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Chapter 1

Axioms of Probability Theory

Probability theory provides the mathematical foundation to quantify the chance of oc-

currence of events. The origins of modern Probability may be traced to games of chance

around the 17th century. The two French mathematicians Pascal and Fermat discovered

many of the rules for computing probabilities. The rigorous and formal development of the

theory of probability was presented by the Russian mathematician Andrei Kolmogorov in

1933 in his book Foundations of the Theory of Probability.

To introduce the mathematical foundations of probability, we need to review some basic

set theory concepts.

1.1 Experiments, Sample Space and Events

An experiment is a ”repeated” process that generates observations or measurements.

The outcomes of the experiment are assumed to be random. We sometimes refer to this

as a random experiment.

Examples:

1. Tossing a coin: the observations are Head and Tail

2. Rolling a die: the observations are 1 through six.

3. Classifying an email: the observations are ”Spam” or ”Good”.

4. In a survey, individuals are classified according to income (low, medium, high) and

gender (male, female): the observations are all possible combinations of the two

categorical variables along with the response of interest.

5. Recording the survival times for patients suffering from cancer: the measurements

are the actual lifetimes of the patients, which could be any positive real number.

Definition: The Sample Space S is the set of all possible outcomes of a given experi-

ment. Each outcome in a sample space is called an element or a sample point.

Examples:
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1. Experiment: Tossing a coin

S = {H,T}

2. Experiment: Rolling a die

S = {1,2,. . . ,6}

3. Experiment: Rolling a die twice

S =



























(1,1) . . (1,6)

(2,1) . . (2,6)

. . . .

. . . .

(6,1) . . (6,6)



























4. Experiment:Recording the number of cases of malaria in Chennai

S = {0, 1, . . .}.

5. Experiment: Recording Profits for a company

S = {(−∞,∞)}.

Observe that in the first three examples, we can list all possible outcomes of the experi-

ment. Such sample spaces are called finite and discrete.

In example 4, the sample space is infinite but there is an ordering of the possible out-

comes, i.e. all whole numbers. Such a sample space is discrete, countable.

Example 5 has a sample space which is infinite and an interval. Such sample spaces are

usually referred to as continuous sample spaces.

Definition: An event is any outcome or collection of outcomes of a given experiment.

(In other words, an event is a subset of the sample space.)

Events are denoted by capital letters like A, B, E etc.

For each of the above examples, we can define several events.

1. Experiment: Rolling a die

S = {1,2,. . . ,6}

Event A: observing an odd number

A = {1,3,5}

Event B: observing a number that is a multiple of 5

B = {5}

2. Experiment: Rolling a die twice
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S =



























(1,1) . . (1,6)

(2,1) . . (2,6)

. . . .

. . . .

(6,1) . . (6,6)



























Event E: sum of the two rolls is 7.

E = { (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}

3. Experiment: Recording profits for a company

S = {(−∞,∞)}.

Event C: Profits above 10 crores.

C = {(10,∞)}

Definition: An event which has only one outcome in it is called simple, otherwise it is

known as a composite event.

1.1.1 Algebra of Sets

Let A and B be two events defined on the same sample space.

Definition: The Union of A and B, denoted by A ∪ B is the event consisting of all

outcomes which are in A or in B or in both.

Definition: The intersection of A and B, denoted by A ∩ B is the event consisting of

all outcomes that are in both A and in B.

Definition: Event A is said to be a subset of B if every outcome in A is also an outcome

in B. We write this as A ⊂ B.

Definition: If A ⊂ B and B ⊂ A, then the two sets have the same outcomes and are

said to be equal. We write A = B.

Definition: Two events are said to be mutually exclusive or disjoint if they cannot

occur simultaneously. When two events are mutually exclusive, their intersection is the

empty or null set φ.

Definition: The complement of an event A, denoted by Ac or Ā is the set of all outcomes

in the sample space that do not belong to A.

Examples

1. Rolling a die.

A: observing an odd number = {1,3,5}
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B: observing an even number = {2,4,6}

C: observing a multiple of 3 = {3,6}

We have

A ∪ B = {1,2,3,4,5,6}

A ∩ C = {3}

B ∪ C = {2,3,4,6}

A ∩ B = φ, i.e. A and B are mutually exclusive.

