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Chapter 6

Limit Theorems

6.1 Introduction

6.2 Convergence in Probability

Definition: A sequence of random variables {Xn} is said to converge in probability to a random
variable X, in symbols

Xn

P−→ X

if for every ǫ > 0
P{|Xn −X| ≥ ǫ} −→ 0 as n → ∞

or equivalently
P{|Xn −X| < ǫ} −→ 1 as n → ∞.

1. The X ′
is need not be iid but must all be defined on the same probability space.

2. The definition of convergence given here does not have the same interpretation as convergence

in real analysis. Here Xn

P−→ X does not imply that, given ǫ > 0 we can find N such that

|Xn − X| < ǫ for n ≥ N . The definition speaks only of the convergence of the sequence of
probabilities P{|Xn −X| ≥ ǫ} to 0.

Example: Let {Xn} be a sequence of random variables with pmf

P (Xn = 1) =
1

n
P (Xn = 0) = 1− 1

n
.

We have

P{|Xn| > ǫ} =

{

P (Xn = 1) = 1
n
, 0 < ǫ < 1;

0, ǫ ≥ 1.

This implies
P{|Xn| > ǫ} −→ 0 as n → ∞,
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i.e. Xn

P−→ 0.

�

Theorem 6.2.1. Weak Law of Large Numbers: Let X1, X2, . . . , be iid random variables with
E(Xi) = µ and V ar(Xi) = σ2 < ∞. Then

X̄n =
1

n

n
∑

i=1

Xi

P−→ µ.

Proof: For every ǫ > 0, an application of Chebyshev’s inequality yields the following:

P (|X̄n − µ| ≥ ǫ) = P [(X̄n − µ)2 ≥ ǫ2]

≤ E(X̄n − µ)2

ǫ2

=
V ar(X̄)

ǫ2
=

σ2

nǫ2
.

The last term goes to 0 as n → ∞.

�

The Weak Law of Large Numbers (WLLN) says that under very general conditions, the sample
mean approaches the population mean as n → ∞. This is also the definition of consistency.

Example: Let {Xn} be a sequence of iid B(1, p) (Bernoulli) random variables. We have

E(Xi) = p V ar(Xi) = p(1− p) < ∞.

We have X̄n = 1
n

∑n
i=1 Xi as the sample proportion of successes in n trials. The WLLN states that

the sample proportion converges in probability to the population proportion as n → ∞.

�

Theorem 6.2.2. Let Xn

P−→ X and Yn

P−→ Y . Then

1. a Xn

P−→ a X

2. Xn + Yn

P−→ X + Y

3. XnYn

P−→ XY
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4. Xn

Yn

P−→ X
Y

if P (Yn = 0) = 0 ∀n and P (Y = 0) = 0.

�

Theorem 6.2.3. If f(x) is a continuous, real valued function and Xn

P−→ X, then

f(Xn)
P−→ f(X).

�

Convergence in r − th mean A sequence of random variables {Xn} is said to converge in the
r − th mean, in symbols

Xn

r−→ X

if
E|Xn −X|r → 0 as n → ∞.

Theorem 6.2.4. Xn

r−→ X ⇒ Xn

P−→ X. If the Xn’s are almost surely bounded, the converse is

true.

Counterexample: Let

Xn =

{

n, with probability 1/n;
0, with probability 1− 1/n.

We have P{|Xn − 0| > ǫ} = 1
n
which tends to 0 as n → ∞. This implies

Xn

P−→ 0.

However, E(Xn) = 1 6= E(X) = 0.

6.3 Convergence in Distribution

Definition: Let {Xn} be a sequence of random variables and let X be a random variable. Let
FXn

(.) be the cdf of Xn, i.e.
FXn

(x) = P (Xn ≤ x),

and let FX(.) be the cdf of X. We say that Xn converges in distribution (or law) to X,
denoted by

Xn

D−→ X
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if
FXn

(x) → FX(x) as n → ∞
at all continuity points of FX .

The critical assumption is that F (−∞) = 0 and F (∞) = 1, i.e. no probability mass escapes to
±∞.

Example: Consider the sequence of distribution functions

Fn(x) =

{

0, x < n;
1, x ≥ n.

Fn(x) is the cdf of the random variable Xn degenerate at n. Fn(x) converges to a function F that
is identically equal to 0 and hence is not a cdf.

�

Example: Let X1, . . . , Xn be iid with common pdf

f(x) =

{

1
θ
, 0 < x < θ;

0, o.w.

