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Chapter 5

Moments and (Generating Functions

Definition: The r-th moment of a random variable X is
= E[X"). (5.1)
The r-th central moment is
pr = E[(X = )], (5.2)

where = p; = E(X) is the expected value or mean of X.

Definition: The variance of a random variable is its second central moment.
0? = Var(X) = E[(X — p)?] = B(X?) — i
The positive square root of the variance is called the standard deviation.

Remarks:
e The variance and the standard deviation provide a measure of spread of the distribution about
its mean.

e Var(X)=0iff X is a degenerate random variable, i.e. X is constant with probability 1. This
implies no variation in X.

Definition: For any random variable X,

_ M3
a3 = —(M2)3/2 (53)

is called the coefficient of skewness and is used as a measure of asymmetry.

Definition: A pdf is said to be symmetric about the point a if for all € > 0,

fla+¢€) = f(a—e). (5.4)



Definition: A rv X is symmetric about a point a if

P(X>a+¢) =P(X <a—c¢) Vo€
Fla—e)=1—F(a+¢)+ P(X =a+e).

Theorem 5.0.1. If a pdf is symmetric about the point a, then asz = 0.
Proof: We have p3 = E(X — p)?. The mean is given by

po= E(X):/_Z:Uf(:v)dx
= /;:Uf(x)dx—l—/ooxf(x)dx.

a

Let y = 2 — a. Then dy = dx and

B(X) = / @+aﬁ@+ﬂwy+ém@+aﬁ@+ﬂﬂy

—0o0
o0

:t/ @+ay@+ﬂmy+/ (y +a)f(a - y)dy

0

= a/ fla+y)dy = a.

This implies ag = 0.
|

Example: Let f(x) = e, 2 > 0. We have

Therefore
py=EBl(X —p)?’l=2, pp=1

Substituting, we have
ag =2>0,

This is a distribution that is skewed right.



Definition: For any random variable X,

M4
(112)?

is called the coefficient of kurtosis and measures the peakededness or flatness of the pdf.

(5.5)

Qy =

Example: Let X ~ N(0,1). We have

E(X*) =3.
B(X*) =1
Substituting, we have
g = 3.
This is called a mesokurtic curve.
|
Example: Let
fx(z) ==, —-l<z<l.
We have
E(X)=0.
1,2 31
2
E(X?) = / Tde=2| =2
1 2 6|, 6
2
E(X*Y) = —.
(X =1
Substituting, we have
9
Qg = 5 < 3.
This is called a platykurtic curve.
|
Example: Let
1
fx(z) = §€_|I‘ reR
We have
B(X?) =2

Substituting, we have

This is called a leptokurtic curve.
|



Definition: Let X be a random variable with cdf Fx(.). The moment generating function
(mgf) of the random variable X, denoted by Mx (t) is defined as

Mx(t) = E(e'), (5.6)
provided the expectation exists in some neighbourhood of 0. We have

Z e p(x), if X is discrete;
mx (t) = T
[Z e f(z)dz, if X is continuous.

Example Let

1
fx(x) Ee_”"/Q, x>0
We have
1 oo
Mx(t) = 5/ el o=/2 ]y
0
= % e(t=2)
0
1 , 1

Ift> %, the integral is infinite.
[

Theorem 5.0.2. If the mgf Mx(t) of X exists in a neighbourhood of 0, the derivatives of all orders
exist at t = 0 and may be obtained by differentiating under the integral (or summation), i.e.

n dn n
ME(0) = o My(t)]y = B(X").
Proof: We have
d d [
—Mx(t) = — te d
G = [ e

OOd tx
= | e

= E(XeY).

d
& Mx(0],y = B(X).



Remark: Since

t2
Mx(t) = E(™)=E (1+tX+ 5X2 +)

t2
= 1+tE(X)+ QE(X2) +...
E(X™) is the coefficient of t*/k! in the above expansion.

Example: Consider the Geometric rv with pmf

PX =k =pd—-pFt Ek=12,....

We have
My (t) = e*p(1—p)*!
k
p t1k
= —— ) [(1-p)e]
1—0p -
__pe
1 —get’
[ |

Theorem 5.0.3. If Z ~ N(0,1), we have
Mz(t) = €t2/2.