2. Consider the sample space S = R. Define A = {x : 0 ≤ x ≤ 1}, B = {x : 0 < x <

1}, C = [2, 3] = {x : 2 ≤ x ≤ 3}, D = R+.

We have

B ⊆ A.

A ∩ B = (0, 1)

A ∪ C = [0, 1] ∪ [2, 3]

A ∩ C = φ.

1.1.2 Properties of Set Operations

Let S be the sample space and A,B,C events defined on S.

Theorem 1.1.1. 1. Commutative Property

A ∪ B = B ∪ A

A ∩B = B ∩ A.

2. Associative Property

A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C.

3. Distributive Property

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

4. DeMorgan’s Law

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc.
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Proof of 4, Part 1

We need to show L = (A ∪ B)c and R = Ac ∩Bc are equal.

Let x be an outcome in L. We have the following:

x ∈ (A ∪B)c

⇒ x 6∈ A ∪B

⇒ x 6∈ A and x 6∈ B

⇒ x ∈ Ac and x ∈ Bc

⇒ x ∈ Ac ∩Bc.

This proves that

L ⊆ R. (1.1)

To show the reverse, let x ∈ R. Then

x ∈ Ac ∩Bc

⇒ x ∈ Ac and x ∈ Bc

⇒ x 6∈ A and x 6∈ B

⇒ x 6∈ A ∪ B

⇒ x ∈ (A ∪B)c

This proves

R ⊆ L. (1.2)

From (1.1) and (1,2), we have

L = R.

�

The definitions of unions and intersections can be extended to infinite and uncountable

collections of events.

Definition: Let {Ai} be a collection of events. Then

∞
⋃

i=1

Ai = {x : x ∈ Ai for some i}.

∞
⋂

i=1

Ai = {x : x ∈ Ai for all i}.
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If Γ is an index set then, we have

⋃

a∈Γ

Aa = {x : x ∈ Aa for some a}.

⋂

a∈Γ

Aa = {x : x ∈ Aa for all a}.

Example: Let S = R. Define Ai =
(

1− 1

i
, 1
]

. Then

∞
⋂

i=1

Ai = {1}.

Definition: Let {Ai} be a collection of events. The events are said to be pairwise

disjoint if

Ai ∩ Aj = φ ∀i 6= j.

Definition: Let {Ai} be a collection of pairwise disjoint events such that

∞
⋃

i=1

Ai = S.

Then the sets {Ai} are said to form a partition of S.

1.2 Counting Rules

Fundamental Theorem of Counting: Consider an experiment that consists of k dis-

tinct steps. Let ni = number of possible outcomes for the i−th step. Then the total

number of outcomes for the combined experiment is

n1 × n2 × . . .× nk.

This is also called the Multiplication Rule.

Example: Alphonse Bertillon, viewed as the founder of Anthropometry developed a sys-

tem of identifying individuals (criminals) based on anthropometric measurements. Indi-

viduals were identified by measurements of the head and body, markings (tattoos, scars),

and personality characteristics that were assumed to be unchanged during the individu-

als’s adult life. The body measurements were broken down into three intervals: small,

medium, and large.

The measurements allowed for records to be sorted, first with respect to height, then

arm-span, upper body height, head length etc. A person’s Bertillon configuration was an
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ordered sequence of 11 letters, say

ssmmlslssms,

where a letter indicated the individual’s size relative to a particular measurement. How

many different Bertillon configurations are possible?

Solution: 311 = 177, 147.

The Bertillon system was used in Europe before the advent of modern fingerprinting.

1.2.1 Permutations

Definition: A permutation is an ordered arrangement of objects.

Theorem 1.2.1. Consider n distinct objects. The number of permutations of r objects

selected from the group of n objects (repetitions not allowed) is denoted by the symbol P n
r ,

where

P n
r = n (n− 1) . . . (n− r + 1) =

n!

(n− r)!
. (1.3)

Proof: Use the Multiplication Rule.

�

Corollary 1.2.2. The number of permutations of the entire set of n objects is P n
n , where

P n
n = n!. (1.4)

Example: At a family reunion, a group of 4 families, each with 8 members, are lined up

for a photograph. In how many ways can the group be arranged if members of a family

must stay together?

Solution:

4!(8!)4

�

Example: A three-digit number is to be formed from the digits 1 through 7, with no

digit being used more than once. How many such numbers are less than 289?

