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Chapter 6

Multivariate Distributions

6.1 Introduction

In the previous chapters, we have discussed models for a single random variable. We need to expand
our univariate results to higher dimensions.

Motivation:

1. Sampling: In any experiment, data is collected on a large group of items/individuals.

2. Multivariate Data: several measurements are taken on the units.

We need models that describe the behaviour of more than one random variable at a time.

Definition: An n−dimensional random vector X is a function from the sample space S into Rn,
n−dimensional Euclidean space.

Definition: A vector each of whose components is a random variable is called a random vector.

If we let n = 2, then every outcome in the sample space is associated with an ordered pair (x, y) ∈
R2. This defines a two-dimensional or bivariate random vector (X, Y ).

Definition: In 2-dimensional Euclidean space R2 or the plane, the Borel field B2 is generated by
rectangles of the form

{(x, y); a < x ≤ b, c < y ≤ d}.
It is also generated by product sets of the form

B1 ×B2 = {(x, y); x ∈ B1, y ∈ B2}

where B1, B2 ∈ B.

Definition: Let X and Y be random variables on (S,F , P ). The random vector (X, Y ) induces a
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probability measure ν on B2 as follows:

∀ A ∈ B2, ν(A) = P{(X, Y ) ∈ A}
= P ({s; (X(s), Y (s)) ∈ A}) .

Here ν is the probability distribution of (X, Y ).

Definition: The joint cumulative distribution function of (X, Y ) is the function F (x, y) defined by

F (x, y) = P [X ≤ x, Y ≤ y] (6.1)

for all (x, y) ∈ R2.

Definition: A two-dimensional or bivariate random vector (X, Y ) is discrete if it assumes a count-
able number of values. The function p(x, y) : R2 → [0, 1] defined by

p(x, y) = P (X = x and Y = y) (6.2)

is called the joint pmf of (X, Y ).

For any set A ∈ B2, we have

P [(X, Y ) ∈ A] =
∑

(x,y)∈A

p(x, y).

Theorem 6.1.1. A function p(x, y) is a joint pmf iff

(a) p(x, y) ≥ 0 ∀(x, y);

(b)
∑

x

∑

y p(x, y) = 1.

�

The joint pmf completely defines the probability distribution of the random vector (X, Y ).

Once we have specified the joint probability model, we may want to find probabilities involving one
of the random variables, say X. The pmf of X is called its marginal distribution.

Theorem 6.1.2. Let (X, Y ) be a discrete bivariate random vector with joint pmf p(x, y). Then the
marginal pmfs of X and Y , denoted by pX(.) and pY (.) respectively, are given by

pX(x) =
∑

y∈R

p(x, y)

pY (y) =
∑

x∈R

p(x, y).

Proof:
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pX(x) = P (X = x) = P (X = x,−∞ < Y < ∞)

=
∑

y∈R

p(x, y).

�

Remarks:

1. The joint pmf completely specifies the marginals.

2. The converse is not true.

Example: Consider the experiment of tossing two tetrahedra (4-sided dice). Let X be the number
observed on the lower face of the first tetrahedron. Let Y be the larger of the two lower faces. Find
the joint pmf and the marginals.
We have the joint pmf:

p(1, 1) = p(1, 2) = p(1, 3) = p(1, 4) = p(2, 3) = p(2, 4) = p(3, 4) =
1

16

p(2, 2) =
2

16
; p(3, 3) =

3

16
; p(4, 4) =

4

16
p(2, 1) = p(3, 1) = p(3, 2) = p(4, 1) = p(4, 2) = p(4, 3) = 0.

From the joint pmf, we have the two marginal pmfs

pX(1) = pX(2) = pX(3) = pX(4) =
4

16

pY (1) =
1

16
; pY (2) =

3

16
; pY (1) =

5

16
; pY (1) =

7

16
.

Suppose we were given the marginals. Is the joint pmf uniquely determined?
Consider the joint pmf p∗(x, y) with

p∗(1, 3) = p∗(2, 4) =
1

16
− ϵ; p∗(1, 4) = p∗(2, 3) =

1

16
+ ϵ

(ϵ > 0), and
p∗(x, y) = p(x, y)

for all the other pairs. Clearly. p∗(., .) is a valid joint pmf.
However, the two pmfs generate the same marginals.
�

When X and Y are continuous random variables, we may define the joint probability density
function f(x, y).
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Definition: A function f(x, y) : R2 → R is called a joint probability density function of the
continuous bivariate random vector (X, Y ) if

P [(X, Y ) ∈ A] =

∫∫

A

f(x, y)dxdy, (6.3)

for any set A ∈ B2.

Theorem 6.1.3. A function f(x, y) is a joint pdf iff

(a) f(x, y) ≥ 0 ∀(x, y) ∈ R2;

(b)

∫ ∞

−∞

∫ ∞

−∞

f(x, y)dxdy = 1.

�

Example: Assume that for a certain type of washer, both the thickness and the hole diameter vary
from item to item. Let X denote the thickness, and let Y denote the diameter. Assume that the
joint pdf of X and Y is given by

f(x, y) =

{

1
6
(x+ y) 1 ≤ x ≤ 2, 4 ≤ y ≤ 5

o o.w.

Find the probability that a randomly chosen washer has a thickness between 1 and 1.5 mm and a
diameter between 4.5 and 5 mm.

Definition: Let (X, Y ) be a continuous bivariate random vector with joint pdf f(x, y). Then the
marginal pdfs of X and Y , denoted by fX(.) and fY (.) respectively, are given by

fX(x) =

∫ ∞

−∞

f(x, y)dy

fY (y) =

∫ ∞

−∞

f(x, y)dx.

Definition: Let (X, Y ) be a continuous bivariate random vector with joint pdf f(x, y). Then the
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joint cdf is given by

F (x, y) =

∫ x

−∞

∫ y

−∞

f(s, t)dsdt.

We have

f(x, y) =
∂2F (x, y)

∂x∂y
(6.4)

for all (x, y) that are continuity points of f(x, y).

Example: A bank operates both a drive-up facility and a walk-up window. On a randomly selected
day, let X represent the proportion of time the drive-up facility is in use, and Y represent the
proportion of time the walk-up window is in use. The joint pdf is given by

f(x, y) =

{

6
5
(x+ y2), 0 < x < 1, 0 < y < 1;

0, ow.

