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Chapter 3
Random Variables

In several of the examples we considered in Chapter 1, the sample spaces consisted of
symbols or categories. For example Head and Tail, or Defective and Nondefective. We
are often interested in some function of the outcomes as compared to the actual individual

outcomes.

Definition: Let (S,F, P) be a probability space. A random variable X(.) is a
function from S into the real numbers.
The function X(.) must be such that

A, ={s: X(s) <r} eF for any real number 7.

In other words, the inverse image of Borel sets in R are events.

In terms of measure theory, we say that a random variable is a measurable function.

Definition: Let (S, F, P) be a probability space, and X a random variable defined
on this space. The random variable X induces a probability space (R, B, Px) by the

correspondence
Px(A) = P{s: X(s) € A}VA C B.

The range of X is usually denoted by X'. Py is called the induced probability function

and satisfies Kolmogorov’s Axioms.

Theorem 3.0.1. Px(.) is a probability function.

Proof:
1. Px(A)=P[s: X(s) € A] > 0.
2. Px(X)=P{s: X(s) e X} =1.
3. If B;’s are disjoint sets in B, then

Us
i=1

[e.9]

s:X(s) e UBi

=1

Px = P




= ) P(s:X(s) € B)

i=1

i=1

Example: Toss a coin twice. Then
S={HH,HT,TH,TT}.

Let X (s) = number of heads in s. Then X = {0, 1, 2}.

o, r < 0;
Tr 0<r<l;
fs: X(s) <} =4 TTh =TS
{TT,HT,TH}, 1<r<2;
S, r>2,

i.e. the inverse image is an event.

Similarly, Px(X = 1) = 0.5, Px(X = 2) = 0.25.
[ |
Definition: Cumulative Distribution Function. Let X be a random variable defined on

a probability space. The cumulative distribution function (cdf) of X, denoted by
Fx(z) is defined by

Fx(z) = Px(X <) = Px((—o0,]) V. (3.1)

Theorem 3.0.2. Let Fx(x) be the cdf of the random wvariable X. Then the following
three conditions hold:

1. lim,,_« Fx(x) = 0; lim, o Fx(x) = 1.

2. Fx(x) is a nondecreasing function of z; i.e. for all a,b € R, a < b, we have

Fx(a) S Fx<b>

3. Fx(x) is right continuous; i.e. lim, |, Fx(z) = Fx (o).

Proof:
1.
lim Fx(x) = lim Px(X <x)
Tr—00 T—00
= P(S)=1.



Some of the steps need to be justified!

2. If a < b, then we know that
{s: X(s) <a} C{s:X(s) <b}.
Using the monotonicity property, we have

Fx(a) = Px(X <a)=P(s: X(s) <a)
< P(s: X(s) <b)=Px(X <b) = Fx(b).

3. We need to show that

hi0
We have
limPx(x < X <z+h) = lim[Fx(z+h) — Fx(z)]
110 110
= l}iigFX(x—i—h)—FX(x)

Let {h;} be a decreasing sequence of positive real numbers converging to 0. Let

Clearly, Ay D As D ..., with A, | ¢. Using the continuity property of the proba-
bility function, we have

lim Px(x < X <x+h;) = lim P(4;) =0.

1—>00 1—00

Therefore

%ﬂ}FX(w + h) = Fx(z).

|
Theorem 3.0.3. For any random variable,
Px<X = il') = FX(.Z') — Fx(.ZC—),

for all x € R, where Fx(z—) = lim,y, Fx(2).

1
A, = (x——,x}
n

{A,} is a decreasing sequence of sets, decreasing to {z}. Using the continuity property

Proof: Define



of the Probability function, we have

n=1

= lim P[A,]

— EL%.:[FX(@ — Fx(xz — (1/n))]
= Fx(x) — Fx(z—).

Example: (contd.) Toss a coin twice. Then

S={HH,HT,TH,TT}.

Let X (s) = number of heads in s.

0, x<0;
25, 0<z<1;
F — ) —_ )
x() 75, 1<az<2:
1, x> 2.

The cdf is a step function with jumps at 0,1,2. The size of the jumps represent the
probability at those points.

Py(X =0) = P[s: X(s) = 0] = P[{TT}] = .25.