Solution:

60
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�

1.2.2 Permutations when the objects are not distinct

Theorem 1.2.3. The number of permutations of n objects of which n1 are of one kind,

n2 are of a second kind, . . . , nr are of a r−th kind is

n!

n1!n2! . . . nr!
, (1.5)

where n1 + . . .+ nr = n.

Proof: Let P denote the total number of such arrangements. For any one of these P

arrangements, we have n1!n2! . . . nr! ways of arranging the similar objects (if they were

truly different). Therefore

P × n1!n2! . . . nr! = n!

which implies

P =
n!

n1!n2! . . . nr!
.

�

Example: A chess tournament has 10 competitors of which 4 are Russian, 3 are from

the US, 2 from the UK, and 1 from Germany. If the tournament results list just the

nationalities of the players in the order in which they placed, how many outcomes are

possible?

Solution: There are

10!

4!3!2!1!
= 12, 600 possible outcomes.

�

Theorem 1.2.4. The number of ways of partitioning a set of n objects into r cells with

n1 elements in the first cell, n2 elements in the second cell, ..., nr elements in the r−th

cell is
(

n

n1, n2, . . . , nr

)

=
n!

n1!n2! . . . nr!
,

where n1 + . . .+ nr = n.

The terms

(

n

n1, n2, . . . , nr

)

are referred to as multinomial coefficients.

�

Example: The security company used by CMI employs 10 security guards. If the com-
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pany policy is to have 5 of the guards on duty at the hostel, 2 of the officers working full

time at the main entrance, and 3 of the officers on reserve at the main office, how many

different divisions of the 10 guards into the 3 groups are possible?

Solution: There are
10!

5!2!3!
= 2520 divisions.

�

1.2.3 Combinations

In many problems, we are interested in the number of ways of selecting r objects from n

without regard to order. These selections are called combinations.

Theorem 1.2.5. The number of combinations of n distinct objects taken r at a time is

Cn
r =

(

n

r

)

=
n!

r!(n− r)!

�

If the selection is done with replacement, the formulae above need to be modified.

Example: A box contains n marbles numbered 1, 2, . . .. A marble is drawn at random,

the number noted, and the marble returned to the box. If r marbles are drawn, the sample

space consist of all r-tuples (x1, . . . , xr), where xi is the outcome of the i−th draw. The

total number of outcomes is

nr.

�
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1.3 Probability

Once we have defined an experiment, obtained the associated sample space S, and defined

events of interest, we would like to assign probabilities to these events.

The Probability associated with an event A, denoted by P(A) is a quantification of our

belief that the experiment will yield those particular outcomes.

How do we assign probabilities to all events (and combinations of events) in a sample

space in a mathematically consistent fashion?

To answer that question, let us start with some simple intuitive examples.

Example: Consider the simple experiment of tossing a coin. We know the sample space

is S = {H, T}. There are only two events of interest: the two possible outcomes. These

are simple events.

We wish to find the probability of the event that a Head occurs. We may start with the

classical approach to assigning probability

We say that the chance of the coin turning up heads is 50 %. The reason for this statement

is that we assume the coin is fair, there are only two possible outcomes (Head and Tail),

and both are equally likely to happen. Thus classical probability assumes a structure to

the process.

This idea may be extended to the case in which the experiment may result in one of N

equally likely outcomes. Let {E1, . . . , EN} denote the N outcomes (simple events). We

can assign a probability of 1/N to each Ei.

The probability of any event A may be defined as

P (A) =
number of outcomes favourable to A

number of outcomes in the sample space

Empirical Probability: Consider again the problem of tossing a coin. Suppose we have

no information on whether the coin is fair or not. To find the chance of obtaining a

head, we could toss the coin a large number of times, observe the number of times a head

turned up, and use the proportion of heads observed as an approximation to the chance

of observing a head.

This is also called the relative frequency approach to probability. The empirical proportion

should get ”closer” to the true proportion as the number of replications increase.

For finite sample spaces, we can assign probabilities to all the individual outcomes. This

assignment of probabilities (using either the classical or the relative frequency approach)

satisfies the following:

• The probability of any event lies between 0 and 1.

• The sum of the probabilities of all possible outcomes equals 1.
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• Probability of an event A may be obtained by adding the probabilities of the simple

events that make up A.

This approach is adequate for many of the standard examples involving games of chance

(poker hands, roll of dice etc).