Find the probability that neither facility is busy more than one-quarter of the time. We need to
find

P

[

0 ≤ X ≤ 1

4
, 0 ≤ Y ≤ 1

4

]

=

∫ .25

0

∫ .25

0

6

5
(x+ y2)dxdy =

7

640
.

Find the marginal pdf’s of X and Y .
�

Example: ABC cans of deluxe mixed nuts contain almonds, cashewnuts, and peanuts. The net
weight of each can is exactly 1 kilo, but the weight contribution of each type of nut is random. Let
X be the weight of almonds, and Y the weight of cashews. The joint pdf is given by

f(x, y) = 24xy 0 < x < 1, 0 < y < 1, 0 < x+ y < 1.

For a fixed x, f(x, y) increases with y. The pdf should be large near the upper boundary and small
near the origin.
Compute the probability that the two types of nuts together make up at least 50% of the can.
Find the marginal pdf’s.
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6.2 Expectation

The concept of expectation extends to random vectors in a straightforward manner. Let (X, Y ) be
a random vector, and U = g(X, Y ) be some real valued function. Then U is a random variable and
we can compute its expectation by finding its distribution. We can also find the expectation by
using the joint distribution of (X, Y ).
Definition: Let (X, Y ) be a bivariate random vector. The expected value of the random variable
U = g(X, Y ) is given by

E[g(X, Y )] =















∑

x

∑

y

g(x, y)p(x, y), (X, Y ) discrete;

∫ ∫

g(x, y)f(x, y)dxdy, (X, Y ) continuous
(6.5)

provided the sum or integral exist. If E|g(X, Y )| = ∞, we say that E(g(X, Y )) does not exist.
All the properties of expectation hold.

If g(X, Y ) = X, then

E[g(X, Y )] = E(X) =

∫ ∫

xf(x, y)dxdy =

∫

xfX(x)dx.

Definition: Let (X, Y ) be a bivariate random vector. The joint mgf is given by

MX,Y (t1, t2) = E[et1X+t2Y ], (6.6)

provided the expectation exists in a nonempty rectangle containing (0, 0).
Clearly

MX,Y (t, 0) = MX(t); MX,Y (0, t) = MY (t).

The partial derivatives of the joint mgf yield joint moments of the random vector (X, Y ).
The r−th moment of X(Y ) may be obtained from MX,Y (t1, t2) by differentiating the function r
times with respect to t1(t2) and then evaluating the derivative at t1 = t2 = 0. Product moments
such as E[XrY s] can be obtained by differentiating the joint mgf r times with respect to t1 and s
times with respect to t2 and then evaluating the derivative at t1 = t2 = 0.

Definition: The expected value of a random vector X is the vector E(X), whose i− th component
is the expected value of the i− th component of X. The expected value of X exists if the expected
values of the components exist.

6.3 Conditional Distributions

Definition: Let (X, Y ) be a discrete bivariate random vector with joint pmf p(x, y), and marginal
pmfs pX(x) and pY (y). Let x be a point in the support of X, i.e. pX(x) > 0. The conditional
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pmf of Y given that X = x is the function of y denoted by pY |X(y|x) defined by

pY |X(y|x) = P (Y = y|X = x) =
p(x, y)

pX(x)
. (6.7)

Let y be a point in the support of Y , i.e. pY (y) > 0. The conditional pmf of X given that Y = y
is the function of x denoted by pX|Y (x|y) defined by

pX|Y (x|y) = P (X = x|Y = y) =
p(x, y)

pY (y)
. (6.8)

Clearly
pY |X(y|x) > 0; pX|Y (x|y) > 0.

We also have
∑

y

pY |X(y|x) =
∑

y

p(x, y)

pX(x)
=

pX(x)

pX(x)
= 1.

So the functions defined in equations 6.7 and 6.8 are valid pmf’s.

Example: Consider the experiment of tossing two tetrahedra (4-sided dice). Let X be the number
observed on the lower face of the first tetrahedron. Let Y be the larger of the two lower faces. Find
the conditional pmfs.

When X and Y are continuous, we have P (X = 0) = 0 for all x. So the definition given above
needs to be modified.

Definition: Let (X, Y ) be a continuous bivariate random vector with joint pdf f(x, y), and marginal
pdfs fX(x) and fY (y). For any x such that fX(x) > 0, the conditional pdf of Y given that X = x
is the function of y denoted by fY |X(y|x) defined by

fY |X(y|x) =
f(x, y)

fX(x)
. (6.9)

For any y such that fY (y) > 0, the conditional pdf of X given that Y = y is the function of x
denoted by fX|Y (x|y) defined by

fX|Y (x|y) =
f(x, y)

fY (y)
. (6.10)
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Clearly
fY |X(y|x) > 0; fX|Y (x|y) > 0.

We also have
∫ ∞

−∞

fY |X(y|x)dy =

∫ ∞

−∞

f(x, y)

fX(x)
dy = 1.

So the function defined in equations 6.9 and 6.10 are valid pdf’s.

Example: X and Y are continuous random variables with joint pdf given by

f(x) =

{

k(x+ y2) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
o o.w.

(a) Find k.

(b) Find the marginal densities of X and Y .

(c) Find the conditional density of X given Y = y.

6.3.1 Conditional Expectation

Definition: The conditional expectation of g(Y ) given that X = x is

E[g(Y )|x] =















∑

y

g(y)pY |X(y|x), (X, Y ) discrete;

∫

g(y)fY |X(y|x)dy, (X, Y ) continuous
(6.11)

E(Y |x) is the expected value of the conditional distribution f(y|x). The variance of the conditional
distribution f(y|x) is called the conditional variance of Y given X = x.

We have
V ar(Y |x) = E(Y 2|x)− [E(Y |x)]2.
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Theorem 6.3.1.

E(Y ) = E[E(Y |X)]. (6.12)

Proof: E(Y |X) is a random variable whose value depends on the value of X. If X = x, the value
of the random variable E(Y |X) is E(Y |x). We will illustrate the proof for the case of continuous
random variables. The proof for the discrete case is similar with integrals replaced by summations.
We have

E(Y ) =

∫ ∫

yf(x, y)dxdy

=

∫
[
∫

yf(y|x)dy
]

fX(x)dx

=

∫

E(Y |x)fX(x)dx

= E[E(Y |X)].