Let Yn = max(X1, . . . , Xn). The cdf of Yn is

Fn(y) =







0, y < 0;
(y/θ)n, 0 ≤ y ≤ θ;
1, y > θ.

As n → ∞, we have

Fn(y) → F (y) =

{

0, y < θ;
1, y ≥ θ.

which is a cdf.
Let Zn = n(θ − Yn). What is the limiting distribution of {Zn}?

�
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Theorem 6.3.1. Xn

P−→ X ⇒ Xn

D−→ X.

�

To study the approximate distribution of a random variable Yn, it is often necessary to study the
behaviour of a normalized or rescaled version of Yn, say

Yn − bn
an

for constants an and bn.

Theorem 6.3.2. Slutsky’s Theorem. If Xn

D−→ X, and An and Bn tend in probability to constants

a and b respectively, then

An +BnXn

D−→ a+ bX.

�

Theorem 6.3.3. Continuity Theorem: Let {Fn} be a sequence of cdf ’s with corresponding mgf’s
{Mn}. Suppose Mn(t) exists for |t| ≤ t0 for every n. If there exists a cdf F with corresponding mgf
M which exists for |t| ≤ t1 < t0 such that Mn(t) → M(t) as n → ∞ for every t ∈ [−t1, t1], then
Fn → F .

�

Lemma 6.3.4. Let a1, a2, . . . be a sequence of numbers converging to a, i.e. limn→∞ an = a. Then

lim
n→∞

(

1 +
an
n

)n

= ea.

�

Example: Let X1, . . . , Xn be iid B(1, p). Then

Sn − np√
npq

L−→ N(0, 1),

where Sn =
∑n

i=1 Xi.
Proof: We know that Sn ∼ Bin(n, p). The mgf of Sn is

MSn
(t) = (pet + q)n.

What is the mgf of Yn = Sn−np√
npq

? Find the limit of the mgf of Yn.
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Theorem 6.3.5. Central Limit Theorem. Let X1, X2, . . . be a sequence of iid random variables
whose mgf’s exist in a neighbourhood of 0, i.e. MXi

(t) exists for |t| < h for some positive h. Let
E(Xi) = µ and V ar(Xi) = σ2 > 0. (Since the mgf exists, both µ and σ2 are finite.)

Let X̄n = 1
n

n
∑

i=1

Xi, and let Gn(x) denote the cdf of
√
n(X̄n−µ)

σ
. Then for any x ∈ R, we have

lim
n→∞

Gn(x) =

∫ x

−∞

1√
2π

e−y2/2dy,

i.e. √
n(X̄n − µ)

σ

D−→ N(0, 1).

Proof: Let

Yi =
Xi − µ

σ
.

Let MY (t) denote the common mgf of the Y ′
i s which exists for |t| < σh. We have

√
n(X̄n − µ)

σ
=

1√
n

n
∑

i=1

Yi.
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Therefore

M√
n(X̄n−µ)

σ

(t) = M 1√
n

∑n
i=1 Yi

(t)

= M∑n
i=1 Yi

(

t√
n

)

=

[

MY

(

t√
n

)]n

.

Expanding MY (t/
√
n) in a Taylor series around 0, we have

MY

(

t√
n

)

=
∞
∑

k=0

M
(k)
Y (0)

(t/
√
n)k

k!
,

where

M
(k)
Y (0) =

dk

dtk
MY (t) |t=0 .

The expansion is valid if t <
√
nσh. We have

M
(0)
Y = 1 M

(1)
Y = 0 M

(2)
Y = 1.

Substituting these values, we have

MY

(

t√
n

)

= 1 +
t2

2n
+RY

(

t√
n

)

.

Using Taylor’s theorem, for fixed t 6= 0, the remainder term is such that

lim
n→∞

RY (t/
√
n)

(t/
√
n)2

= 0.

Since t is fixed, we also have

lim
n→∞

RY (t/
√
n)

(1/
√
n)2

= lim
n→∞

nRY (t/
√
n) = 0,

which is also true at t = 0, since
RY (0/

√
n) = 0.

Therefore, for any fixed t, we have

lim
n→∞

[

MY

(

t√
n

)]n

= lim
n→∞

[

1 +
1

n

(

t2

2
+ nRY

(

t√
n

))]n

= et
2/2.

The limit is the mgf of a standard normal random variable. Using the continuity theorem, we have
the result.

�
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Example: Let X1, . . . , Xn be iid χ2(1). Then

Sn − n√
2n

D−→ N(0, 1),

where Sn =
∑n

i=1 Xi.

�
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