The theory of discrete sample spaces provides the foundation for the development of many

interesting topics in mathematical probability. However, the theory is not adequate to

provide a rigorous treatment for two kinds of problems:

1. Experiments involving an infinitely repeated operation such as infinite sequence of

tosses of a coin.

2. Problems involving an ”infinitely fine” operation, such as the random drawing of a

point from a segment.

In order to develop a mathematically complete description of probability, we need to

introduce some ideas from Measure Theory.

1.4 A Trip to Measure Land

Let Ω be an abstract space, viz, a nonempty set of elements called points and denoted

generically by ω.

In probability theory, Ω represents the sample space, and points refer to outcomes. A

subset of Ω is an event.

We will assume Ω is an arbitrary nonempty space,

Definition: A collection (or class) F of subsets of Ω is called an Algebra or a Field if

it satisfies the following three properties:

1. φ ∈ F .

2. If A ∈ F ⇒ Ac ∈ F .

3. If A1, A2 ∈ F ⇒ A1 ∪ A2 ∈ F

A field is said to be closed under the formation of complements and finite unions.

As a consequence of the definition, we have the following additional properties:

1
′

Ω ∈ F

2
′

If A1, A2 ∈ F ⇒ A1 ∩ A2 ∈ F

Fill in the Proof!

�
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Example: Let Ω = {1, 2, 3, . . .}. Let C be the class of subsets C of Ω such that either C

contains a finite number of points or Cc contains a finite number of points. Show that C

is a field.

Definition: The trivial field is F = {Φ,Ω}.

Definition: The set of all possible subsets of Ω is called the power set or power class,

and is denoted by P(S). The power set is necessarily a field.

Definition: A collection (or class) F of subsets of Ω is called a σ− Algebra or a σ−

Field if it satisfies the following three properties:

1. φ ∈ F .

2. If A ∈ F ⇒ Ac ∈ F .

3. If A1, A2, . . . ∈ F ⇒
⋃

i Ai ∈ F

A σ− field is said to be closed under the formation of complements and countable unions.

Every σ− field is a field but the converse is not true.

Example: Let Ω = {1, 2, 3, . . .}. Let C be the class of subsets C of Ω such that either

C contains a finite number of points or Cc contains a finite number of points. We have

shown that C is a field. Let

Ai = {2i}.

Each Ai ∈ C. Let

C =
⋃

i

Ai = {2, 4, 6, . . .}.

We have

Cc = {1, 3, 5, . . .},

which is also a set containing infinitely many points. Therefore C 6∈ C, which implies C is

NOT a σ− field. �

Example: Consider the class F of all intervals of the form (a, b) : a, b ∈ R; a < b and the

set φ.

We have

(a, b) ∩ (c, d) =



























φ, if a < b < c or c < d < a < b;

(c, b), if a < c < b < d;

(a, d), if c < a < d < b;

(c, d), if a < c < d < b;

(a, b), if c < a < b < d.

So F is closed under finite intersection. It is not closed under complementation or unions.
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(a, b)c = (−∞, a] ∪ [b,∞) 6∈ F .

Further (a, b) ∪ (c, d) is not an interval if a < b < c < d or c < d < a < b. �

A field is closed under the finite set-theoretic operations and a σ-field is closed under

the countable ones. In general, we start with a small class A. However, we may find

that constructions involving finite and countable operations may lead to sets outside this

initial class (See previous example).

We therefore expand to a class of sets that

1. Contains A and

2. is a σ-field.

We also want this class to be as small as possible. The next result allows us to construct

this ”small” class.

Theorem 1.4.1. The intersection of an arbitrary number of σ-fields is also a σ-field.

Proof: Use the definition.

Given any class A, the minimal σ-field containing A is denoted by σ(A). It is the inter-

section of all the σ-fields containing A. It is also called the σ-field generated by A. It is

minimal in the sense that it is contained in every σ-field that contains A.

Example: The Borel Field Let Ω = R. Consider the class A of all intervals of the

form (−∞, x), x ∈ R. This class is closed under finite intersections, but not under com-

plementation nor under countable intersections (Need to show this!).

Let B = σ(A) be the minimal σ-field containing A. Clearly B contains intervals of the

form [x,∞) which are complements of sets in A. It also contains intervals of the form

(−∞, a] =
∞
⋂

n=1

(

−∞, a+
1

n

)

.

