containing the constant sequence.

The upshot of what we did above is to get p0 = p and q0 = q so that
(i) p0 < q0 and
(ii) there exists [x] ∈ S, p0 ≤ [x] and [x] ≤ q for all [x] ∈ S.
In words, there are points of S at least as large as p but nothing that

exceeds q.

We shall now construct rationals pn, qn for n ≥ 1 such that

(i) pn < qn. Further, one of these numbers is (pn−1 + qn−1)/2 and the
other belongs to {pn−1, qn−1}.

In other words one of the new numbers is same as the earlier one, and
the other is average of the two earlier ones.

(ii) ∃[x] ∈ S; pn ≤ [x] and ∀[x] ∈ S; [x] ≤ qn.

This is easy. For example consider r0 = (p0 + q0)/2. if for all [x] ∈ S we
have [x] ≤ r0 then declare p1 = p0 and q1 = r0. Otherwise declare p1 = r0
and q1 = q0. In general consider the midpoint of the previous two points and
proceed.

Clearly, the construction shows the next pair of points are in between the
existing pair. Thus

p0 ≤ p1 ≤ p2 · · · · · · ≤ · · · · · · ≤ q2 ≤ q1 ≤ q0.

qn − pn =
qn−1 − pn−1

2
.

These in turn show that
(pn) is a Cauchy sequence and (qn) is a Cauchy sequence.
qn − pn → 0, that is (pn) ∼ (qn).
As a consequence we can define an element of R by

s = [(pn)] = [(qn)].
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We now show that

(i)If s < [x] then [x] 6∈ S; that is, [x] ∈ S ⇒ [x] ≤ s.
This shows that s is an upper bound of S.

(ii) [a] < s ⇒ ∃[x] ∈ S; [a] < [x] ≤ s.
This shows that nothing smaller than s will serves as upper bound.

This will then complete the proof.

Proof of (i):
Since s = [(qn)] < [x], fix r > 0 such that qn + r ≤ xn, say for n ≥ N1.

Since (qn) is cauchy, we have |qm − qn| ≤ r/2 for n ≥ N2. Taking N larger
than both N1 and N2, we see that for n > N

qN +
r

2
≤ qn +

r

2
+

r

2
≤ xn

In other words qN < [x] But by construction nothing larger than qN is in S.
Thus [x] 6∈ S.

Proof of (ii):
Use similar argument as above to see that there is N such that [a] < pN

and note that there are points of S at least as large as pN .

[It is tempting to say that qn → s; so given s < [x] there is N such that
s ≤ qN < x. But unfortunately at this moment our vocabulary is limited,
we do not know convergence that well. This can however be made rigorous
and then used.]

This completes Cantor’s construction of R.
I am reminded of a poem.

A centipede was happy - quite;
until a toad, in fun, said
“prey, which leg moves after which”
This raised her doubts to such a pitch
She fell exhausted in the ditch
not knowing how to run.

You should not continue thinking (following Cantor): Aha, I now know
real numbers; a real number is a Cauchy sequence of rational numbers. This
leads to utter confusion when you later think of sequences of real numbers;
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because this would then mean a sequence of Cauchy sequences of rational
numbers! — not a happy thought.

Or you should not think (following Dedikind): Aha, I know real numbers,
real numbers are cuts in Q. This leads to unnecessary confusion when you
consider subsets of R. This would then mean a set of subsets of Q — not a
happy thought.

Then why did we do all this. This gives you practice in handling mathe-
matical objects. This leads to certain confidence. This also familiarizes with
mathematical arguments and mathematical proofs. There are at least three
other reasons why you should appreciate all this.

Firstly, it is very important for us to know whether there is a system
at all satisfying the axioms laid down for R. Once we are sure that such a
system exists, we just work with a system satisfying these rules — no matter
how such a system is arrived at; either by Dedikind or Cantor method or any
other third method. Real numbers attain independent existence irrespective
of who constructs or how he/she constructs.

It is just like locating a house. It may be to the right of a hotel or to the
left of a building or opposite a shop and so on. Once the house is discovered
all these other pointers, hotel, building, shop etc are irrelevant. They might
even be confusing.

Second reason is vey important. If you know how to construct a house,
you can do very well in the construction business. For example, a customer
might want a house with some interesting properties; you can think a little
bit with your expertise and make it. Here is one concrete example. I had
different example in mind, but after discussion with Uma, I realized this may
be more appropriate for you.

