
Programming Language Concepts: Lecture 3

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 3, 21 January 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009


Subclasses

◮ A class Employee for employee data

class Employee{

private String name;

private double salary;

// Some Constructors ...

// "mutator" methods

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

// "accessor" methods

public String getName(){ ... }

public double getSalary(){ ... }

// other methods

double bonus(float percent){

return (percent/100.0)*salary;

}



Subclasses

◮ Managers are special types of employees with extra features

class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

◮ Manager objects inherit other fields and methods from
Employee

◮ Every Manager has a name, salary and methods to access
and manipulate these.

◮ Manager is a subclass of Employee

◮ Think of subset



Subclasses

◮ Manager objects do not automatically have access to private
data of parent class.

◮ Common to extend a parent class written by someone else



Subclasses

◮ Can use parent class’s constructor using super

class Employee{

...

public Employee(String n, double s){

name = n; salary = s;

}

public Employee(String n){

this(n,500.00);

}

}

◮ In Manager

public Manager(String n, double s, String sn){

super(n,s); /* super calls

Employee constructor */

secretary = sn;

}



Subclasses

◮ Subclass can override methods of super class

double bonus(float percent){

return 1.5*super.bonus(percent);

}

◮ In general, subclass has more features than parent class

◮ Can use a subclass in place of a superclass

Employee e = new Manager(...)

◮ Every Manager is an Employee, but not vice versa!

◮ Recall

◮ int[] a = new int[100];
◮ Aside: Why the seemingly redundant reference to int in new?

◮ One can now presumably write

Employee[] e = new Manager(...)[100]



Subclasses

Employee e = new Manager(...)

◮ Can we invoke e.setSecretary?



Subclasses

Employee e = new Manager(...)

◮ Can we invoke e.setSecretary?

◮ e is declared to be an Employee

◮ Static typechecking — e can only refer to methods in
Employee



Subclasses

Employee e = new Manager(...)

◮ Can we invoke e.setSecretary?

◮ e is declared to be an Employee

◮ Static typechecking — e can only refer to methods in
Employee

◮ What about e.bonus(p)? Which bonus do we use?

◮ Static: Use Employee.bonus

◮ Dynamic: Use Manager.bonus



Subclasses

Employee e = new Manager(...)

◮ Can we invoke e.setSecretary?

◮ e is declared to be an Employee

◮ Static typechecking — e can only refer to methods in
Employee

◮ What about e.bonus(p)? Which bonus do we use?

◮ Static: Use Employee.bonus

◮ Dynamic: Use Manager.bonus

◮ Dynamic dispatch (dynamic binding, late method binding,
. . . ) turns out to be more useful

◮ Default in Java, optional in C++ (use virtual)



Dynamic dispatch

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager e = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0);

}



Dynamic dispatch

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager e = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0);

}

◮ Every Employee in emparray “knows” how to calculate its
bonus correctly!

◮ Also referred to as runtime polymorphism or inheritance
polymorphism



Functions, signatures and overloading

◮ Signature of a function is its name and the list of argument
types

◮ Can have different functions with the same name and different
signatures

◮ For example, multiple constructors



Functions, signatures and overloading . . .

◮ Java class Arrays: method sort to sort arbitrary scalar arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr); // sorts contents of darr

Arrays.sort(iarr); // sorts contents of iarr



Functions, signatures and overloading . . .

◮ Java class Arrays: method sort to sort arbitrary scalar arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr); // sorts contents of darr

Arrays.sort(iarr); // sorts contents of iarr

◮ Methods defined in class Arrays

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}



Functions, signatures and overloading . . .

◮ Overloading: multiple methods, different signatures, choice is
static

◮ Overriding: multiple methods, same signature, choice is static

◮ Employee.bonus
◮ Manager.bonus

◮ Dynamic dispatch: multiple methods, same signature, choice
made at run-time



Inheritance

Employee e = new Manager(...)

◮ Can we force e.setSecretary to work?



Inheritance

Employee e = new Manager(...)

◮ Can we force e.setSecretary to work?

◮ Type casting

((Manager) e).setSecretary(s)



Inheritance

Employee e = new Manager(...)

◮ Can we force e.setSecretary to work?

◮ Type casting

((Manager) e).setSecretary(s)

◮ Cast fails (error) if e is not a Manager



Inheritance

Employee e = new Manager(...)

◮ Can we force e.setSecretary to work?

◮ Type casting

((Manager) e).setSecretary(s)

◮ Cast fails (error) if e is not a Manager

◮ Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}



Inheritance

Employee e = new Manager(...)

◮ Can we force e.setSecretary to work?

◮ Type casting

((Manager) e).setSecretary(s)

◮ Cast fails (error) if e is not a Manager

◮ Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

◮ Reflection — “think about oneself”



Multiple inheritance

C1 C2

C3 extends C1,C2



Multiple inheritance

C1

public int f()

C2

public int f()

C3 extends C1,C2



Multiple inheritance

C1

public int f()

C2

public int f()

C3 extends C1,C2

◮ Which f do we use in C3 (assuming f is not redefined)?

◮ Java does not allow multiple inheritance
◮ C++ allows this if C1 and C2 have no conflict



Java class hierarchy

◮ No multiple inheritance — tree-like

◮ In fact, there is a universal superclass Object

◮ Useful methods defined in Object

boolean equals(Object o) // defaults to pointer equality

String toString() // converts the values of the

// instance variable to String

◮ To print o, use System.out.println(o+"");



Java class hierarchy

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}



Java class hierarchy

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

◮ Recall that == is pointer equality



Java class hierarchy

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

◮ Recall that == is pointer equality

◮ Redefine equals

boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}



Java class hierarchy

◮ boolean equals(Date d) does not override boolean

equals(Object o)!



Java class hierarchy

◮ boolean equals(Date d) does not override boolean

equals(Object o)!

◮ Should write

boolean equals(Object d){

if (d instanceof Date){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

return(false);

}



Java class hierarchy

◮ Overriding looks for “closest” match



Java class hierarchy

◮ Overriding looks for “closest” match

Suppose boolean equals(Employee e) but no equals in
Manager



Java class hierarchy

◮ Overriding looks for “closest” match

Suppose boolean equals(Employee e) but no equals in
Manager

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }



Java class hierarchy

◮ Overriding looks for “closest” match

Suppose boolean equals(Employee e) but no equals in
Manager

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

boolean equals(Manager m) compatible with both
boolean equals(Employee e) and
boolean equals(Object o)



Java class hierarchy

◮ Overriding looks for “closest” match

Suppose boolean equals(Employee e) but no equals in
Manager

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

boolean equals(Manager m) compatible with both
boolean equals(Employee e) and
boolean equals(Object o)

Use boolean equals(Employee e)