(a,∞) = (−∞, a]c.

(a, b) = (−∞, b) ∩ (a,∞), a < b.

It also includes intervals of the form (a, b], [a, b).

B is called the Borel field of subsets of R. The sets of B are called Borel sets. B contains

all the subsets of R encountered in normal probability. It is large enough for all practical

purposes. It does NOT, however, contain all subsets of R
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1.5 The Probability Function

Kolmogorov’s Axioms of Probability

Definition: Let S be a sample space, and let B be a σ-field B on S. A probability

function is a set function with domain B that satisfies the following three axioms:

A1. P (A) ≥ 0 ∀A ∈ B.

A2. P (S) = 1.

A3. If A1, A2, ... ∈ B, Ai’s are pairwise disjoint, then

P

(

∞
⋃

1

Ai

)

=
∞
∑

1

P (Ai).

A3 is known as the countable additivity property.

Remarks:

• These axioms simply state the conditions P (.) must satisfy, but do not provide any

guidelines as to how P (.) must be selected. For any sample space, many different

probability functions can be defined.

• Sets in the σ-field B are the only sets for which P (.) is defined. B cannot always

be taken to be the power class because, sometimes, one cannot define a probability

function consistent with the above axioms.

Definition: If P is a probability function on a σ-field B in S, then (S,B, P ) is called a

probability space.

Example: Consider a pointer free to spin about the centre of a circle. Each point on the

circumference is a possible outcome of the experiment.

S = {x : 0 < x < 2πr},

where r is the radius of the circle.

Events of interest are those in which the pointer stops at a point belonging to a specified

arc.

The probability could correspond to the area of an arc.

�

Example: Let S = R+, B the Borel σ-field on S. For each interval I ⊆ S, define

P (I) =

∫

I

e−xdx.
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Clearly

1. P (I) ≥ 0 for all intervals I.

2. P (S) =
∞
∫

0

e−xdx = 1.

3. P (∪iAi) =
∫

∪iAi

e−xdx =
∑

i

∫

Ai

e−xdx if A′

is are disjoint intervals.

�

1.5.1 Properties of the Probability Function

Theorem 1.5.1.

P (φ) = 0.

Proof:

S = φ ∪ S; φ ∩ S = φ

⇒ P (S) = P (S) + P (φ) (Property A3)

⇒ 1 = 1 + P (φ) (Property A2)

⇒ P (φ) = 0.

�

Theorem 1.5.2. P is finitely additive.

Proof: Fill in the steps.

�

Theorem 1.5.3. If A ∈ B, then

P (Ac) = 1− P (A).

Proof:

A ∪ Ac = S; A ∩ Ac = φ
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⇒ P (A) + P (Ac) = P (S) (Property A3)

⇒ P (A) + P (Ac) = 1 (Property A2)

⇒ P (Ac) = 1− P (A).

�

Theorem 1.5.4. If A,B ∈ B, then

P (A) = P (A ∩ B) + P (A ∩Bc).

P (A− B) = P (A ∩Bc) = P (A)− P (A ∩B).

Proof:

(A ∩B) ∪ (A ∩Bc) = A; (A ∩B) ∩ (A ∩Bc) = φ

⇒ P (A ∩ B) + P (A ∩Bc) = P (A). (Property A3)

�

Theorem 1.5.5. Monotonicity Property. If A,B ∈ B and A ⊂ B, then

P (A) ≤ P (B)

Proof: We may write

B = A ∪ (B ∩ Ac); A ∩ (B ∩ Ac) = φ

⇒ P (B) = P (A) + P (B ∩ Ac) (Property A3)

⇒ P (B) ≥ P (A) since P (B ∩ Ac) ≥ 0.

�

Theorem 1.5.6. For every A ∈ B,

0 ≤ P (A) ≤ 1.

Proof: Axiom A1 states that P (A) ≥ 0. We have

A ⊆ S

⇒ P (A) ≤ P (S) (Theorem 1.5.5)

⇒ P (A) ≤ 1. (Property A2)

�
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Theorem 1.5.7. Additive Rule. If A,B ∈ B, then

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof: We may write

A ∪ B = A ∪ (B ∩ Ac); A ∩ (B ∩ Ac) = φ

⇒ P (A ∪B) = P (A) + P (B ∩ Ac) (Property A3)

⇒ P (A ∪B) = P (A) + P (B)− P (A ∩B). (Theorem 1.5.4)

�

We may extend the previous result.