�

Theorem 6.3.2.

V ar(Y ) = E[V ar(Y |X)] + V ar[E(Y |X)]. (6.13)

Proof: Consider the RHS of (6.13).

E[V ar(Y |X)] + V ar[E(Y |X)] = E[E(Y 2|X)− (E(Y |X))2]

+ E
{

E(Y |X)2
}

− [E(E(Y |X))]2

= E(Y 2)− [E(Y )]2

= V ar(Y ).

�

Example: A certain mouse is placed in the center of a maze, surrounded by three paths that open
with varying widths. The first path returns him to the center after two minutes; the second path
returns him to the center after four minutes; and the third path leads him out of the maze after
one minute. Due to the differing widths, the mouse chooses the first path 50% of the time, the
second path 30% of the time, and the third path 20% of the time. Determine the expected number
of minutes it will take for the mouse to escape.

Solution:

We have

E(T |P = 1) = 2 + E(T ); E(T |P = 2) = 4 + E(T ); E(T |P = 3) = 1.

Therefore
E(T ) = 0.5× [2 + E(T )] + 0.3× [4 + E(T )] + .2× 1 ⇒ E(T ) = 12.

�
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Example: Let

f(x, y) =

{

2, 0 < x < y < 1;
0, ow.

Find the marginal and conditional pdfs.

Find P (Y ≥ .5|x = .5) and P (X ≥ 1/3|y = 2/3).

Find E(Y |X = x).

E(Y |x) =
∫ 1

x

y

1− x
dy =

1 + x

2
.

�

6.4 Independent Random Variables

Definition: Let (X, Y ) be a bivariate random vector with joint pdf f(x, y) (or joint pmf p(x, y))
and marginal pdfs (pmfs) fX(x)(pX(x)) and fY (y)(pY (y)) respectively. The random variables X
and Y are said to be independent if

f(x, y) = fX(x)fY (y) for all (x, y) ∈ R2 (6.14)

(p(x, y) = pX(x)pY (y)). (6.15)

If (6.14) does not hold, we say X and Y are dependent.
If X and Y are independent, then the conditional pdf of Y given X = x does not depend on the
value of x, i.e.

fY |X(y|x) =
f(x, y)

fX(x)
=

fX(x)fY (y)

fX(x)
= fY (y). (6.16)

The knowledge that X = x does not give us any additional information about Y .

Lemma 6.4.1. Let (X, Y ) be a bivariate random vector with joint pdf f(x, y) (or joint pmf p(x, y)).
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Then X and Y are independent random variables iff there exist functions g(x) and h(y) such that

f(x, y) = g(x)h(y) for all x ∈ R and y ∈ R. (6.17)

Proof: If X and Y are independent, we may define

g(x) = fX(x) h(y) = fY (y),

and use (6.14). To prove the ”if” part, suppose that

f(x, y) = g(x)h(y).

Let
∫ ∞

−∞

g(x)dx = c

∫ ∞

−∞

h(y)dy = d.

Then

c× d =

(
∫ ∞

−∞

g(x)dx

)(
∫ ∞

−∞

h(y)dy

)

=

∫ ∞

−∞

∫ ∞

−∞

g(x)h(y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞

f(x, y)dxdy

= 1.

We have

fX(x) =

∫ ∞

−∞

f(x, y)dy

=

∫ ∞

−∞

g(x)h(y)dy = g(x)d,

and
fY (y) = h(y)c.

These results imply
f(x, y) = g(x)h(y) = g(x)h(y)cd = fX(x)fY (y),

showing that X and Y are independent.
Replacing integrals with sums proves the result in the discrete case.
�

Theorem 6.4.2. Let (X, Y ) be a bivariate random vector with joint cdf F (x, y). Let X and Y have
the marginal cdfs FX(x) and FY (y) respectively. Then X and Y are independent random variables
iff

F (x, y) = FX(x)FY (y) for all (x, y) ∈ R2. (6.18)
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�

Theorem 6.4.3. Let (X, Y ) be a bivariate random vector with joint mgf MX,Y (t1, t2). Then X and
Y are independent random variables iff

MX,Y (t1, t2) = M(t1, 0)M(0, t2) = MX(t1)MY (t2), (6.19)

i.e. the joint mgf factors into the product of the marginal mgfs.

�

Theorem 6.4.4. Let X and Y be independent random variables. Then

(a) For any A ⊂ R and B ⊂ R

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B).

(b)
E[g(X)h(Y )] = E[g(X)]E[h(Y )].

�

Theorem 6.4.5. Let X and Y be independent random variables with moment generating functions
MX(t) and MY (t) respectively. Let Z = X + Y . Then

MZ(t) = MX(t)MY (t). (6.20)

�

Example: Let X and Y be independent Poisson random variables with parameters λ1 and λ2

respectively. Find the distribution of X + Y .
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6.5 Bivariate Transformations

Let (X, Y ) be a bivariate random vector with a known joint distribution. Consider the bivariate
random vector (U, V ) where U = g1(X, Y ) and V = g2(X, Y ). Here g1(., .) and g2(., .) are specified
functions. We want to find the joint distribution of (U, V ) in terms of the joint distribution of
(X, Y ).
For any B ∈ R2, we have

P [(U, V ) ∈ B] = P [(X, Y ) ∈ A],

where A = {(x, y) : (g1(x, y), g2(x, y)) ∈ B}.

If (X, Y ) is a discrete random vector with joint pmf p(x, y), let A be the set of (x, y) for which
p(x, y) > 0, i.e the support of (X, Y ). Then

C = {(u, v) : u = g1(x, y), v = g2(x, y) for some (x, y) ∈ A}

is the support of (U, V ). For any (u, v) ∈ C, define

Auv = {(x, y) ∈ A : g1(x, y) = u, g2(x, y) = v}.

Then
pU,V (u, v) = P (U = u, V = v) =

∑

(x,y)∈Auv

pX,Y (x, y).