Proof: We have

<1 2
My(t) = E(e?) = ——ePe 2dz
—oo V2T
1 oo
= N exp [——[22 - 2zt]} dz
1 > L 2 2
= — exp | —=[2" — 2zt + ] | exp [t?/2] dz
V21 J s [ 2 ]
<1 1
- etQ/Q/ Nor exp {—i(z - t)z} dz
_ et2/2

since the last integral is the N (¢, 1) pdf.
|

Theorem 5.0.4. If X ~ N(u,0?), we have

t2a'2
Mx(t) = ete = .

(5.8)



Proof: We have

Mx(t) _ E<etX):E[et(aZ+u)]
— E[e"tz]e“t
— explpt] expl(at)?/2]
|
Remarks:

o If the mgf exists, it characterizes an infinite set of moments.

e However. characterizing the infinite set of moments does not uniquely determine a distribution

function, i.e. two random variables that are distinct may have the same moments.

Example: Let

fi(@) = e o2 4>
2mx
and
fa(x) = fi(x)[1 + sin(27 log z)); x> 0.
We have .
E(XI)=¢e"/2  all finite.
We have

E(X5) =FE(X])+ /000 x"sin(2w log x) f1(x)dz.

The last integral is equal to zero. Therefore X; and X5 have the same moments for r = 0,1, ...

distinct pdf’s.
For this example, the mgf of X; does not exist.

Remark:
e Existence of moments does not imply existence of the mgf.

e If the cdf’s have bounded support, i.e.

X ={z: fx(z) > 0}

but

is a bounded set, then the moments are unique. In this case the infinite sequence of moments

will uniquely determine the distribution.

e When the mgf exists, the moment sequence determines the distribution uniquely.

Theorem 5.0.5. Let Fx(.) and Fy(.) be two distributions all of whose moments exist.



(a) If Fx(.) and Fy(.) have bounded support, then

Fx(u) = Fy(u) Vus E(Xr) = E(YT),T =1,2,....

(b) If the mgf’s exist and
Mx(t) = My (t) VY t in some neighbourhood of 0,

then
Fx(u) = Fy(u) Y u.

These are characterizations of a distribution.
[ |

Theorem 5.0.6. Convergence of moment generating functions. Suppose {X;} is a sequence
of random variables each with mgf Mx,(t). Suppose

lim MX ( ) Mx(t) Vite (—h, h),

1—00

and Mx(t) is a mgf. Then there is a unique cdf Fx(.) whose moments are determined by Mx(t),
and, for all x where Fx(z) is continuous, we have

lim FX< ) Fx(l’)

1—00

The proof relies on the uniqueness of the Laplace transforms.
|

Since the mgf may not exist for all random variables , we can define a different function that will
always exist and has properties similar to the mgf.

Definition The characteristic function of a random variable X is given by
ox(t) = E[e"], (5.9)

which always exists and completely determines the distribution.
The inversion theorem helps us to compute the cdf from the mgf or the characteristic function.

Example: Let X ~ Bin(n,p), the binomial distribution. We have

Mx(t) = (pe'+q)"
(1— p+pe)

b
|

3r—‘3

1+ —(ef = 1) } , (np = A).



We have
lim My (t) = M=),
n—o00 np=A\
p—0

which is the mgf of the Poisson distribution.
|

Example: Let X ~ P(\). Then
Mx(t) = M1 v ¢,

Let X _
y=""1,
VA
Then .
My (t :e*tﬁM (—)
Y( ) \/X
Therefore
log My (t) = —tVA+A(evx — 1)
S - {L . +1
(V)1 V22
2 3
= +—+
2 3\

As X\ — oo, this converges to t?/2, which implies
My (t) — €/,

which is the mgf of the standard normal.
[

Normal Approximation to the Binomial

Let X ~ B(n,p). Then
X —np
vV 1pg
is approximately distributed as a standard normal random variable as n — oc.
Recall

7 —

Mx(t) = (pe' +q)".
Let




E(¢"”) = exp [\_/Z—Z]] E (eXp Uf_mb

esp | 2] |pesn (=) +4]

pexp q¢exXp
\/n_pq npq
9 n
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