Theorem 1.5.8. The Inclusion-Exclusion Formula. Let A1, A2, . . . , An ∈ B. Then

P

(

n
⋃

i=1

Ai

)

=
n
∑

i=1

P (Ai)−
∑

i<j

P
(

Ai

⋂

Aj

)

+
∑

i<j<k

P
(

Ai

⋂

Aj

⋂

Ak

)

+ . . .+ (−1)n+1P

(

n
⋂

i=1

Ai

)

.

Proof: The general proof is obtained by induction.

�

Bonferroni’s Inequality provides a bound for the probability of the intersection of two

events. It is used in the construction of simultaneous confidence intervals. The result is

a simple consequence of the additive rule.

Theorem 1.5.9. Bonferroni’s Inequality. If A,B ∈ B, then

P (A ∩ B) ≥ P (A) + P (B)− 1.

Proof: From the additive rule, we have

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Since P (A ∪B) ≤ 1, we have

P (A ∩ B) ≥ P (A) + P (B)− 1.

�

Theorem 1.5.10. Law of Total Probability . If A ∈ B, and {Ci} is a partition of S, such
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that Ci ∈ B ∀ i, then

P (A) =
∞
∑

i=1

P (A ∩ Ci).

Proof: Since C1, C2, . . . form a partition, we have

∞
⋃

i=1

Ci = S Ci ∩ Cj = φ, i 6= j.

Further

A = A ∩ S = A
⋂

(

∞
⋃

i=1

Ci

)

=
∞
⋃

i=1

(A ∩ Ci).

Therefore

P (A) = P

(

∞
⋃

i=1

(A ∩ Ci)

)

=
∞
∑

i=1

P (A ∩ Ci).

�

Theorem 1.5.11. Boole’s Inequality. Let A1, A2, . . . , An ∈ B. Then

P

(

n
⋃

i=1

Ai

)

≤

n
∑

i=1

P (Ai).

Proof: Define

B1 = A1

B2 = A2 − A1 = A2

⋂

Ac
1

...

Bk = Ak −

(

k−1
⋃

j=1

Aj

)

.

Clearly Bi ∈ B and Bi

⋂

Bj = φ, i 6= j. We also have

Bi ⊆ Ai ∀i.

This implies, from Theorem 1.4.6,

P (Bk) ≤ P (Ak).

We also see that
n
⋃

i=1

Bi =
n
⋃

i=1

Ai.
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Therefore

P

(

n
⋃

i=1

Ai

)

= P

(

n
⋃

i=1

Bi

)

=
n
∑

i=1

P (Bi) (Property A3)

⇒ P

(

n
⋃

i=1

Ai

)

=
n
∑

i=1

P (Bi) ≤
n
∑

i=1

P (Ai).

�

Theorem 1.5.12. Generalized Bonferroni’s Inequality. If {Ai} is a sequence of sets in

B, then

P

(

n
⋂

i=1

Ai

)

≥

n
∑

i=1

P (Ai)− (n− 1).

Proof: Let us apply Boole’s inequality to the Ac
i ’s. We have

P

(

n
⋃

i=1

Ac
i

)

≤

n
∑

i=1

P (Ac
i).

We know that
n
⋃

i=1

Ac
i =

(

n
⋂

i=1

Ai

)c

.

Therefore

P

(

n
⋃

i=1

Ac
i

)

= P

[(

n
⋂

i=1

Ai

)c]

= 1− P

[

n
⋂

i=1

Ai

]

≤
n
∑

i=1

[1− P (Ai)]

= n−

n
∑

i=1

P (Ai).

Rearranging terms, we get

P

(

n
⋂

i=1

Ai

)

≥
n
∑

i=1

P (A)i − (n− 1)

�

Definition: A sequence of sets {An} is said to be non-decreasing if An ⊆ An+1 for each
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n. Since
n
⋃

k=1

Ak = An,

⋃

∞

k=1
Ak = A is called the limit of the sequence and we write An ↑ A

Definition: If An ⊇ An+1 for each n, the sequence is said to be non-increasing. Then
⋂n

k=1
Ak = An and

⋂

∞

k=1
Ak = A is called the limit of the sequence. We write An ↓ A

Example: Let S = (−∞,∞) and An = {ω : 0 < ω < 1− 1

n
}

Then An ↑ A, where A = {ω : 0 < ω < 1}.