I have two vector spaces V and W . Suppose we wanted to multiply vec-
tors in W with vectors in V . We also want again a vector space — let us
pretend our vector spaces are over R (it makes no difference). Let us not go
into the reasons why such a thing is needed. Can you help? You have the
expertise now. You only need to think.

We want to multiply: v · w where v ∈ V and w ∈ W . Consider such
‘things’. But if I write this dot, you would ask me what is the dot. So I
say consider (v, w), you accept because you know ordered pairs and the set
V ×W . So I show you (v, w) but at the back of my mind I have v · w. But
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then this set by itself, is not a linear space. We wanted a linear space.

So I say consider finite linear combinations of the above things, like

4 v1 · w1 +
32

9
v2 · w2 −

√
3 v3 · w3.

or equivalently,

4 (v1, w1) +
32

9
(v2, w2)−

√
3 (v3, w3). (♠)

Since ‘linear combination of linear combinations’ is again a grand linear com-
bination of original things, there is hope that such linear combinations make
a linear space. But you would again raise question: what is this plus sign?
So I say consider the function f on V ×W defined by

f(v1, w1) = 4; f(v2, w2) =
32

9
; f(v3, w3) = −

√
3; (♣)

and f(v, w) = 0 for other pairs. You do not object to this, you know func-
tions and the above is a legitimate function on V ×W . Thus I show you (♣)
but at the back of my mind I have (♠).

But there is one problem. For example, consider the following. Take
v1, v2 ∈ V and w ∈ W . Put v = v1 + v2. My mind tells me v · w is same as
the linear combination v1 · w + v2 · w. Or to use the ‘things I am showing
you’ I should identify the two functions:
f(v, w) = 1 and f is zero for other pairs.
g(v1, w) = 1 = g(v2, w) and g is zero for other pairs.
I identify f and g. Thus I consider the collection of functions f on V ×W
(which are zero outside a finite set) and define an equivalence relation — well
thought out and driven by what we all feel — on this set. This exactly meets
our demands.

The resulting house goes by the name of tensor product.

The third reason is the importance of understanding symbols without get-
ting confused. We use some symbols for which you would have no objection
but while we use the symbol, we have some thing at the back of our mind.
Thus, what is at the back of our mind is more important than the symbol
we are using. Think about it.

back to open and closed sets:
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Before returning to general metric spaces, let us observe something spe-
cial about open sets in the real line. Let U ⊂ R be an non-empty open set.
For every point x ∈ U there is an open interval (x− ǫ, x+ ǫ) ⊂ U . Obviously
U is union of all these intervals. However we can be more specific.

Every nonempty open subset of R is a countable disjoint union of non-
empty open intervals in a unique way. We shall prove this now.

Let us start clarifying meanings of the terms. Interval means a subset
with the following property: if two points are there, everything in between
is also there. More precisely, A ⊂ R is an interval if

x < z < y; x, y ∈ A ⇒ z ∈ A.

Suppose A is an interval. Let a = inf A and b = supA. if A is not bounded
below then we take this inf to be −∞; if A is not bounded above we take
the sup to be ∞.

It is easy to show that, for example when the above inf and sup a, b ∈ R
then the interval A must either be [a, b] or [a, b) or (a, b] or (a, b). If it is an
open interval, that is, if it is an interval which is an open set then it must be
(a, b).

Similarly, when a ∈ R but b = ∞ then the interval A must be either
[a,∞) or (a,∞). If it is an open interval, then it must be (a,∞). Similar
remark applies when a = −∞ and b ∈ R.

Of course, union of two intervals need not be an interval. We claim that
union of two intervals which have a point in common, is again an interval.
Indeed let I and J be intervals and z be in both. Let a < b be two points
in the union, say a ∈ I and b ∈ J . If a < b < z then both a and z are in I
and hence so is everything in between, in particular, everything in between
a and b is in I and hence in I ∪ J .

If z < a < b, then both z and b are in J and hence so is everything in
between them. In particular everything in between a and b is in J .

Suppose a < z < b. Then everything in between a and z is in I, whereas
everything in between z and b is in J . Thus everything in between a and b
is in I ∪ J .

Thus union of two intervals which have a point in common is again an
interval.
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Returning to our problem, take x ∈ U . By above observation, the union
of all intervals I such that x ∈ I ⊂ U is itself an interval. Call it Ix. Suppose
a ∈ R and is an end point of Ix, then we claim that a 6∈ Ix. Because if
a ∈ Ix ⊂ U , then there must be an interval (a − ǫ, a + ǫ) ⊂ U . But then
Ix 6= Ix ∪ (a − ǫ, a + ǫ) is an interval because a is in both’ Also this union
is a subset of U because both are so. Also this interval includes x. This
contradicts that Ix is the union of all such intervals.