Example: Let X and Y be independent geometric random variables with pmf’s

pX(x) = pqx−1 x = 1, 2, . . .

pY (y) = pqy−1 y = 1, 2, . . .

respectively.
Let U = min(X, Y ), V = X − Y .
For v > 0, we have X > Y . Therefore

pU,V (u, v) = P (U = u, V = v)

= P (Y = u,X = u+ v)

= pqu−1pqu+v−1

= p2q2u+v−2.

For v < 0,

pU,V (u, v) = P (U = u, V = v)

= P (X = u, Y = u− v)

= pqu−1pqu−v−1

= p2q2u−v−2.
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For v = 0, we have X = Y and

pU,V (u, v) = P (U = u, V = 0)

= P (X = Y = u)

= pqu−1pqu−1

= p2q2u−2.

�

Example: Let X and Y be independent Poisson random variables with pmf’s

pX(x) =
e−ααx

x!
x = 0, 1, 2, . . .

pY (y) =
e−ββy

y!
y = 0, 1, 2, . . .

respectively.
Let U = X + Y, V = Y . We have

pU,V (u, v) = P (U = u, V = v)

= P (X = u− v, Y = v)

=
e−ααu−v

(u− v)!

e−ββv

v!

=
e−(α+β)αu−vβv

(u− v)!v!
, v = 0, 1, . . . ; u = v, v + 1, . . . .

The marginal pmf of U is

pU(u) =
u

∑

v=0

e−(α+β)αu−vβv

(u− v)!v!

=
e−(α+β)

u!

u
∑

v=0

u!

(u− v)!v!
αu−vβv

=
e−(α+β)

u!

u
∑

v=0

(

u
v

)

αu−vβv

=
e−(α+β)(α + β)u

u!
, u = 0, 1, . . . ,

which is the pmf of a P (α + β) random variable.
The pmf of U can also be obtained using Theorem 6.4.5.
�

Theorem 6.5.1. Let X ∼ P (α), Y ∼ P (β) be independent random variables. Then X + Y ∼
P (α + β).

�
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Theorem 6.5.2. Let X ∼ fX(x) and Y = g(X), where g is a monotone function. Suppose fX(x)
is continuous on X and g−1(y) has a continuous derivative on Y. Then

fY (y) =

{

fX [g
−1(y)]

∣

∣

∣

d
dy
g−1(y)

∣

∣

∣
, y ∈ Y;

0, o.w.

�

In many applications, the function g may be neither increasing nor decreasing. However, the
function may be monotone over certain intervals. It may be possible to divide X into sets A1, . . . , Ak

such that g(.) is monotone on each set. We can then modify the previous theorem:

Theorem 6.5.3. Let X ∼ fX(x) and Y = g(X). Suppose there exists a partition A0, A1, . . . , Ak

of X such that P [X ∈ A0] = 0 and fX(x) is continuous on each Ai. Suppose there exist functions
g1(x), . . . , gk(x) defined on A1, A2, . . . , Ak respectively satisfying

(i) g(x) = gi(x), x ∈ Ai;

(ii) gi(x) is monotone on Ai;

(iii) The set Y = {y : y = gi(x) for some x ∈ Ai} is the same for each i = 1, . . . , k; and

(iv) g−1
i (y) has a continuous derivative on Y for each i = 1, 2, . . . , k.

Then

fY (y) =











k
∑

i=1

fX [g
−1
i (y)]

∣

∣

∣

∣

d

dy
g−1
i (y)

∣

∣

∣

∣

, y ∈ Y;

0, o.w.

Here A0 represents the exceptional set.

�

Let (X, Y ) be a bivariate continuous random vector with joint pdf fX,Y (x, y). We can write the
joint pdf of (U, V ) in terms of fX,Y (x, y). Let A denote the support of (X, Y ) and C denote the
support of (U, V ).
Let us assume the transformations U = g1(X, Y ) and V = g2(X, Y ) are one-to-one from A onto C.
Let

x = h1(u, v) y = h2(u, v)

be the inverse transformations. The Jacobian of the transformation is the determinant of the matrix
of partial derivatives:

|J | =
∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

.

The joint pdf of (U, V ) is given by

fU,V (u, v) = fX,Y [h1(u, v), h2(u, v)]|J |.

If the transformations are not one-to-one, we can partition the space A as before.
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Example: Let X and Y be independent random variables with X ∼ G(α1, β), Y ∼ G(α2, β). Let

U =
X

X + Y
V = X + Y.

Find the joint pdf of (U, V ) and the marginals.
Solution: We have A as the positive quadrant of R2. Then C = {(u, v); 0 < u < 1, v > 0}. The
transformations defined above are one-to-one from A onto C. We have

x = uv y = v(1− u),

and the Jacobian is v. We have

|J | =
∣

∣

∣

∣

v u
−v (1− u)

∣

∣

∣

∣

= |v(1− u) + vu| = v.

We have

fU,V (u, v) =
1

Γ(α1)Γ(α2)βα1+α2

(uv)α1−1[v(1− u)]α2−1 exp

[

−uv

β

]

× exp

[

−v(1− u)

β

]

v

=
1

Γ(α1)Γ(α2)βα1+α2

uα1−1(1− u)α2−1vα1+α2−1e−v/β,

for 0 < u < 1, v > 0. The joint pdf factors as the product of two functions, which implies U and V
are independent. We have U ∼ Beta(α1, α2) and V ∼ G(α1 + α2, β).

17



�

Example: Let X and Y be independent standard normal random variables. Let

U =
X

Y
V = |Y |.

Find the joint pdf of (U, V ) and the marginals.
We have A = R2. Therefore C = R× R+.
If Y = 0, we can define U and V to be any value since P (Y = 0) = 0. The transformation is not
one-to-one, since (x, y) and (−x,−y) are both mapped to the same (u, v). We can partition the
support A into three regions

A1 = {(x, y), y > 0}, A2 = {(x, y), y < 0}, A0 = {(x, y), y = 0}.

We have P [(X, Y ) ∈ A0] = 0. The image of A1 under the transformation is {(u, v), v > 0}. The
image of A2 under the transformation is also {(u, v), v > 0}. The inverse transformations on A1 are

x = uv y = v

and the inverse transformations on A2 are

x = −uv y = −v.

