
Programming Language Concepts: Lecture 3

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 3, 21 January 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009


Subclasses

◮ A class Employee for employee data

class Employee{

private String name;

private double salary;

// Some Constructors ...

// "mutator" methods

public boolean setName(String s){ ... }

public boolean setSalary(double x){ ... }

// "accessor" methods

public String getName(){ ... }

public double getSalary(){ ... }

// other methods

double bonus(float percent){

return (percent/100.0)*salary;

}



Subclasses

◮ Managers are special types of employees with extra features

class Manager extends Employee{

private String secretary;

public boolean setSecretary(name s){ ... }

public String getSecretary(){ ... }

}

◮ Manager objects inherit other fields and methods from
Employee

◮ Every Manager has a name, salary and methods to access
and manipulate these.

◮ Manager is a subclass of Employee

◮ Think of subset



Subclasses

◮ Manager objects do not automatically have access to private
data of parent class.

◮ Common to extend a parent class written by someone else



Subclasses

◮ Can use parent class’s constructor using super

class Employee{

...

public Employee(String n, double s){

name = n; salary = s;

}

public Employee(String n){

this(n,500.00);

}

}

◮ In Manager

public Manager(String n, double s, String sn){

super(n,s); /* super calls

Employee constructor */

secretary = sn;

}



Subclasses

◮ Subclass can override methods of super class

double bonus(float percent){

return 1.5*super.bonus(percent);

}

◮ In general, subclass has more features than parent class

◮ Can use a subclass in place of a superclass

Employee e = new Manager(...)

◮ Every Manager is an Employee, but not vice versa!

◮ Recall

◮ int[] a = new int[100];
◮ Aside: Why the seemingly redundant reference to int in new?

◮ One can now presumably write

Employee[] e = new Manager(...)[100]
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Subclasses

Employee e = new Manager(...)

◮ Can we invoke e.setSecretary?

◮ e is declared to be an Employee

◮ Static typechecking — e can only refer to methods in
Employee

◮ What about e.bonus(p)? Which bonus do we use?

◮ Static: Use Employee.bonus

◮ Dynamic: Use Manager.bonus

◮ Dynamic dispatch (dynamic binding, late method binding,
. . . ) turns out to be more useful

◮ Default in Java, optional in C++ (use virtual)



Dynamic dispatch

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager e = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0);

}



Dynamic dispatch

Employee[] emparray = new Employee[2];

Employee e = new Employee(...);

Manager e = new Manager(...);

emparray[0] = e;

emparray[1] = m;

for (i = 0; i < emparray.length; i++){

System.out.println(emparray[i].bonus(5.0);

}

◮ Every Employee in emparray “knows” how to calculate its
bonus correctly!

◮ Also referred to as runtime polymorphism or inheritance
polymorphism



Functions, signatures and overloading

◮ Signature of a function is its name and the list of argument
types

◮ Can have different functions with the same name and different
signatures

◮ For example, multiple constructors



Functions, signatures and overloading . . .

◮ Java class Arrays: method sort to sort arbitrary scalar arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr); // sorts contents of darr

Arrays.sort(iarr); // sorts contents of iarr



Functions, signatures and overloading . . .

◮ Java class Arrays: method sort to sort arbitrary scalar arrays

double[] darr = new double[100];

int[] iarr = new int[500];

...

Arrays.sort(darr); // sorts contents of darr

Arrays.sort(iarr); // sorts contents of iarr

◮ Methods defined in class Arrays

class Arrays{

...

public static void sort(double[] a){..}

// sorts arrays of double[]

public static void sort(int[] a){..}

// sorts arrays of int[]

...

}



Functions, signatures and overloading . . .

◮ Overloading: multiple methods, different signatures, choice is
static

◮ Overriding: multiple methods, same signature, choice is static

◮ Employee.bonus
◮ Manager.bonus

◮ Dynamic dispatch: multiple methods, same signature, choice
made at run-time
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Inheritance

Employee e = new Manager(...)

◮ Can we force e.setSecretary to work?

◮ Type casting

((Manager) e).setSecretary(s)

◮ Cast fails (error) if e is not a Manager

◮ Can test if e is a Manager

if (e instanceof Manager){

((Manager) e).setSecretary(s);

}

◮ Reflection — “think about oneself”



Multiple inheritance

C1 C2

C3 extends C1,C2
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Multiple inheritance

C1

public int f()

C2

public int f()

C3 extends C1,C2

◮ Which f do we use in C3 (assuming f is not redefined)?

◮ Java does not allow multiple inheritance
◮ C++ allows this if C1 and C2 have no conflict



Java class hierarchy

◮ No multiple inheritance — tree-like

◮ In fact, there is a universal superclass Object

◮ Useful methods defined in Object

boolean equals(Object o) // defaults to pointer equality

String toString() // converts the values of the

// instance variable to String

◮ To print o, use System.out.println(o+"");



Java class hierarchy

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}
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public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};
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}

◮ Recall that == is pointer equality



Java class hierarchy

public int find (Object[] objarr, Object o){

int i;

for (i = 0; i < objarr.length(); i++){

if (objarr[i] == o) {return i};

}

return (-1);

}

◮ Recall that == is pointer equality

◮ Redefine equals

boolean equals(Date d){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}



Java class hierarchy

◮ boolean equals(Date d) does not override boolean

equals(Object o)!



Java class hierarchy

◮ boolean equals(Date d) does not override boolean

equals(Object o)!

◮ Should write

boolean equals(Object d){

if (d instanceof Date){

return ((this.day == d.day) &&

(this.month == d.month) &&

(this.year == d.year));

}

return(false);

}
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Java class hierarchy

◮ Overriding looks for “closest” match

Suppose boolean equals(Employee e) but no equals in
Manager

Manager m1 = new Manager(...);

Manager m2 = new Manager(...);

...

if (m1.equals(m2)){ ... }

boolean equals(Manager m) compatible with both
boolean equals(Employee e) and
boolean equals(Object o)

Use boolean equals(Employee e)