Similarly, Py (X = 1) = 0.5, Px(X = 2) = 0.25.
]

Example: Show that F(.) is a cdf, where
Fx(x)=1—¢e7% z € (0, 00).

[
Example: Consider the function

0, x <0

1 — 0
FX(ZL‘)Z %7 . g 07 1'

54-5, <xr <l

1 x> 1.

This is a mixture of continuous pieces and jumps. The function has a jump at x = 0, and
F' is continuous in the interval (0, 1).
|



Definition: A random variable X is discrete if its cdf is a step function of z.
We may also use the following definition:

Definition: A random variable X is discrete if its range is countable.

Definition: The probability mass function (pmf) of a discrete random variable is given
by

px(z) = P(X =x). (3.2)

Theorem 3.0.4. Let X be a discrete rv with pmf px(x). Then
(¢) px(x) 20 Vz
(b) > px(x) =1.

|

The pmf of a discrete random variable is a formula, table or graph that associates a
probability with each value of the random variable.

Example: Roll a fair die twice

((L1) . . (1,6) )

2,1) . . (26)
S —

L6 .. (66) )

Let Z denote the maximum of the two rolls. Find the pmf of Z.

We could also draw what is called a probability histogram. The X-axis has the values
of the random variable, the Y-axis has the probabilities. Rectangles are constructed with
the value being the midpoint and height equal to the corresponding probability.



Example: Consider families with two children.
S = {GG, GB, BG, BB}. B=boy, G= girl.

Let X be the random variable defined as the number of girls in the family. If we assume
births are independent, and that the child is as likely to be a boy as a girl, then each of
the four outcomes is equally likely to occur.

The event that X = 0 is equivalent to BB. X = 1 is equivalent to BG or GB and X = 2
is equivalent to GG. The pmf. of X is

k 0 1 2 Total
p(k) | 0.25 0.50 0.25 1

3.1 Transformations

Let X be a random variable with cdf Fiy(x). Sometimes, we are interested not in X, but
a transformed version of X. Let Y = g(X) be a function of X.

Clearly, Y is also a random variable. We can describe the probabilistic behaviour of Y in
terms of that of X. We have

PlY € Al = Plg(X) € A] for any A.
Let X be the sample space of X. Then
g: X =Y

where Y is the sample space of the random variable Y.

We can define the inverse mapping
gl y—-x

where

9 (A) = {x e X;g(x) € A}.
Therefore
PlY € A] = Plg(X) € A
— Pl{z € X;g(x) € A}]
= P[X eg (A

This defines the probability distribution of Y. This distribution satisfies Kolmogorov’s

axioms.



If X is a discrete r.v. with pmf px(.), then Y is also discrete. We have

pv(y) = PY=y)= > PX=x

Here
9 () ={z e X :g(zx) =y}

The pmf of Y may be easily obtained by first identifying ¢g~!(y) and then summing the
appropriate probabilities.

Example: Let X have a pmf

Find the pmf of Y = X2. We have
X={0,1,....n};Y={0,1,4,...,n%}.
Forany y € Y, g(z) =2* =y iff 2 = /y.
py(y) =P =y) = P(X = /y)

n
— \/g _ n*\/y — 2
= pVY(1 —p) : y=0,1...,n"

3.2 Expectation and Moments

The study of the probability distributions of random variables is essentially the study of
certain numerical characteristics (parameters) associated with these distributions.

These parameters of the distribution give us some idea about the behaviour of the rv’s.
The expected value of a random variable is simply a weighted average: the weights are
specified according to the probability distribution. The expected value is a measure of

central tendency.

Definition: Let X be a random variable. The expected value or mean of the random
variable X is

E[g(X)] =) _zpx(a), (3.3)



provided the sum exists. If E|X| = oo, we say that £(X) does not exist.

Example: Let X be a discrete random variable with

¥ 2
P|X=(-1)yT"=|== =1,2
B - N S8
i2—2+2+3+ S P R
330333 3 3 )T
We have
C 32 2
Z’fﬂﬂpy —,§:Z—:oo,
7=1 j:l‘7 ]:1‘7

which implies £(X) does not exist. However
D wps =) (-
j=1 j=1 J

is convergent.