The Jacobians are both v. We have

fU,V (u, v) =
1

2π
exp

[

−(uv)2

2

]

exp

[

−v2

2

]

|v|

+
1

2π
exp

[

−(−uv)2

2

]

exp

[

−(−v)2

2

]

|v|

=
v

π
exp

[

−(u2 + 1)v2

2

]

, v > 0; u ∈ R.

The marginal pdf of U is

fU(u) =

∫ ∞

0

v

π
exp

[

−(u2 + 1)v2

2

]

dv

=
1

π

1

1 + u2

which is the pdf of a Cauchy random variable.

18



The marginal pdf of V is

fV (v) =

∫ ∞

−∞

v

π
exp

[

−(u2 + 1)v2

2

]

du

=
v

π
exp[−v2/2]

√
2π

1

v

=

√

2

π
exp[−v2/2],

which is the Folded Normal distribution.
�
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Example: Let X and Y be independent U(0, 1) random variables. Let U = X + Y, V = X − Y .
Find the joint pdf of (U, V ) and the marginals.
We have A as the unit square. The space C is given by the figure below.
The transformation is clearly one-to-one. We have

X =
U + V

2
Y =

U − V

2
.

The Jacobian is 1/2.
We must have

0 <
u+ v

2
< 1 0 <

u− v

2
< 1,

which leads to
u+ v > 0, u− v > 0, u+ v < 2, u− v < 2.

Therefore,

fU,V (u, v) =
1

2

over the region C.
The marginal pdf of U is

fU(u) =

∫ u

−u

1

2
dv = u 0 < u < 1,

fU(u) =

∫ 2−u

u−2

1

2
dv = 2− u 1 < u < 2.

�
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6.6 Covariance and Correlation

In the previous section, we have discussed the notion of independence of random variables. If two
random variables are dependent, can we measure the strength of their relationship?
In order to quantify the relationship, we introduce the ideas of covariance and correlation.
Definition: Let X and Y be two random variables with finite variances. The covariance of X
and Y is defined as

Cov(X, Y ) = E[(X − µX)(Y − µY )] = E(XY )− µXµY . (6.21)

Cov(X, Y ) will be positive when X − µX and Y − µY tend to have the same sign with high
probability. Cov)X, Y ) will be negative when X −µX and Y −µY tend to have opposite signs with
high probability. Therefore, the sign of the covariance provides information about the relationship
between X and Y . However, the magnitude of the covariance does not in itself provide information
on the strength of the relationship since it depends on the variability.

Remark: Equation (6.21) defines an inner product on the linear space spanned by X and Y . We
have

< X,X >= ||X||2 Cov(X,X) = V ar(X).

Definition: Let X and Y be two random variables with finite variances. The correlation of X
and Y is the number defined by

ρ(X, Y ) =
Cov(X, Y )

σXσY

. (6.22)

The value ρ(X, Y ) is called the correlation coefficient.

Example: Let

f(x, y) =

{

2, 0 < x < y < 1;
0, ow.

Find ρ(X, Y ).
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Example: Let

f(x, y) =

{

1, 0 < x < 1, x < y < x+ 1;
0, ow.

Find ρ(X, Y ).

We have fX(x) = 1; 0 < x < 1. This implies µX = 1/2, σ2
X = 1/12. The marginal of Y is

fY (y) =

{

y, 0 < y < 1;
2− y, 1 ≤ y < 2.

We have µY = 1, σ2
Y = 1/6. Further E(XY ) = 7/12. The correlation is 1/

√
2.
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Theorem 6.6.1. If X and Y are independent, then Cov(X, Y ) = 0 and ρ(X, Y ) = 0.

Proof: If X and Y are independent,

Cov(X, Y ) = E(XY )− µXµY

= E(X)E(Y )− µXµY

= 0.

If Cov(X, Y ) = 0, then clearly ρ(X, Y ) = 0.
�

The converse of the result is not true. If ρ(X, Y ) = 0, X and Y may still exhibit some form of
dependence. Covariance and correlation measure a particular kind of linear relationship between
X and Y .

Examples: Consider the random variable X with pmf

p(X = −1) = P (X = 0) = P (X = 1) =
1

3
.

Let Y be a random variable defined as follows:

Y =

{

0, if X ̸= 0;
1, if X = 0.

Then XY = 0. E(XY ) = 0, E(X) = 0. This implies

Cov(X, Y ) = 0.

However, X and Y are clearly dependent.
�

Theorem 6.6.2. If X and Y are two random variables and a, b are constants, then

V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X, Y ). (6.23)

�

From the theorem we see that if X and Y are positively correlated, the the variation in X + Y is
greater than the sum of the variations in X and Y . If the correlation is negative, the variance of
X + Y is smaller than the sum of the variances.

Theorem 6.6.3. For any random variables X and Y ,

(a) −1 ≤ ρ(X, Y ) ≤ 1.

(b) |ρ(X, Y )| = 1 if and only if there exist numbers a ̸= 0 and b such that P (Y = aX + b) = 1. If
ρ(X, Y ) = 1, then a > 0, and if ρ(X, Y ) = −1, then a < 0.

Proof: Without loss of generality, let µX = µY = 0. Consider the function h(t) defined by

h(t) = E[(tX − Y )2] = E[t2X2 − 2tXY + Y 2] ≥ 0.
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Since the quadratic function h(t) ≥ 0 for all t, the discriminant must be negative. This implies

4[E(XY )]2 − 4E(X2)E(Y 2) ≤ 0

⇔ [2Cov(X, Y )]2 − 4σ2
Xσ

2
Y ≤ 0

⇔ |ρ(X, Y )| ≤ 1.

This proves part (a) of the theorem.
We also note that |ρ(X, Y )| = 1 if and only if the discriminant is equal to 0. This implies the
function h(t) has a single root. We see that h(t) = 0 if and only if

E[(tX − Y )2] = 0,

which implies
P [tX − Y = 0] = 1 ⇔ P [tX = Y ] = 1 ⇔ P [Y = aX] = 1.

The root t is Cov(X, Y )/σ2
X . Therefore a has the same sign as the correlation coefficient.

�

Remark: If there is a line y = ax+ b, a ̸= 0 such that the values of (X, Y ) have a high probability
of being near this line, then the correlation between X and Y will be near ±1. Therefore, the
correlation measures the strength of the ”linear relationship” between X and Y .

