CMI (BSc II)/BVRao Analysis, Notes 4 2014 Fourth week

Understanding R:

If you go close to the real line you see that you can add and multiply
numbers. But in a superficial look at the line, you only see what comes
after what. We shall now isolate some order-theoretic properties of R, whose
presence in a loset helps us to recognize that that loset is none other than R
itself.

This understanding will familiarize with structure of R. Also motivates
and tells us ‘how to proceed’ to construct R.

Let (X, <) be a loset. A non-empty subset S C X is said to be bounded
above if there is an a € X such that for all x € S we have x < a. Such an
element a is also called an upper bound for the set S. An element s € X, if
exists, is said to be supremum of the set S if it is an upper bound and for any
upper bound b we have a < b. In other words, supremum is the least upper
bound. If there is supremum, then it must be unique. Note that neither
upper bound nor supremum need belong to the set S.

Similarly, a subset S C X is said to be bounded below if there is an b € X
such that for all z € S we have b < x. Such an element b is also called a
lower bound for the set S. An element b € X, if exists, is said to be infimum
of the set S if it is a lower bound and for any lower bound ¢ we have ¢ < b.
In other words, infimum is the greatest lower bound. If there is an infimum,
then it must be unique.

A set is said to be bounded if it is bounded below as well as above. You
should not be frightened with several concepts being thrown in. You should
notice that these concepts are not new. You saw them in the context of R.
We know what is meant by bounded, supremum, infimum etc for subsets
of real line. It just so happens that these are meaningful and useful in the
context of losets too.

You should be careful with your intuition and not be swayed by appear-
ance. For example consider the set X = [0, 1)U[2, 3) with usual order. This is
aloset. Take S = [0,1) C X. You might think that this set has no supremum
simply because 1 is not in our set. In fact 2 is its supremum as far as the loset
X is concerned. In other words, in the loset before your eyes this element



2 is an upper bound for the set and there is no upper bound smaller than this.

In fact, as a loset the above set X is isomorphic to [0,2). The map
flz)=xfor 0 <z <1and f(r) =2 —1 for 2 <z < 3 sets up an order iso-
morphism of X with [0,2). Here is a simple observation regarding existence
of infimums and supremums.

Theorem: Let X be a loset. The following are equivalent.
(i) Every non-empty bounded set has supremum.

(ii) Every non-empty set bounded above has supremum.
(ili) Every non-empty bounded set has infimum.

(iv) Every non-empty set bounded below has infimum.

Proof: 1f (i) holds then (ii) can be shown as follows. Take A # () bounded
above. Pick a € A. Consider B = {z € A : a < z}. This is non-empty
because a € B. Also B is bounded above by the bound of A. Moreover,
B is bounded below by a. Easy to see that supremum of B, which exists
by (i), works as sup of A. In fact, A and B have the same set of upper bounds.

Obviously (ii) implies (i).
Similarly (iii) and (iv) are equivalent.

Assume (ii) holds. We can argue (iii) as follows. Take A # () which is
bounded. Take the set B of all lower bounds of A. Since A is bounded, this
is non-empty. Also every element of A is an upper bound of B. Use (i) to
get s = sup B.

We claim that s is infimum of A. In fact, every element of A being an
upper bound of B, we conclude that s < a for each a € A. That is, s is
a lower bound for A. Further, if x is a lower bound of A, then = € B by
definition of the set B and hence x < s. Thus s is the greatest lower bound
of A, that is, inf A.

Similarly, one shows (iii) implies (i).
Say that a loset is boundedly complete if any of the above conditions hold.
Let X be a loset. Sets of the form {z € X : a < 2z}, {x € X : < b},

{r € X;a < x < b} are called open intervals. Remember, open intervals in
the real line are precisely of the form (—oo,a) or (a,b) or (b,00). This is



exactly what we are saying for any loset.

A subset D C X is dense, if every non-empty open interval contains a
point of D. A loset is separable if there is a countable dense set D.

Just as we have a photograph of @), the set of rationals in the theorem of
Cantor, the following is a photograph of the real line.

Theorem (characterization of R): Let (S, <) be a loset such that (i) it has
no first point, no last point, between any two distinct points there is some
other point; (ii) there is a countable set which is dense; (iii) every non-empty
bounded subset has supremum. Then S is order isomorphic to R.