Theorem 3.2.1. Let X be a discrete random variable and let g(X) be any real-valued
function of X. Then

Elg(X)] =) g()px(z),

or

EY]=> ypv(y),

where Y = g(X) and py(y) is the pmf of Y.

Proof:

Corollary 3.2.2. Let X be a discrete random variable and let a,b be constants. Then

ElaX +b] = aE(X) + 0.



Definition: The r-th moment of a random variable X is

pe = E[X7]. (3.4)
The r-th central moment is
pr = E[(X = )], (3.5)
where p = py; = E(X) is the expected value or mean of X.
Definition: The variance of a random variable is its second central moment.
0% =Var(X) = E[(X — p)*] = B(X?) — *.
The positive square root of the variance is called the standard deviation.

Remarks:

e The variance and the standard deviation provide a measure of spread of the distri-

bution about its mean.

e Var(X) = 0iff X is a degenerate random variable, i.e. X is constant with probability
1. This implies no variation in X.

Theorem 3.2.3.
Var(aX +b) = a*Var(X).

Proof: We have
E(aX +0b)=au+0b.

Therefore

Var(aX +b) = ElaX +b—au — b* = Ela(X — p)]? = a®*Var(X).

10



3.3 Special Families of Discrete Distributions

A parametric family of distributions is a collection of mass functions indexed by one or
more parameters. Varying the parameter(s) allows us to change certain characteristics of
the distribution while staying with one functional form. Many of these families arise from
experiments with special properties.

3.3.1 Discrete Uniform Distribution

Definition: A random variable X has a discrete uniform (1, V) distribution if

1
px(k[N) = P(X =kIN)= = k=12....N. (3.6)

Here N is some specified integer. The distribution assigns equal probability to all the
outcomes.

Clearly, the pmf satisfies both properties listed in Theorem 3.0.4. The notation px (k|N)
specifies the dependence on the parameter V.

Theorem 3.3.1. If X is a discrete uniform (1, N) random variable, then

B(X) :y; B(X?) = (N+1)é2N+1) (3.7
o =Var(X) = N12_ S (3.8)

Proof: Using the definition of expectation, we have

6N 6

Bty = Yt - YW DON Y (N=DEN T

The variance is obtained by substituting in the formula
o = B(X?) — [E(X)]*.
|

The distribution may be generalized so that the sample space is any range of integers
N07N0 —+ 1, ce 7N1' Then

1

11



3.3.2 Hypergeometric Distribution

Consider a population of N items, M of which are of Type I and N — M of Type II. Con-
sider a sample of n items selected at random from this population without replacement.

Define the random variable X to be the number of items in the sample that are of Type

I. We have
k n—k
px(k[M,N,n) = : (3.10)
( . )

The values of the random variable must satisfy the following constraints

r < min(M,n)
n—x<N-M=>x>M-N+n
=z > max(0, M — N +n).

The pmf in (3.10) is called the Hypergeometric distribution, and the corresponding
random variable X is a hypergeometric random variable.

The probabilities defined in (3.10) are clearly non-negative. To show the probabilities
sum to 1, we need a combinatorial identity:

S05)-(0)

(1+0)*(1+ )" = (1 +t)**.

Consider the identity

Consider the coefficient of ¢ in both sides:

a b n a b T a b\ [a+b
0 n 1 n—1 o n 0o/ n '
Using this identity, we may show the probabilities in (3.10) sum to 1.

Theorem 3.3.2. If X is a hypergeometric random variable, then

M(M —1)n(n—1)
N(N —1)

E[(X(X —1)] = (3.11)

o =Var(X) = ]\]/{[n (v ]_\fé\]{f)(—Nl)_ n) . (3.12)

12



Proof: Using the definition of expectation, we have

oo - s )
(7)

ol
[e=]

I G G
w5 (50

= n—,

since the terms in the summation are the probabilities for a hypergeometric random

variable with parameters N — 1, M — 1,n — 1, and therefore must sum to 1.