Example: Let

f(x, y) =

{

10, 0 < x < 1, x < y < x+ 1
10
;

0, ow.

Find ρ(X, Y ).

We have

fX(x) =

∫ x+1/10

x

1

10
dy = 1,

for 0 < x < 1, i.e. X ∼ U(0, 1). This implies µX = 1/2, V ar(X) = 1/12. The conditional pdf of Y
given X = x is

f(y|x) = 10 x < y < x+
1

10
,

i.e Y |x = x ∼ U(x, x+ 1/10). Therefore

E(Y |x) = x+
1

20
.

Using Theorem 6.3.1,

µY = E(Y ) =

∫ 1

0

E(Y |X)fX(x)dx

=

∫ 1

0

(x+ .05)dx

=
1

2
+

1

20
=

11

20
.
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The conditional variance of Y given X = x is

V ar(Y |X = x) =
1

1200
,

From Theorem 6.3.2, we have

σ2
Y =

1

1200
+ V ar

(

X +
1

20

)

=
1

1200
+

1

12
.

We also have

E(XY ) =

∫ 1

0

∫ x+1/10

x

10xydydx

=

∫ 1

0

10x
y2

2

∣

∣

∣

∣

x+1/10

x

=

∫ 1

0

(

x2 +
x

20

)

dx

=
1

3
+

1

40
=

43

120
.

Therefore

Cov(X, Y ) =
43

120
− 1

2
× 11

20
=

1

12
,

and

ρ(X, Y ) =
1
12

√

1
12

√

1
1200

+ 1
12

=

√

100

101
.

Compare this with the previous example. Why are they so different? In both examples, there is a
linear relationship between X and Y , However, the relationship is much stronger for this example,
because knowing that X = x gives us more information about the value of Y .
�
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6.7 Multivariate Distributions

In the previous sections, we have considered bivariate distributions. We will now extend the defini-
tions given earlier to the case of three or more random variables.
Let X = (X1, . . . , Xn) be an n−dimensional random vector. Then X is a function defined from
the sample space S into Rn.
If the sample space of X is countable, then we can define the joint pmf by

p(x) = P (X1 = x1, . . . , Xn = xn)

for each x = (x1, . . . , xn) ∈ Rn. For any A ∈ Bn,

P (X ∈ A) =
∑

x∈A

p(x.

If X is a continuous random vector, then the joint pdf is a function f(x1, . . . , xn) that satisfies

P (X ∈ A) =

∫

. . .

∫

A

f(x1, . . . , xn)dx1 . . . dxn.

The joint pmf and pdf satisfy the standard properties: they are non-negative functions and either
sum to one or integrate to one.

The joint cumulative distribution function is defined as

F (x) = P (X1 ≤ x1, . . . , Xn ≤ xn).

If X is continuous, then the joint pdf is obtained as

f(x) =
∂n

∂x1 . . . ∂xn

F (x).

Let g(x) be a real valued function defined on the sample space of X. Then g(X) is a random
variable and

E[g(X)] =

∫ ∞

−∞

. . .

∫ ∞

−∞

g(x)f(x)dx; E[g(X)] =
∑

x∈Rn

p(x),

for the continuous and discrete cases, respectively. The properties of expectation carry over to the
case of multiple random variables.

We can define the marginal pmf or pdf of any subset of the random vector. We have

f(x1, . . . xk) =

∫ ∞

−∞

. . .

∫ ∞

−∞

f(x1, . . . , xn)dxk+1 . . . dxn

as the marginal distribution of (X1, . . . , Xk). The discrete case can be similarly defined.
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The conditional pdf of a subset of random variables given the values of the remaining variables is
defined as

f(xk+1, . . . , xn|x1, . . . xk) =
f(x1, . . . , xn)

f(x1, . . . xk)
,

provided the denominator is not zero.

6.7.1 The Multinomial Distribution

Consider the following experiment:

1. The experiment consists of n identical trials.

2. Each trial can result in one of k possible outcomes.

3. The probability of the i−th outcome is pi and remains constant from trial to trial.

4. The trials are independent.

We have
k

∑

i=1

pi = 1.

Let Xi be the random variable that records the total number of times outcome i is observed in the
n trials. We have

k
∑

i=1

= n.

Then

P (X1 = x1, . . . , Xk = xk) =







(

n
x1, x2, . . . , xk

)

px1

1 . . . pxk

k , n =
∑

xi;

0, ow.
(6.24)

where
(

n
x1, x2, . . . , xk

)

=
n!

x1! . . . xk!

is called a multinomial coefficient.
(X1, . . . , Xk) is said to have amultinomial distribution with n trials and probabilities (p1, . . . , pk).

To show the probabilities sum to one, we have an extension of the Binomial Theorem:

Theorem 6.7.1. Multinomial Theorem.

(p1 + . . . pk)
n =

∑

A

n!

x1! . . . xk!
px1

1 . . . pxk

k = 1,

where A is the set of vectors (x1, . . . , xn) such that each xi is non-negative and
∑

xi = n.

�
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Theorem 6.7.2. The marginal pmf of Xi is Bin(n, pi), i=1, . . . , k.

Proof:

P (Xi = x) =
∑

x2,x3,...,xk

n!

x! . . . xk!
px1 . . . p

xk

k

=
n!

x!(n− x)!
px1(1− p1)

n−x

∑

x2,x3,...,xk

(n− x)!

x2! . . . xk!

(

p2
1− p1

)x2

. . .

(

pk
1− p1

)xk

=

(

n
x

)

px1(1− p1)
n−x,

which is the pmf of the Binomial distribution with parameters n and p1.
Here we use the fact that x2 + . . .+ xk = n− x and p2 + . . .+ pk = 1− p1,
�

Theorem 6.7.3. The joint mgf of X is given by

MX (t) = E[et
′

X ] = (p1e
t1 + . . .+ pke

tk)n.

Here t
′

X = t1X1 + . . .+ tkXk.