Proof: We imitate arguments involved in proving that there is a homeo
of R that sends one countable dense set onto another such set. Instead of
two countable dense subsets of R, we start with () of R and countable dense
set D of the loset X. Observe that D can not have a first point. In fact
if d € D then the open interval {z € X;z < d} is non-empty (because X
has no first point) and hence must contain a point of D. Similarly D has no
last point. Thus D has no end points. Also given a < b from D, the open
interval {x € X : a < x < b} is non-empty because of hypothesis on X. And
D being dense, there is d € D such that a < d < b.

Now we can appeal to Cantor and fix an order preserving isomorphism
f D — @ and repeat earlier arguments. In other words, take z € X,
observe that the set {¢(d) : d € D;d < x} is bounded above in R and its
sup be denoted by ¢(z). First justify that when x € D then this sup indeed
same as () so that there is no clash of notation. This is order preserving
isomorphism.

This completes proof.

It can be shown (you will do that later) that violation of any one of the
features in the above picture will not give you R. In other words, given any
one of the above conditions, there are losets that do not satisfy the given
condition but satisfy all other conditions; and not order isomorphic to R.

We discuss one more characterization of the reals using its order proper-
ties. We need some definitions. Let X be a loset. A cut means a partition
X = LUU such thata € L,b € U — a < b. We shall consider only cuts where
both L and U are non-empty. There are exactly four possibilities: L has an
upper bound in L (hence = sup L) or does not have; U has a lower bound
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in U (hence = inf U) or does not have. Accordingly we have four possibilities.

Both exist: A cut is said to be a jump if L has upper bound in L and U
has a lower bound in U.

None exists: A cut is said to be a gap if L has no upper bound in L and
U has no lower bound in U.

Exactly one happens: A cut is said to be Dedikind cut if L has upper
bound in L but U has no lower bound in U OR U has a lower bound in U
but L has no upper bound in L.

For example let X = [0,1]U[2, 3)U(3, 4] with usual order. Then L = [0, 1]
leads to a jump; L = [0,1] U [2,3) leads to a gap; L = [0,1) or L = [0, 3]
leads to Dedikind cut.

Notice that in describing the cuts above, we have only described L. This
is enough because U is necessarily the complement of L. It is not necessary
to carry the extra baggage, U.

Here is another photograph of the real line and to recognize that this is
a photo of R we compare this with the previous photo.

Theorem: Suppose that (X, <) is a loset such that (i) it has no first point
and no last point (ii) it has a countable dense set (iii) every cut is a Dedikind
cut. Then X is order isomorphic to R.

Proof: Need to verify X satisfies previous theorem. Take a < b. If there
are no points in between, then L = {z : x < a} and U = {z : b < z} is gap.

Let A C X be any non-empty set bounded above. Put

L={zeX:2<a, forsomeac A} = | J{z:2 <a}.
acA

This gives a cut. Indeed, ) # A C L. If b is any upper bound of A, using
the fact that X has no last element get ¢ such that b < ¢ to see t € L¢. Thus
both L and L¢ are non-empty. If x € L, then there is a € A such that x < a
and anything smaller than z is also smaller than a and hence is in L. So it
is a cut. Hence this must be a Dedikind cut.



Suppose L has a sup s € L. Since A C L, we see that s is an upper
bound of L. As noticed by you, s € L tells that there is a € A with s < a.
But s is sup of L tells s = a. In other words this upper bound s of A isin A
and is hence sup A.

Suppose L€ has infimum s € L¢. Since A C L we see that s is an upper
bound of A. Let t < s. As noted at the beginning of the proof, we can get
t < wu < s. Since s is inf L¢, we conclude that v € L. Hence there is a € A
with u < a. In particular ¢ < a showing that ¢t can not be upper bound of
A. Thus s is the least upper bound of A.

Thus every non-empty set bounded above has a sup.
This verifies conditions of the earlier theorem to complete the proof.

Construction of R:

We shall now proceed to the construction of the real number system. Be-
fore we do this, you should be convinced that it is necessary.

For example a number like 13/9 has a clear and concrete existence in
our minds. On the other hands, some numbers are difficult to understand,
difficult to believe they exist and so on. For example V2 does not have as
concrete existence as 13/9. Of course, if you take some trouble you can visu-
alise this number. For example (and this is not the only way), you can say,
let us draw a concrete right angled triangle with two sides of unit length. Let
us measure the diagonal.

If you consider
\/gx/ﬁ

I am sure none of us have any idea what it is. We would even wonder if there
is such a number at all. So it is necessary to convince ourselves that such
numbers exist.

