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Chapter 6

Order Statistics

Definition: The sequence of random variables X7, ..., X, is said to form a random sample of
size n from the population F(.) if
1. Xq,..., X, are independent;

2. X1,..., X, are identically distributed (i.e. have the same cdf).

We also refer to Xi,..., X, as independent and identically distributed (iid) random variables.

For discrete random variables, the joint pmf of Xy,..., X, is

p(r1,. . @) = HPXZ(%)
i=1

For continuous random variables, the joint pdf of Xy,..., X, is

flan, o) =[] fx. ().

Definition: A statistic 7= T'(X1,..., X,,) is a function of X;,..., X, that does not depend on
any unknown parameters.
The statistic 1" can be real or vector valued. We have

T:R":R™ m < n.
Ideally, m will represent the number of parameters.

Example: The following are statistics:

X == Sample Mean.




n

1 _
S? = 1 E (X; — X)? Sample Variance.
n J——
i=1

Since a statistic is also a random variable, we can talk about its probability distribution.
Definition: Let T' = T'(X1, ..., X,,) be a statistic. The probability distribution of T" is called the
sampling distribution of 7'

Lemma 6.0.1. Let X,..., X, be iid random variables and ¢(.) be a function such that E[g(X;)]
and Var(g(Xy)| exist. Then

E[Z 9(Xi)] = nE[g(Xy)]

VC”“[Z 9(Xy)] = nVar[g(Xy)].

Theorem 6.0.2. Let Xi,...,X, be iid random variables from a population with mean p and vari-
ance 0? < oo. Then

Mx(t) = [Mx(t/n)]".
Proof: We have

MX(t) _ E[etX]:E[eﬁ(XlJr"'ern)]
— E|enXienX2 €£X1]

= [Mx(t/n)]".
|

6.1 Order Statistics

Let (Xy,...,X,) be an n—dimensional random vector and (z1, ..., x,) be an n—tuple assumed by
(X1,..., Xn).
Arrange x1,...,x, in increasing order of magnitude so that

1) Sx2) < S Ty

Definition: The function X of (X1,..., X,) that takes on the value ) in each possible sequence



(x1,...,2,) of values assumed by (X7,...,X,,) is known as the k—th order statistic.
{Xq), ..., X} is called the set of order statistics for (Xi,...,X,).

Example: Let X, X5, X3 be 3 discrete random variables. Let X, X3 take values 0,1 and X, take
values 1,2, and 3. Then the random vector (X;.Xs, X3) assumes the following triples of values:

(0,1,0),(0,2,0),(0,3,0),(0,1,1),(0,2,1), (0,3, 1),
(1,1,0),(1,2,0),(1,3,0),(1,1,1),(1,2,1),(1,3,1).

X(1) takes values 0,1, X9y takes values 0,1 and X3y takes values 1,2, 3.

Example: The sample range involves the order statistics X(,) and X(y):

Example: The median involves the order statistics

X((n ; dd;
M= { ((n+1)/2) no

X o+ X
D/ (n/241) S neven.

For any number p between 0 and 1, the 100p-th sample percentile is the observation such that
approximately np of the observations are less than this observation and n(1 — p) of the observations
are greater.

Definition: The notation [b] is defined to be the number b rounded to the nearest integer.

Definition: The 100p-th sample percentile is Xy if 1/2n < p < .5 and X(pq1-pa—p) if 5 <p <
1—1/2n.

The cases p < .5 and p > .5 are defined separately so that the sample percentiles exhibit the
following symmetry: if the 100p-th sample percentile is the i—th smallest observation, then the
100(1 — p)-th sample percentile should be i—th largest observation.

Theorem 6.1.1. Let (Xy,...,X,) be a random sample from a discrete distribution with pmf

pX(SUi) = Pi,



where x1 < x9 < ... are the possible values of X in ascending order. Define

P():O
Py =p

Py =pi +po

Pr=pi+...+p

Then
P el = Y0 (1) Pha-nyt 61)
k=i
Pi —al = 3 (4 ) [P0 =Ry BE 0 Py, (62

k=j

Proof: For a fixed i, let Y be the number of X;,..., X, that are less than or equal to x;. Define
the event {X; < z;} as a success. We have

P(Success) = P(X; < z;) = P,.
The trials are independent because X1, ..., X, are independent. Therefore
Y ~ Bin(n, P;).

We also have
{X; <z} ={Y > j},

i.e. at least j of the sample values are less than or equal to x;. Therefore

P(X;<z;) = P >j)
~ (") Pa-nr
> (4 )

Suppose X, ..., X, are iid continuous random variables with pdf f(.). With probability one,

X(l) < X(Q) < ... < X(n).



Theorem 6.1.2. The joint pdf of (X, ..., X)) s given by

n
Xy X(n)(:pl,...,xn):n!Hf(xi) —00< T < ... < Iy < 00. (6.3)
Proof: The transformation from X,..., X, to (X(,..., X(,) is not one-to-one.
For any set of n values zi,...,x,, there are n! possible arrangements of z,...,x, in increasing

order of magnitude. This implies there are n! inverses to the transformation. Therefore,

n

IX 0y X o (X155 T) :n'Hf(a:,) —00 <2 <...<®y < 00.
i=1

Theorem 6.1.3. The marginal pdf of X, is given by

n!

( _ 1) (n . 7,) [FX(xT)]T [1 - FX(ajr)] 7TfX($r)- (6.4)

fX<r) (zr) =

Proof: We have

fxo (@) = n!fx(xr)/i;/zl.../z

/ / . / H fx(x))dx, ... de.qdzy .. dr,_q
Zr Tr+1 Tn—1 4

i#£r

- n!fX(:cT)[l_ZX_ir n/ / / fo ;)dz;

n! r—117 _ 2T
= o e = Bl

Theorem 6.1.4. The joint pdf of Xy and Xy, 1 < j <k < n is given by

n! - e
G=Di =) =Dt = gy x (@)l ) = Fx(ay)

[1— Fx ()" " fx () fx (xn), x5 < ap. (6.5)

fX(j)’X(k)(xj7 xk)



Example: Let X,..., X, beiid U(0,1). We have

F(m):/omdt::v.

Therefore

n! - nj
(j—l)!(n—j)!xj (1—2x) x € (0,1),

which is the pdf of a Beta random variable. Therefore

fx () =

X(j) ~ Beta(j,n—j+1).

Let R = X,y — X(1) be the range, and V' = (X(1) + X(5))/2 be the midrange.
The joint pdf of X(;) and X, is

2

Ixoy X (@1, 20) = n(n — )]z, — 2]"" O0<mz <z, <L

The inverse transformations are

R R
Xp=V-5 Xo=V+s,

and the Jacobian is 1. We know that 0 < r < 1. We have the following inequalities

v—r/2>0=v>1r/2

v4r/2<l=v<l—r/2
This implies /2 < v < 1 — /2. Therefore

fR,V(T,U):TL(n—l)Tn_2 O<r<lr/2<v<l-—r/2

The marginal pdf of R is

1-r/2
fr(r) = / nin —Dr"2dv =n(n—1)r" 21 —-7) 0<r<1.
r/2

To find the pdf of V| we consider the two cases: If v < 1/2, then 0 < r < 2v. If v > 1/2, then
0 <7 < 2(1—w). Therefore,

n(2v)" 0<v<1/2
frlv) = { nf2(1)_ v)|" L 1/§ <j </1.

Example: Let Xy,..., X, be iid with cdf

Flx)=2% 0<z<1l,a>0.



Show that X(‘” 1=

ot 1,...,n—1and X, are independent.



