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Function programming

◮ A quick review of Haskell

◮ The (untyped) λ-calculus

◮ Polymorphic typed λ-calculus and type inference
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Haskell

◮ Strongly typed functional programming language

◮ Functions transform inputs to outputs:

x f f(x)

◮ A Haskell program consists of rules to produce an output from
an input

◮ Computation is the process of applying the rules described by
a program



Defining functions

A function is a black box:

x f f(x)

Internal description of function f has two parts:

1. Types of inputs and outputs

2. Rule for computing the output from the input

Example:

sqr :: Int -> Int Type definition sqr : Z → Z

sqr x = x^2 Computation rule x 7→ x2



Basic types in Haskell

◮ Int Integers

◮ Operations +, -, *
◮ Functions div, mod
◮ Note: / :: Int -> Int -> Float

◮ Float

◮ Char

◮ Values written in single quotes — ’z’, ’&’, . . .

◮ Bool

◮ Values True and False.
◮ Operations &&, ||, not



Functions with multiple inputs

◮ plus(m, n) = m + n

◮ plus : Z × Z → Z, or plus : R × Z → R

◮ Need to know arity of functions

◮ Instead, assume all functions take only one argument!



Functions with multiple inputs

◮ plus(m, n) = m + n

◮ plus : Z × Z → Z, or plus : R × Z → R

◮ Need to know arity of functions

◮ Instead, assume all functions take only one argument!

m plus

plus m

n

m+n

◮ Type of plus

◮ plus m: input is Int, output is Int
◮ plus: input is Int, output is a function Int -> Int
◮ plus :: Int -> (Int -> Int)

plus m n = m + n



Functions with multiple inputs . . .

◮ plus m n p = m + n + p
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◮ plus m n p :: Int -> (Int -> (Int -> Int))



Functions with multiple inputs . . .

◮ plus m n p = m + n + p

m plus

plus m

n

plus m n

p

m+n+p

◮ plus m n p :: Int -> (Int -> (Int -> Int))

◮ f x1 x2 ...xn = y

◮ x1::t1, x2::t2, . . . , xn::tn, y::t
◮ f::t1 -> (t2 -> ( ...(tn -> t) ...))
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Functions with multiple inputs . . .

◮ Function application associates to left

◮ f x1 x2 ...xn
◮ (...((f x1) x2) ...xn)

◮ Arrows in function type associate to right

◮ f :: t1 -> t2 -> ...tn -> t
◮ f :: t1 -> (t2 -> ( ...(tn -> t) ...))

◮ Writing functions with one argument at a time = currying

◮ Haskell Curry, famous logician, lends name to Haskell
◮ Currying actually invented by Schönfinkel!



Defining functions

◮ Boolean expressions

xor :: Bool -> Bool -> Bool

xor b1 b2 = (b1 && (not b2)) || ((not b1) && b2)

middlebiggest :: Int -> Int -> Int -> Bool

middlebiggest x y z = (x <= y) && (z <= y)



Defining functions

◮ Boolean expressions

xor :: Bool -> Bool -> Bool

xor b1 b2 = (b1 && (not b2)) || ((not b1) && b2)

middlebiggest :: Int -> Int -> Int -> Bool

middlebiggest x y z = (x <= y) && (z <= y)

◮ ==, /=, <, <=, >, >=, /=
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◮ Can define xor b1 b2 by listing out all combinations

if b1 && not(b2) then True

else if not(b1) && b2 then True

else False
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◮ If definition argument is a constant, the value supplied must
be the same constant



Definition by cases: Pattern matching

◮ Can define xor b1 b2 by listing out all combinations

if b1 && not(b2) then True

else if not(b1) && b2 then True

else False

◮ Instead, multiple definitions, with pattern matching

xor :: Bool -> Bool -> Bool

xor True False = True

xor False True = True

xor b1 b2 = False

◮ When does an invocation match a definition?

◮ If definition argument is a variable, any value supplied matches
(and is substituted for that variable)

◮ If definition argument is a constant, the value supplied must
be the same constant

◮ Use first definition that matches, top to bottom
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Defining functions . . .

◮ Functions are often defined inductively

◮ Base case: Explicit value for f (0)
◮ Inductive step: Define f (n) in terms of f (n−1),. . . , f (0)

◮ For example, factorial is usually defined inductively

◮ 0! = 1
◮ n! = n · (n−1)!

◮ Use pattern matching to achieve this in Haskell

factorial :: Int -> Int

factorial 0 = 1

factorial n = n * (factorial (n-1))

◮ Note the bracketing in factorial (n-1)

◮ factorial n-1 would be bracketed as (factorial n) -1

◮ No guarantee of termination, correctness!

◮ What does factorial (-1) generate?