Thus Ix is an open interval.

Actually, Ix is the largest open interval J with the property x ∈ J ⊂ U .
There is nothing to prove here if you look at the definition of Ix.

Thus for every x ∈ U we have an open interval Ix such that x ∈ Ix ⊂ U ,
largest such interval. We now claim that if x 6= y then either Ix = Iy or
Ix ∩ Iy = ∅. This is clear because if the intersection is non-empty, then their
union is an interval contained in U , includes both x and y.

Let I be the collection of the distinct intervals of the family {Ix; x ∈ U}.
Since any two intervals in I are disjoint and all are non-empty we conclude
that this family I must be countable. Take one rational from each to see this.

Thus we can enumerate the family I as a sequence. Thus

U = I1 ∪ I2 ∪ I3 ∪ · · · .

(finite or infinite) union of disjoint non-empty open intervals.

Suppose that
U = J1 ∪ J2 ∪ J3 ∪ · · · .

union of disjoint non-empty open intervals. We show that the intervals are
exactly the same, perhaps enumerated in a different order.

Let x ∈ U . Let Jk = (a, b), say, contains the point x. We argue that Jk is
indeed Ix. First observe the following. if a is finite then a 6∈ U . Because, if it
were in U , then it must be in one of the other J , but then that J must contain
an interval around a, but then such an interval intersects Jk. Remember the
intervals Ji are disjoint. Similarly if b is finite then b 6∈ U .

Since x ∈ Jk ⊂ U and Ix is maximal such interval we conclude that
Jk ⊂ Ix. If Ix is strictly larger than Jk, then an end point of Jk must be
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finite and must be in Ix. But any finite end point is shown to be not in U .
This shows Jk = Ix.

This completes the proof.

collection of open sets:

Let (X, d) be a metric space. We defined a subset U to be open if x ∈ U
implies there is an r > 0 such that

B(x, r) = {y : d(x, y) < r} ⊂ U.

The collection of open sets has the following properties:
(i) As already noted, ∅ and X are open.
(ii) Union of any collection of open sets is open. This is because, if a point

x is in the union it is then in one of the sets which itself already contains a
B(x, r).

(iii) Finite intersection of open sets is open. Indeed, let U and V be open.
Let x ∈ U ∩V . Then x ∈ U and x ∈ V so that there is r > 0, and s > 0 such
that B(x, r) ⊂ U and B(x, s) ⊂ V . If we take p = min{r, s} then easy to see
that B(x, p) ⊂ U ∩ V . This being true for every point in the intersection we
are done.

Accordingly, we see that ∅ and X are closed; intersection of any collection
of closed sets is a closed set; finite union of closed sets is closed.

We claim that the ball B(x, r) defined above is an open set. So we are
justified in calling it open ball. To see this let x0 ∈ B(x, r), say

d(x, x0) = α < r; s = r − α > 0.

We claim that B(x0, s) ⊂ B(x, r). Indeed

y ∈ B(x0, s) ⇒ d(x, y) ≤ d(x, x0) + d(x0, y) < α + (r − α) = r.

⇒ y ∈ B(x, r).

Similarly C = {y : B(x, y) ≤ r} is a closed set and hence we are justified
in calling it closed ball. To see that it is closed, we only need to observe that
if yn → y, and yn ∈ C for all n, then

d(x, y) = lim d(x, yn) ≤ r.

Thus open ball is indeed an open set and closed ball is a closed set.
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interior and closure:

If a set is not open how do we relate it to an open set. we can take the
largest open set contained in it. This is called interior.

Let (X, d) be a metric space and A ⊂ X. We define Ao, called interior
of A, to be the largest open set contained in A. This makes sense because
union of open sets is open. Thus Ao is the union of all open sets contained
in A. equivalently, it is the union of all open balls contained in A. A point
of Ao is called an interior point of A.

Closure A is the smallest closed set that contains A. This is just the
intersection of all closed sets that contain A.

We can also say that

A = A ∪ {set of limit points of A}.

Denote the set on left by S. We know that a set is closed iff it includes
all its limit points. Thus every closed set that contains A includes all limit
points of A. Hence A ⊃ S. Conversely, to show that A ⊂ S we show that S
is a closed set containing A. Of course S ⊃ A. To show S is closed, let x 6∈ S.
Since it is not limit point of A there is a ball B(x, r) which has no point of
A other than possibly x. But since x 6∈ A we conclude that B(x, r) ⊂ Sc

showing Sc is open.