Proof: We have

MX (t) = E[et1X1+...+tkXk ]

=
∑

x

e
∑

tixi

(

n
x1, x2, . . . , xk

)

px1

1 . . . pxk

k

=
∑

x

(

n
x1, x2, . . . , xk

)

(p1e
t1)x1 . . . (pke

tk)xk

= (p1e
t1 + . . .+ pke

tk)n,

for all (t1, . . . , tk) ∈ Rk. The last step follows from the Multinomial Theorem.
�

Remarks:

1. Letting all the t′js equal 0, except for ti, we have

MXi
(t) = M(0, . . . , 0, t, 0, . . . , 0)

= (p1 + pie
t + . . . pk)

n

= (1− pi + pie
t)n = (qi + pie

t)n,

which is the mgf of a Bin(n, pi) random variable.
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2.

MX1,X2
(t1, t2) = MX (t1, t2, . . . , 0)

= [p1e
t1 + p2e

t2 + (1− p1 − p2)]
n,

which is the mgf of the Trinomial Distribution.

3. Using the form of the joint mgf, we have

∂

∂t1
MX (t) = n(p1e

t1 + . . .+ pke
tk)n−1p1e

t1

∂2

∂t1t2
MX (t) = n(n− 1)(p1e

t1 + . . .+ pke
tk)n−2p1e

t1p2e
t2 .

Letting t1 = 0, we have
E[Xi = npi.

Letting t1 = t2 = 0, we have
E[X1X2] = n(n− 1)p1p2.

4. Using the results in the previous step, we have

Cov(X1, X2) = n(n− 1)p1p2 − n2p1p2 = −np1p2,

indicating a negative correlation between X1 and X2.

Definition: Let X1, . . . ,Xn be random vectors with joint pdf f(x1, . . . ,xn). Let fXi
(xi) be the

marginal pdf of X i. Then X1, . . . ,Xn are said to be mutually independent random vectors

if, for every (x1, . . . ,xn),

f(x1, . . . ,xn) =
n
∏

i=1

fXi
(xi).

If the Xi’s are all one-dimensional, then X1, . . . , Xn are called mutually independent random

variables.
The definition for discrete random variables is similar.

Mutual independence implies that any pair of random variables are pairwise independent. It is a
much stronger statement than pairwise independence.

Theorem 6.7.4. Let X1, . . . , Xn be mutually independent random variables. Let g1, . . . , gn be real
valued functions such that gi(xi) is a function of only xi, i = 1, . . . , n. Then

E[g1(X1) . . . gn(Xn)] = E[g1(X1)] . . . E[gn(Xn)].

�

Theorem 6.7.5. Let X1, . . . , Xn be mutually independent random variables with moment generating
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functions MX1
(t), . . . ,MXn

(t) respectively. Let Z = X1 + . . .+Xn. Then

MZ(t) = MX1
(t) . . .MXn

(t). (6.25)

If all the n random variables have the same distribution with mgf MX(t), then

MZ(t) = [MX(t)]
n. (6.26)

�

Theorem 6.7.6. Let X1, . . . , Xn be mutually independent normal random variables with Xi ∼
N(µi, σ

2
i ). Then Y = a1X1 + . . .+ anXn is normally distributed with mean

µY = a1µ1 + . . .+ anµn

and variance
σ2
Y = a21σ

2
1 + . . .+ a2nσ

2
n.

�

Example: Let X1, . . . , Xn be mutually independent gamma random variables with Xi ∼ G(αi, β).
Then Y = X1 + . . .+Xn ∼ G(

∑

αi, β).

�
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6.8 The Multivariate Normal

Let Y1, . . . , Yp be p random variables. Let Y be a p×1 column vector, with the i− th element equal
to Yi. Then Y is a random vector.
Let µ be the p× 1 vector

µ =









E(Y1)
E(Y2)

...
E(Yp)









.

This is called the mean vector. The dispersion matrix or variance-covariance matrix is given by

Σ = E[(Y − µ)(Y − µ)T ] =









σ11 σ12 . . . σ1p

σ21 σ22 . . . σ2p
...

...
. . .

...
σp1 σp2 . . . σpp









,

where
σii = σ2

i = V ar(Yi)

and
σij = Cov(Yi, Yj).

The dispersion matrix is a symmetric p× p matrix, with Σ being non-negative definite (nnd). We
have

xTΣx =
∑

i

∑

j

xixjσij = V ar(x1Y1 + . . .+ xpYp)

which is ≥ 0 and = 0 if x1Y1 + . . .+ xpYp = 0..

The correlation matrix is given by

P ==









1 ρ12 . . . ρ1p
ρ21 1 . . . ρ2p
...

...
. . .

...
ρp1 ρp2 . . . 1









,

where
ρij = Corr(Yi, Yj).

Let Z1, . . . , Zp be iid N(0, 1) random variables. Let

Z =









Z1

Z2
...
Zp









.
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The joint pdf of Z1, . . . , Zp is given by

f(z1, . . . , zp) =

(

1

2π

)p/2

exp

{

−1

2

p
∑

i=1

z2i

}

=

(

1

2π

)p/2

exp

{

−1

2
zTz

}

.

We have

E(Z) =









E(Z1)
E(Z2)

...
E(Zp)









= 0,

the zero vector. The dispersion matrix is given by

Σ = E[ZZT ] = I.

This is the pdf of Z, the p−variate standard normal Np(0, I).

Theorem 6.8.1. Let Z ∼ Np(0, I). The moment generating function of Z is

mZ(t) = E(et
′

Z) = exp(t
′

t/2), t ∈ Rp.

Proof:

mZ(t) = E(et
′

Z)

= E(et1Z1+...+tpZp)

=

p
∏

i=1

E(etiZi) =

p
∏

i=1

et
2

i /2

= e
∑p

i=1
t2i /2 = exp(t

′

t/2)

for all t ∈ Rp.

�

Theorem 6.8.2. Let Z ∼ Np(0, I). Let α be any non-zero vector of constants and β a scalar.
Then

X = α
′

Z + β ∼ N(β,α
′

α).

�

Definition: A random vector Y is said to have a multivariate normal distribution with mean
vector µ and dispersion matrix Σ (nnd) if it has the same distribution as that of µ +AZ, where
Z ∼ Np(0, I) and A is any nonsingular (or such that ρ(A) = ρ(Σ) = K > 0) matrix such that

AA
′

= Σ. [If Σ > 0, then A is of rank p and square; otherwise, A is of order p ×K and of rank
= K.) We write Y ∼ Np(µ,Σ).
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Theorem 6.8.3. Let Y ∼ Np(µ,Σ). The moment generating function of Y is

mY (t) = exp

[

t
′

µ+
1

2
t
′

Σt

]

.