(M)(N—M)
n k n—=k
E[(X)(X-1)] = E k(k—1)

Similarly,

13



M(M —1)n(n —1)
N(N -1) ’

since the terms in the summation are the probabilities for a hypergeometric random
variable with parameters N — 2, M — 2, n — 2, and therefore must sum to 1.
We know that

Var(X) = BE(X?) — [E(X)]? = E[X? - X]+ E(X) — [E(X)]%.

Substituting for F(X) and EF[X (X — 1)], we have

Var(X) — M(M —1)n(n—1) Mn_[Mnr

NN-1) N |N
Mn (N—M)(N—n)}
N | NN-1D

Remark: The hypergeometric probabilities satisfy a recurrence relationship:

PX=k+1) _ (M —k)(n— k)
P(X=%k  (k+O)(N-M—-n+k+1) (3.13)

3.3.3 The Binomial Distribution

Definition: A Bernoulli trial is an experiment with only two possible outcomes. We

classify these outcomes as Success and Fuailure.

Definition: For any Bernoulli trial, we define the random variable X as follows: if the
trial results in a Success, X = 1; otherwise X = 0. The pmf of X is given by

P(X=1)=p P(X=0)=1—-p, 0<p<L (3.14)

The random variable X is said to have a Bernoulli(p) distribution. We may combine
the two probabilities into a single expression:

P(X =2)=p"(1-p)'*, x=0,1, 0<p<l1. (3.15)

Examples
1. Toss a fair coin: Heads and Tails
2. Test a blood sample for Absence or Presence of a particular disease

3. Test items in a factory: Defective or Nondefective

14



Theorem 3.3.3. If X is a Bernoulli(p) random variable, then

Proof: We have

p=EX)=1xp+0x(1—p) =p.

E(X?)=1"xp+0>x(1—p) =p.

Therefore
0’ =Var(X)=p—p°>=p(l-p).

Definition: An experiment is said to be a Binomial experiment if it satisfies the following
properties:

1. The experiment consists of n identical Bernoulli trials.

2. The probability of success on a single trial is equal to p and remains constant from
trial to trial. The probability of failure is then 1 — p which is denoted by gq.

3. The trials are independent.

Let Y be the random variable that records the total number of successes in the n trials.
Y can take values 0,1,...,n. The random variable Y is called a Binomial random

variable. We usually write
Y ~ Bin(n,p).

Define
X { 1, if ¢th trial results in a success;
i =

0, if ith trial results in a failure.

Then Y = Z X;. The pmf of Y is given by

i=1
py (kln,p) = P(Y = k|n,p) = ( " )pkqn_k, k=0,1,...,n (3.18)

where

15



In the general formula the term
P —p)*

is the probability of obtaining one string of exactly k& successes and (n — k) failures
(assuming the trials are independent). The term

n n!
< k ) " kl(n— k)

counts the number of distinct strings with exactly k successes and (n — k) failures.

Each term in (3.18) is non-negative. To show the probabilities sum to 1, we use the

following:

" n n n— n n— n
D pv(klnp) = "+ | | e+ Pl p
prd n—1

= (p+q)Q Binomial Theorem
= 1

Tables of Binomial probabilities are available for different values of n and p.

Example: When a customer places an order with an online office supply store, a comput-
erized accounting information system (AIS) automatically checks to see if the customer
has exceeded their credit limit. Past records indicate that 5% of customers exceed their
credit limits. On a given day, 20 customers place orders.

(a) Is this a binomial experiment?

(b)Find the probability that a majority of customers are over their credit limit.

16



Theorem 3.3.4. If Y ~ Bin(n,p), then

= np (3.19)
c’=npq. (3.20)

Proof:

Relation between the Hypergeometric and the Binomial

Consider the hypergeometric distribution. Let p = M/N be the proportion of Type I
items in the population. Suppose N is large with n and p remaining fixed, i.e.

M
N — oo, M — oo, ﬁ—>p.

Then the hypergeometric probabilities converge to the binomial probabilities. For large

samples, there is practically no difference between sampling with and without replacement.

We have
(D)0
k n—=k
P(X =k|N,M,n) =
()
MI(N — M)Y(N —n)!
(M —kE)(N—-M —n+k)!N!

> 3

MM=1)...(M—k+1)(N=M)...(N—=M—n+k+1)

NE [1.(1—%)...(1—%;1)”

> 3

(
[

17



— ( Z )pk(l —p)" "

Remark: The binomial distribution may be used as an approximation if n/N < 0.05.