Compact sets:

We shall now imitate to define and discuss notion of compact sets that
we studied in Rn.

Let (X, d) be a metric space. A subset K ⊂ X is said to be compact
if the following happens: Every sequence (xn) ⊂ K has a subsequence that
converges to a point of K.

The importance of this notion comes from the fact that in Rn compact
sets are precisely closed bounded sets; more importantly, every real valued
continuous function on a compact set is bounded and attains its bounds.

For general metric spaces the above characterization is too much to ex-
pect (though the consequence concerning continuous functions is still correct
with exactly the same proof, as we shall see). In fact, ‘bounded’ does not
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mean anything because we can always change the metric to another bounded
metric without changing convergence.

Also one needs to justify the choice of the word ‘compact’. This word
gives the impression that the set is not too much ‘spread out’; or given lot
of material to cover the set we can use only a little of that material to cover
the set. Yes, this interpretation is right.

We shall discuss this concept after the midsem.

countable intersection of open sets:

We have discussed the concept of interior and closure. We shall now dis-
cuss another way of relating a given set to open sets. This leads to a nice
and useful story. We start with simple question.

Let I be the set of irrational numbers. It is not an open set.

Is it union of open sets? This is silly, union of open sets is open, so we
have answered this question. Is this intersection of open sets? This is also
silly, every set is intersection of open sets, namely, intersection of all sets
{x}c with x ∈ Ac.

We ask, is I intersection of countable many open sets? This question
is better. The answer is, Yes, I is intersection of {x}c with x running over
rationals.

Good, let us repeat with Q the set of rationals. It is not open. Is it
intersection of countably many open sets? the answer is not so immediate
now. We show it is not a countable intersection of open sets.

The above question appears purely set theoretic in nature. However, it is
worth recalling that we already needed its answer last year while discussing
continuous functions. Let us recall. We constructed a function f on R for
which the set of continuity points are precisely the set of irrational numbers.
In other words, if x is an irrational number then f is continuous at x; if x
is a rational number then f is not continuous at x. naturally, we asked: can
we cook up a function f which is continuous at x when x is rational while
discontinuous at x when x is not rational.

Returning to our claim, let if possible let

Q = U1 ∩ U2 ∩ U3 ∩ · · · .
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where each Ui is open. Let r1, r2, r3, · · · be an enumeration of all rational
numbers. We shall manufacture a sequence of intervals [an, bn] such that the
following hold.

(i) rn 6∈ [an, bn].

(ii) [an, bn] ⊂ Un.

(iii) [a1, b1] ⊃ [a2, b2] ⊃ [a3, b3] ⊃ · · · .
(iv) 0 < bn − an ≤ 1/2n.

Conditions (iii) and (iv) and Cantor’s intersection theorem tell us that
there is a point z common to all these intervals [an, bn]. Condition (ii) tells
that this point is in all the Un. Condition (i) tells that this point can not be
any rational. This contradicts that Q is the intersection of all the Un.

We shall now construct such intervals by induction. Start observing that
each Un includes all rationals and is an open set.

Take a non-degenerate open interval contained in U1. If it includes r1 take
a smaller interval that excludes r1. Take non-degenerate closed subinterval of
this. If it is large, cut it down and make its length at most one. This is [a1, b1].

Since a1 < b1 there is a rational in between and this rational belongs to
the open set U2 as well. Thus get a non-degenerate open subinterval inside
[a1, b1] which is contained in U2. If this interval includes r2 take a smaller
subinterval to exclude it. Take a non-degenerate closed subinterval of this.
If it is large, cut it down and make length at most 1/2.

Having got intervals for n = 1, 2, · · · , k we can write down how to get
the (k + 1)-th interval. The reason that such a thing must be written down,
instead of saying ‘etc etc’ or ‘do like this’ or ‘so on’ is the following. You
need to convince yourself that this procedure can be repeated for ever. What
would you do if someone says, no you can not continue like this.

I shall write the inductive step just to make sure you know how to do it.
Assume we got the first k intervals satisfying the conditions stated above up
to k. (Do you realize how important it is to list the conditions, when you
make construction inductively, so that they make sense up to k. After all
what I needed earlier was bn − an → 0. So I could have written condition
(iv) as bn − an → 0. This would be careless because then saying ‘condition
(iv) holds up to k’ does not make any sense. These subtle points you must
pay attention to, at least until you clearly grasp what makes sense and what
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does not! That is why writing proofs is very important.)