You might be deceived by your exposure to calculators. You might say,
what is there, if I punch square root instruction and press the x¥ function
I can get this and show you. But this is illusion. What you get is an ap-
proximation. I am sure many of you probably do not even know what your
calculator is showing. You just believe ‘it should show what I asked for’.



You might also momentarily wonder: Did we not meet all numbers al-
ready? Did we not show last semester existence of square roots and powers.
We did this in several steps, not only that, we developed several laws of in-
dices and so on concerning expressions of the form a®. Yes, you are right, we
actually did all the hard work (thank God, it was over!).

But remember, all that was achieved using properties of the R, real num-
ber system, we announced at the beginning. Everything done so far used all
the properties (and only those properties). Since we were clear headed and
have been careful to list the properties we used, our job now is well focussed.
We need to answer the question: is there a system satisfying those properties
we listed. This is what we do now.

Thus constructing R simply means exhibiting a system satisfying those
properties we listed. We need to exhibit a set R and define operations +, -
along with elements 0, 1 # 0 and relation < such that those axioms hold.
We shall recall those axioms only briefly now:

(I) deals with + and 0; says we have a group;

(IT) deals with - and 1 # 0; says nonzero things form a group;

(IIT) deals with + and -; says these two things are friendly;

(IV) deals with <; says we have a loset;

(V) deals with < and + and -; says they are friendly;

(VI) deals with subsets: says bounded non-empty subset has sup.

R from Q:

So for the next couple of hours we should not use real numbers, we do
not have them, we construct them. However we do have rational numbers
before us and we use them. It comes as a surprise that real numbers are very
simple and nothing profound or complicated. What plays a crucial role is
the intuition we gained from our earlier discussion.

Recall that, every real number was earlier described as sup of the set of

rational numbers below it. This single sentence (and nothing else) is at the
heart of what we do now.



Let us say that a subset  C @) is a cut if it satisfies the following:
(i) 0 # 2 #Q;

(ii) p € x, ¢ < p imply that g € z;

(iii) p € = implies there exists r with p < r and r € z.

Thus a cut is a non-empty proper subset of () such that if you take an
element in it then everything smaller than that is also there and somethings
larger than that are also there. (We can not say everything larger than that
is also there).

The collection of all cuts is denoted by R. This is our real number system.

Notice that sets are usually denoted by A, B, C' and so on. But now
we are using the symbols x, y, z and so on for cuts, which are some special
subsets of (). We denote elements of () by p, ¢, r, s and so on.

We do easy things first. We define an order on R by saying
<y <z Cuy.

Since x C x conclude that z < z.

If x <y andy < zthen z < z as a consequence of set inclusions.

If r <yandy <z then x =y.

Thus we have a poset. Now we show that it is a loset. Take x and y.
Suppose z £ y. Thus x ¢ y. So pick p € z and p € y. The second property
of p implies that nothing larger than p is in y (remember ¥ is a cut). Thus
everything in y must be smaller than p. The first property of p implies that
everything smaller than p is in z (remember x is a cut). Thus everything
which is in y must also be in z. Thus y C z, that is, y < x.

Did I use too much English? You can rewrite using symbols.

Thus R is a loset. We shall now show that this loset has sup property.
Take ) # S C R. Thus S consists of some cuts. Let S be bounded, say = < z
for all x € S. We exhibit sup for the set S. Let z* be the union of all the
cuts x that belong to S — just keep in mind that cuts are certain subsets of Q).

Since S is not empty, take x € S and take p € x to see p € x*. Thus
x* # (). Since x C z for each x € S we see that z* C z. Since z is a cut take
q & z. Clearly ¢ € x*. Thus z* # Q.



Let p € z*, take © € S so that p € x. But then everything smaller than
p is in this z (remember z is a cut) and hence in z* too.

Let p € x*, take x € S so that p € x. But then a little larger than p is
also in this z (remember z is a cut) and hence in z* too.

These three observations show that z* is a cut. Since x C x* for each
x € 5, that is, x < 2*, we see z* is an upper bound for S. If z is any upper
bound of S, then for each x € S we have z < z, that is, x C z so that z* C z,
that is, x* < z. That is x* is the smallest upper bound. Thus S has a sup.

Hope you appreciate how trivial things are, and how we exhibited sup in
a painless way. We shall now go on to define addition and multiplication.