Bn = {ω : 0 < ω < 1 + 1

n
}

Then Bn ↓ B, where B = {ω : 0 < ω ≤ 1}.

�

Theorem 1.5.13. Axiom of Continuity.

1. Let {An} be an increasing sequence of sets in B. Then

P

(

∞
⋃

n=1

An

)

= P ( lim
n→∞

An) = lim
n→∞

P (An).

This is referred to as continuity from below.

2. Let {An} be a decreasing sequence of sets in B with limAn = A ∈ B. Then

P

(

∞
⋂

n=1

An

)

= P ( lim
n→∞

An) = lim
n→∞

P (An).

This is referred to as continuity from above.

Proof: Part 1.

Let B1 = A1, Bi = Ai − Ai−1, i = 2, 3, . . ..

Clearly B′

is are disjoint. Therefore, we have

P ( lim
n→∞

An) = P

(

∞
⋃

n=1

An

)

= P

(

∞
⋃

n=1

Bn

)

=
∞
∑

n=1

P (Bn)

= lim
n→∞

n
∑

j=1

P (Bj)
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= lim
n→∞

{P (A1) +
n
∑

j=2

[P (Aj)− P (Aj−1)]}

= lim
n→∞

P (An).

Part 2. If {An} is decreasing, then {Bn} = {Ac
n} is increasing. From Part 1, we have

P (B) = P ( lim
n→∞

Bn) = lim
n→∞

P (Bn). (1.6)

Clearly,

lim
n→∞

P (Bn) = 1− lim
n→∞

P (An). (1.7)

Using (1.3) and (1.4), we have

1− lim
n→∞

P (An) = lim
n→∞

P (Bn)

= P ( lim
n→∞

Bn)

= P

(

∞
⋃

n=1

Bn

)

= P

(

∞
⋃

n=1

Ac
n

)

= P

[(

∞
⋂

n=1

An

)c]

= 1− P

(

∞
⋂

n=1

An

)

= 1− P ( lim
n→∞

An).

This shows that

P ( lim
n→∞

An) = lim
n→∞

P (An).

�

Corollary 1.5.14. Axiom of Continuity (Special Case).

If {An} is an infinite sequence of decreasing sets with An ↓ φ, then

P (An) → 0.

Proof: Direct application of previous result.

�

Corollary 1.5.15. In the presence of finite additivity, this special axiom of continuity

implies the axiom of countable additivity.
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Proof: Let {An} be a sequence of pairwise disjoint sets in B. We have

P

(

∞
⋃

i=1

Ai

)

= P

(

n
⋃

i=1

Ai

)

+ P

(

∞
⋃

i=n+1

Ai

)

.

Finite additivity implies

P

(

∞
⋃

i=1

Ai

)

=
n
∑

i=1

P (Ai) + P

(

∞
⋃

i=n+1

Ai

)

.

⋃

∞

i=n+1
Ai ↓ φ. Using the special axiom of continuity, we have

P

(

∞
⋃

i=n+1

Ai

)

→ 0 as n → ∞.

Therefore

P

(

∞
⋃

i=1

Ai

)

=
∞
∑

i=1

P (Ai).

�

Theorem 1.5.16. Countable Subadditvity.

Let {An} be a sequence of sets in B. Then

P

(

∞
⋃

n=1

An

)

≤
∞
∑

n=1

P (An).

Proof: Let Bn =
⋃n

i=1
Ai. Clearly (!), {Bn} is an increasing sequence with limit A =

⋃

∞

n=1
An. Further, Bn = Bn−1 ∪ An. Using Boole’s inequality, we have

P (Bn) ≤ P (Bn−1) + P (An),

which is equivalent to

P (Bn)− P (Bn−1) ≤ P (An).

Applying Theorem 1.4.11 to the {Bn} sequence, we have

P

(

∞
⋃

n=1

An

)

= P

(

∞
⋃

n=1

Bn

)

= lim
n→∞

P (Bn)

= lim
n→∞

{

P (B1) +
n
∑

j=2

[P (Bj)− P (Bj−1]

}

≤ lim
n→∞

n
∑

j=1

P (Aj)
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=
∞
∑

n=1

P (An).