3.3.4 Poisson Distribution

The distribution of count data is often modeled using the Poisson distribution.

Let N; be the total number of occurrences in an interval of length ¢, i.e. in (0,¢).

The Poisson distribution is derived from the Poisson process which possesses the fol-
lowing properties, called the Poisson postulates:

1. Ny =0.

2. The probability of exactly one occurrence during a very small interval [¢,¢ + h] of
length h, is proportional to the length of the interval, i.e.

P(N, =1) = M+ o(h).

3. The probability of more than one occurrence in the interval [¢,t + h] is o(h).

4. The number of occurrences in non-overlapping intervals are independent.

Remark: Here o(h) is a quantity of smaller order of magnitude than h, i.e.

h
%—M) as h — 0.

Result: Under these postulates, we have

PN, =k) =" k=o01,.... (3.21)

Proof: We have

Put+h) = P(Nep=n)
= P(Nt:n,Nt+h—Nt:0)+P(Nt:n—1,Nt+h—Nt:].)
= ZP(Nt:n_kaNt+h_Nt:k>

= (1 =An)P,(t) + AhPy—1(t) + o(h) using P2.

18



Therefore

P,(t+h) — P,(t)
h

= —AP,(t) + AP,_1(t) + @

Letting h — 0, we have

/

PL(£) = —AP,(t) + APu_y (2). (3.22)

n

For n =0, we get
Po(t + h) = Py(t)[L — Ah] + o(h).
Rearranging the terms as before, and letting A — 0, we have

/

Fy(t) = —AF(t)
= Py(t) = Ke™™.

Since Py(0) = 1, we have
P()(t) = 6_)\t.
Using the differential equation in (3.22) and the initial conditions, we get

Pi(t) = —APi(t) + APo(t)
= —AP(t) + de M.

This implies
Pi(t) = Me™.
Proceeding in a similar fashion, we can derive the general case:

P (t) + AP,(t) = AP,_1(1)
= eM[P(t) + AP, (t)] = A\eMP,_1(1)

d
= E[eMPn(zs)] = AeMP,_(t)

e M)

= Pt)=——=—,  n=0L...

Definition: A random variable is said to have a Poisson distribution P(\) if

e A\

z!

px(z|\) = P(X =z|\) =

. 2=0,1,...:A>0. (3.23)

19



The probabilities are clearly non-negative. Further

e > 67)\/\36
el = 2
k=0 k=0 ’
[e)

2z

-\

=5
k=0
= ei/\e)\:

since the infinite sum is the Taylor expansion for e*.
Example: Ernest Rutherford conducted a series of experiments on radioactive decay.

In one of these, a radioactive substance was observed in N = 2608 time intervals of 7.5

seconds each, and the number of decay particles reaching a counter during each period
was recorded. The data can be fit to a Poisson distribution.

Theorem 3.3.5. If If X ~ P()\), then

Proof:

Remark: We have the following recursion formula for the Poisson probabilities:

P(X =z) = % P(X =z—1). (3.26)

20



Example: The number of orders for pizza at Pizza Hut has a Poisson distribution with
an average of 12 per hour.

a. What is the probability that exactly five orders are received during a particular hour?
b. If the phones are down for 30 minutes, what is the probability that no orders will be
missed?

Poisson as a limiting form of the Binomial

The binomial distribution can be approximated by the Poisson distribution for large n
and small p for A = np of moderate magnitude.

Theorem 3.3.6. Let X ~ Bin(n,p). Then

n T n— 6_)\)\30
Pt = —;
Xz x.

as n — 0o, p — 0 with np — A.
Proof: We have

)\ n
P(XzO)z(l—p)”z(l—ﬁ) — e as n— oo.

For the binomial distribution, we have the recursion

a1
P(X =z2)=" §+ 1pr(X:x—1).

Therefore

21



for small p. Therefore

P(X = 2) ~ %P(X:x—l).

Using the value for P(X = 0), we can see that

(3.27)
(3.28)

Example: The IT office collects data on the number of major network errors experienced

each day on a local area network. Network errors occur infrequently. Past data indicate

the probability of a major error is 0.001. What is the probability that in a period of a

year (365 days) only one network error will occur?