Here then is the inductive step. Since 0 < bk−ak take a rational between
ak and bk, then it is in (ak, bk) ∩ Uk+1. Thus there is a non-degenerate open
interval which is contained in (ak, bk)∩Uk+1. If this includes rk+1 take a non-
degenerate subinterval which excludes this point. Take a non-degenerate
closed subinterval contained in this interval. If its length does not exceed
1/2k+1 take it; if it is large, cut it down. The resulting interval is [ak+1, bk+1].

This completes the proof.

Let C be the Cantor set. Suppose that we asked: Is Q ∪ C a countable
intersection of open sets. Then we can not imitate the above proof. Earlier
we could show a non-rational point in ∩Un by avoiding rationals one-by-one.
This was possible simply because Q is a countable set.

Let us ask another question which you feel is unrelated to our present
discussion. Can you express R as a union of two disjoint non-empty closed
sets? That is

R = A ∪ B; A 6= ∅; B 6= ∅; A,B closed, disjoint.

This means A is a non-empty proper closed subset of R — connectedness
arguments prevent such a thing.

Very good, let us change it to countable union. Can you express R as a
countable union of disjoint non-empty closed sets? That is,

R = ∪An; (∀n)An 6= ∅; (∀n)An closed ; (∀n 6= m)An ∩ Am = ∅.

The answer is not immediate. There is an interesting story behind this dis-
cussion. The beauty unfolds slowly.

But for now, let us just realize that what we proved above is something
that actually proves a better thing.

small sets:

A closed subset C ⊂ R is said to be small if it does not include a (non-
empty) open interval.

Thus for example a singleton set is small. Set of integers is small. The
Cantor sets is small. However the interval [0, 1] is not small.

14



We say that A ⊂ R is small if its closure A is small. That is, there is no
open interval (non-empty) contained in A.

For example every subset of the Cantor set is small, because its closure is
contained in C. Set Q of rational numbers is not small, because its closure is
all of R. However Q is a countable union of small sets, namely, singleton sets.
Here then is a nice theorem whose proof is hidden in the earlier argument.

Theorem: R is not union of countably many small sets.

Recall that we already know that R is not countable, that is it is not
countable union of singleton sets. We are now saying better. It can not even
be union of countably many sets each ‘looking like’ Cantor set.

The result we proved earlier can be deduced from this more general the-
orem. Here is how. Suppose, if possible

Q = U1 ∩ U2 ∩ U3 ∩ · · · · · · .

Then
R =

⋃

r∈Q

{r} ∪
⋃

n

U c
n.

This equality is clear because all rationals are in the first collection of sin-
gleton sets; the earlier equality about Q tells that every irrationals is outside
some Un and is hence captured by some U c

n. This is a countable union. Fi-
nally, sets in the first collection are singletons and are hence small. Each
U c
n is already closed and does not contain any rational. Hence U c

n can not
include any open interval (non-empty). So it is also small.

In other words, if you can express Q as above, then R is a countable union
of small sets.

So how do we prove this theorem. As I said there is no new idea. if pos-
sible let R = ∪Cn countable union of small sets. We assume that the sets Cn

are closed, if necessary replace the original sets by their closures. Remember,
our definition tells that A is small iff its closure is small.

We shall manufacture a sequence of intervals [an, bn] such that the follow-
ing hold.

(i) [an, bn] ∩ Cn = ∅.
(ii) [a1, b1] ⊃ [a2, b2] ⊃ [a3, b3] ⊃ · · · .
(iii) 0 < bn − an ≤ 1/2n.
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By (ii) and (iii) and Cantor intersection theorem there is again z common
to all these intervals and (i) says that this point is outside all the sets Cn.
Thus the union ∪Cn is not all of R. Here is how you construct these intervals.

Cc
1 is open. Since C1 does not contain any interval, you can pick an non-

degenerate interval [a1, b1] ⊂ Cc
1. If necessary cut it down to satisfy condition

of length.
C2 being small, (a1, b1) ⊂ C2 is false. So (a1, b1)∩Cc

2 6= ∅ and being open,
contains a non-degenerate subinterval. Take closed non-degenerate subinter-
val of this. Cut down to fulfil length condition to get [a2, b2]. Next time
manufacture [a3, b3] ⊂ (a2, b2) ∩ Cc

3 and proceed.

This completes the proof.

There are several books dealing with metric spaces, for example the book
of A. N. Kolmogorov and S. V. Fomin: Introduction to real analysis. You
can look at the Hewitt and Stromberg that I mentioned earlier.
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