�

1.6 Examples

Example: Consider an experiment wherein n marbles are to be placed in n cells. If the

marbles are randomly placed, find the probability that each cell will be occupied.

n!

nr
.

�

Example: Birthday Problem. Consider a group of r individuals. What is the probability

that at least two share the same birthday?

Consider the sample space consisting of the birthdays of these r individuals. Ignoring

leap years, each individual might have a birthday on any one of the 365 days of the year.

The number of outcomes in the sample space is

365r.

Let A be the event that all r birthdays are different. Then A contains

P 365

r = 365× 364× . . .× (365− r + 1)

outcomes. Assuming all sequences of birthdays are equally likely, we have

P (A) =
P 365
r

365r
.

The probability that at least two share the same birthday is P (Ac).

For r = 23, the probability exceeds 0.5.

�

Example: Consider the random distribution of r marbles in n cells. Let

Ak = event that a specified call has exactly k marbles k = 0, . . . , r.
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The number of ways k marbles can be selected from the r is

(

r

k

)

.

The remaining r − k marbles can be distributed in any of the remaining n− 1 cells in

(n− 1)r−k

ways. Therefore

P (Ak) =

(

r

k

)

(n− 1)r−k

nr
=

(

r

k

)

(

1

n

)k (

1−
1

n

)r−k

.

�

Example: Poker hands. Find the probability of (a) A = a full house, (b) B=one pair,

and (c) C=a straight.

A full house consists of three cards of one denomination and two of another.

P (A) =

(

13

1

)(

4

3

)(

12

1

)(

4

2

)

(

52

5

) .

P (B) =

(

13

1

)(

4

2

)(

12

3

)(

4

1

)(

4

1

)(

4

1

)

(

52

5

) .

P (C) =
10[45 − 4]
(

52

5

) .
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Example: Occupancy Problems

If we place r distinguishable marbles into n cells, the number of possible outcomes is nr.

Suppose the r marbles are indistinguishable. The events of interest are the number of

marbles in the cells as opposed to the ordered arrangements.

The sample space may be described be a vector of the form (x1, . . . , xn), where xi is the

number in the i-th cell.

The problem reduces to finding the number of distinct non-negative integer valued vectors

(x1, . . . , xn) such that

x1 + . . .+ xn = r.

First, consider the number of positive integer valued solutions.

Imagine, we have r indistinguishable objects lined up, and that we want to divide them

into n nonempty groups. We can select n−1 of r−1 spaces between the adjacent objects

as our dividing points. For example, if r = 8 and n = 3, we can choose the 2 divisors as

below:

� � � ‖ � � � ‖ � �

Here x1 = 3, x2 = 3, x3 = 2. There are

(

r − 1

n− 1

)

possible selections.

To obtain the number of nonnegative (as opposed) to positive solutions, we note that the

number of nonnegative solutions of

x1 + . . .+ xn = r

is the same as the number of positive solutions of

y1 + . . .+ yn = n+ r,

letting yi = xi+1. Therefore the number of distinct nonnegative solutions (integer valued)

is given by
(

n+ r − 1

n− 1

)

=

(

n+ r − 1

r

)

.

Another solution for this problem is obtained by treating the objects as �’s and the cells

by ‖’s. The n cells can be represented by the n spaces between n+ 1 bars. The two ends

are fixed, but the remaining (n − 1) bars and the r objects may appear in an arbitrary

order.

There are
(

n+ r − 1

r

)
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ways of selecting r places out of n+ r − 1 objects.

Example: Out of (2n+1) tickets consecutively numbered, 3 are drawn at random. Find

the probability that the numbers form an arithmetic progression.

The number of ways of choosing 3 tickets is

(

2n+ 1

3

)

.

The common difference for an AP can take values 1, 2, . . . , n. If d = 1, the first term a

can range from 1, 2, . . . , 2n− 1 [2n− 1 possible values.]

If d = 2, there are 2n− 3 possible AP’s.

If d = n− 1, there are 3 AP’s 1, n, 2n− 1; 2, n+ 1, 2n; 3, n+ 2, 2n+ 1.

If d = n, there is only one AP.

The total number of AP’s is

(2n− 1) + (2n− 3) + . . .+ 1 =
n

2
[2 + (2n− 1)] = n2.

The probability that the numbers form an AP is

n2

(

2n+ 1

3

) .

27