Proof:

mY (t) = E(et
′

Y )

= E(et
′

(µ+AZ)

= et
′

µE(e(t
′

A)Z)

= et
′

µE(e(A
′

t)′Z) = et
′

µE(el
′

Z)

= et
′

µexp(l
′

l/2) = et
′

µexp{(t′AA
′

t/2)}

= exp

[

t
′

µ+
1

2
t
′

Σt

]

�

To obtain the density of the multivariate normal, we use the theory of transformations. Let A be
nonsingular, which implies Σ is positive definite. If

Y = µ+AZ,

then Z = A−1(Y − µ). The Jacobian of the transformation is

|J | =
∣

∣

∣

∣

∂Z

∂Y

∣

∣

∣

∣

= |A−1| = |Σ|−1/2.

The pdf of Y is then given by

f(y) =

(

1

2π

)p/2
1

|Σ|1/2 exp
{

−1

2
(Y − µ)

′

Σ−1(Y − µ)

}

.

Theorem 6.8.4. Distribution of a linear combination. Let Y ∼ Np(µ,Σ). Let B be a p×q matrix
of constants and b a q × 1 vector of constants. Then

V = BY + b ∼ Nq(Bµ+ b,BΣB
′

).

The proof uses the mgf of Y .

�

Theorem 6.8.5. Let Y ∼ Np(0, σ
2I). Let V = PY , where P is orthogonal. Then

V ∼ Np(0, σ
2I).
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�

An orthogonal transformation preserves the distribution.

Theorem 6.8.6. Reproductive Property: Let Y i ∼ Np(µi,Σi), i = 1, . . . , n. Then for fixed constants
a1, . . . , an, we have

V = a1Y 1 + . . .+ anY n ∼ Np

(

∑

aiµi,
∑

a2iΣi

)

.

�

Corollary 6.8.7. Let Y i ∼ Np (µ,Σ) , i = 1, . . . , n be iid random vectors. Then

Y =
Y 1 + . . .+ Y n

n
∼ Np

(

µ,
1

n
Σ

)

.

�

6.8.1 Marginal and Conditional Distributions

Let

Y p×1 =

[

Y 1

Y 2

]

,

where Y 1 is a q × 1 vector. Partition µ and Σ appropriately.

Theorem 6.8.8. If Y ∼ Np(µ,Σ), then

Y 1 ∼ Nq(µ1,Σ11).

Proof

Choose the q × p matrix B = [Iq×q : 0]. Using the previous result, we have

BY = Y 1 ∼ Nq(µ1,Σ11).

�

Theorem 6.8.9. If Y ∼ Np(µ,Σ), then Y 1 and Y 2 are independent iff

Σ12 = 0; Σ21 = 0.

Proof: We have

mY (t) = E(et
′

Y )

= exp

[

t
′

1µ1 + t
′

2µ2 +
t
′

1Σ11t1

2
+

t
′

1Σ12t2

2
+

t
′

2Σ21t1

2
+

t
′

2Σ22t2

2

]

If Σ12 = 0 and Σ21 = 0, then the moment generating function reduces to

mY (t) = exp

[

t
′

1µ1 +
t
′

1Σ11t1

2

]

exp

[

t
′

2µ2 +
t
′

2Σ22t2

2

]

,
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implying independence.
If they are independent, then the covariances must be 0. �

6.8.2 Conditional Distributions

Theorem 6.8.10. Let Y ∼ Np(µ,Σ), with R(Σ) = p. The conditional distribution of Y 1 given
Y 2 = C2 is

Nq(µ1 +Σ12Σ
−1
22 (C2 − µ2),Σ11.2),

where
Σ11.2 = Σ11 −Σ12Σ

−1
22 Σ21.

Proof: The joint pdf of Y 1,Y 2 is the distribution of Y :

f(y) =

(

1

2π

)p/2
1

|Σ|1/2 exp
{

−1

2
(Y − µ)

′

Σ−1(Y − µ)

}

.

We have

Σ−1 =

[

Σ11 Σ12

Σ21 Σ22

]−1

=

[

[Σ11 −Σ12Σ
−1
22 Σ21]

−1 −Σ−1
11 Σ12Σ

−1
22.1

−Σ−1
22 Σ21Σ

−1
11.2 Σ−1

22.1

]

.

The quadratic form in the exponent of the pdf may be written as

(Y − µ)
′

Σ−1(Y − µ) = (Y 1 − µ1)
′

Σ−1
11.2(Y 1 − µ1)

− (Y 1 − µ1)
′

Σ−1
11 Σ12Σ

−1
22.1(C2 − µ2)

− (C2 − µ2)
′

Σ−1
22.1Σ21Σ

−1
11 (Y 1 − µ1)

+ (C2 − µ2)
′

Σ−1
22.1(C2 − µ2)

= Q1.

We have

f(y1|y2 = C2) =
f(y)

fY 2

(C2)
.

The marginal distribution of Y 2 ∼ Np−q(µ2,Σ22). Therefore

f(y1|y2) =

(

1

2π

)q/2 |Σ22|1/2
|Σ|1/2 exp

{

−1

2
Q1 + (C2 − µ2)

′

Σ−1
22 (C2 − µ2)

}

.

We have |Σ| = |Σ22| |Σ11.2|. The term in the exponent reduces to

[(Y 1 − µ1)−Σ12Σ
−1
22 (C2 − µ2)]

′

Σ−1
11.2[(Y 1 − µ1)−Σ12Σ

−1
22 (C2 − µ2)].

For Y 2 fixed at C2, the term
µ1 +Σ12Σ

−1
22 (C2 − µ2)

is fixed. Therefore
Y 1|Y 2 ∼ Nq(µ1 +Σ12Σ

−1
22 (C2 − µ2),Σ11.2),
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The equation
E[Y 1|Y 2 = C2] = µ1 +Σ12Σ

−1
22 (C2 − µ2)

is called the regression of Y 1 on the variables in Y 2.

�

Remarks: The mean of the conditional distribution depends on theC2, but the conditional variance
is the same for all values of C2.

36