3.3.5 Negative Binomial Distribution

Consider a sequence of independent Bernoulli trials. Define the random variable X to be

the trial at which the r-th success occurs, where r is a fixed integer. We have

r—1
r—1

HX—W@—<

22

)prqmr, r=rr+1,r+2...

(3.29)



We may also define Y to be the random variable that counts the number of failures
observed before the r-th success. Then

Y=X-—-r

The pmf of Y is given by

r+y—1 ,

py(ylr,p) = P(Y =ylr,p) = ( y ) pl¢’,  y=012... (3.30)
The random variable X (or Y') is said to have a Negative Binomial distribution, and
we write
Y ~ NB(r,p).

For the pmf in (3.29), the term

prqx—r

is the probability of obtaining a success on the x—th trial preceded by r — 1 successes and

x — r failures in some specified order. The term

()

counts the number of possible strings.

23



Example: The percentage of individuals in the population possessing a rare blood type
is 2 %. Individuals arrive at a blood bank and are tested. The moment two matches are
located, the testing stops.

Find the probability that exactly 5 individuals are tested.

Let us define

(a:)zx(x—l)...(x—r—i—l)
r r!

for all values of x and all positive integers r. We use the convention that

We have

Consider

r+y—1 _ (r+y 1!
Yy  yl(r—1)!

24



The negative binomial pmf is then given by

—r

P(Y =ylr,p) = ( y )(—1)yprqy, y=0,1,2...

which resembles the binomial distribution.

Result: The binomial theorem or formula (1 + ¢)* for any number a and all values

—-l1<t<lis
(1+t)a:1+<cll>t+...+<z)t’“+...

If a is a positive integer, all terms containing powers higher than ¢* vanish.

Using this result, we have

SR =) = Z(—r>(_1)w

y=0 y=0

Theorem 3.3.7. Let Y ~ NB(r,p). Then

(3.31)

(3.32)

Proof:

25



Definition: If » = 1, we get the geometric random variable, X the number of trials
required for a single success. The probability of X taking the value x is given by

P(X = z|p) = p¢“*, x=1,2,3... (3.33)

We can also define the geometric random variable as Y, the number of failures preceding
the first success. We have Y = X — 1.

PY =ylp)=p¢’, x=0,1,2,... (3.34)

Example: A process that fills packages is stopped whenever a package is detected whose
weight falls outside the specification. Assume the probability of falling outside the spec-
ification limits is 0.01. Find the probability that 10 packets are filled before the process
stops.

Theorem 3.3.8. If X has a geometric distribution, then for any two positive integers
s, t, with s > t,

P(X>s|X>t) = PX>s—1 (3.35)

This is the lack of memory property.
Proof: We have

P(X >n) = P(no successes in n trials)
= (I-p™
P(X >s|X>t) = M—(l— )st
T Px>t P
= P(X >s—1).

The converse of the result is also true.

Theorem 3.3.9. If X is an integer valued random variable satisfying
P(X >s|X >t) = P[X >s—t].

26



for any two positive integers s,t, with s > t, then X is a geometric random variable.

Proof: Let
P(X=2z)=p, r=1,2,....

P(X >s—1t)= Z Pk = (s—¢ Say.

k=s—t+1
P(X >s) gs
PX>sX>t)= —2 ==,
XX >D=5%>7) " a

Using the lack of memory property, we have

s = 4t 4s—t-
If s—t=1, then

Gr=qqa  a=Y p=1-p.
k=2

Therefore
Q1 =q (1 —p1).

Substituting values for ¢, we have
@=q (1-p)=(1 —p1)2
B=q (1-p)=(1 —p1)3
g = (1 —p1)~.

Therefore

Pk =qr—1 — q = (1 —]?1)16_1 —(1 —pl)k
= pi(1—p))¥, k—1,2,...,

which is the geometric pmf.
[

Result: If Y ~ Bin(n,p) and X ~ NB(r,p), then
P(X <n)=PY >r), (3.36)

i.e. if there are r or more successes in the first n trials, then at most n trials were required

to obtain the first r of these successes.
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