Conditional definitions

◮ Conditional definitions using guards

◮ For instance, “fix” the function to work for negative inputs

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 0 = n * (factorial (n-1))



Conditional definitions

◮ Conditional definitions using guards

◮ For instance, “fix” the function to work for negative inputs

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 0 = n * (factorial (n-1))

◮ Second definition has two parts

◮ Each part is guarded by a condition
◮ Guards are tested top to bottom
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Computation as rewriting

◮ Use definitions to simplify expressions till no further
simplification is possible

◮ Builtin simplifications

◮ 3 + 5 ❀ 8
◮ True || False ❀ True

◮ Simplifications based on user defined functions
power :: Float -> Int -> Float

power x 0 = 1.0

power x n | n > 0 = x * (power x (n-1))

◮ power 3.0 2

❀ 3.0 * (power 3.0 (2-1))

❀ 3.0 * (power 3.0 1)

❀ 3.0 * 3.0 * (power 3.0 (1-1))

❀ 3.0 * 3.0 * (power 3.0 0)

❀ 3.0 * 3.0 * 1.0

❀ 9.0 * 1.0 ❀ 9.0
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Computation as rewriting . . .

◮ More than one expression may qualify for rewriting

◮ sqr x = x*x

◮ sqr (4+3)

❀ sqr 7 ❀ 7*7 ❀ 49

❀ (4+3)*(4+3) ❀ (4+3)*7 ❀ 7*7 ❀ 49

◮ If there are multiple expressions to rewrite, Haskell chooses
outermost expression

◮ Outermost reduction ≡ ‘Lazy” rewriting
Evaluate argument to a function only when needed.

◮ “Eager” rewriting — evaluate arguments before evaluating
function
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◮ Outermost reduction can duplicate subexpressions
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◮ Maintain pointers to identical subexpressions generated by
copying at the time of reduction

◮ Reduce a duplicated expression only once



Computation as rewriting . . .

◮ Outermost reduction can duplicate subexpressions

sqr (4+3) ❀ (4+3)*(4+3)

◮ Maintain pointers to identical subexpressions generated by
copying at the time of reduction

◮ Reduce a duplicated expression only once

◮ Haskell cannot otherwise detect identical subexpressions

diffsquare :: Float -> Float -> Float

diffsquare x y = (x - y) * (x - y)
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◮ Outermost reduction may terminate when innermost does not

power :: Float -> Int -> Float

power x 0 = 1.0

power x n | n > 0 = x * (power x (n-1))

◮ power (7.0/0.0) 0 ❀ 1.0



Computation as rewriting . . .

◮ Outermost reduction may terminate when innermost does not

power :: Float -> Int -> Float

power x 0 = 1.0

power x n | n > 0 = x * (power x (n-1))

◮ power (7.0/0.0) 0 ❀ 1.0

◮ Outermost and innermost reduction give same answer when
both terminate

◮ Order of evaluation of subexpressions does not matter



Lists

◮ Basic collective type in Haskell is a list

◮ [1,2,3,1] is a list of Int
◮ [True,False,True] is a list of Bool

◮ Elements of a list must all be of uniform type

◮ Cannot write [1,2,True] or [3.0,’a’]

◮ List of underlying type T has type [T]

◮ [1,2,3,1]::[Int], [True,False,True]::[Bool]

◮ Empty list is [] for all types

◮ Lists can be nested

◮ [[3,2],[],[7,7,7]] is of type [[Int]]



Internal representation on lists

◮ Basic list building operator is :

◮ Append an element to the left of a list
◮ 1:[2,3,4] ❀ [1,2,3,4]
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Internal representation on lists

◮ Basic list building operator is :

◮ Append an element to the left of a list
◮ 1:[2,3,4] ❀ [1,2,3,4]

◮ All Haskell lists are built up from [] using operator :

◮ [1,2,3,4] is actually 1:(2:(3:(4:[])))
◮ : is right associative, so 1:2:3:4:[] = 1:(2:(3:(4:[])))

◮ Functions head and tail to decompose a list

◮ head (x:l) = x
◮ tail (x:l) = l
◮ Undefined for []
◮ head returns a value, tail returns a list



Defining list functions inductively

◮ Inductive definitions

◮ Define f for []
◮ Derive f l by combining head l and f (tail l)



Defining list functions inductively

◮ Inductive definitions

◮ Define f for []
◮ Derive f l by combining head l and f (tail l)

length :: [Int] -> Int

length [] = 0

length l = 1 + (length (tail l))

sum :: [Int] -> Int

sum [] = 0

sum l = (head l) + (sum (tail l))



Functions on lists . . .

◮ Implicitly extract head and tail using pattern matching

length :: [Int] -> Int

length [] = 0

length (x:xs) = 1 + (length xs)

sum :: [Int] -> Int

sum [] = 0

sum (x:xs) = x + (sum xs)



Functions on lists . . .

◮ Combine two lists into one — append

◮ append [3,2] [4,6,7] ❀[3,2,4,6,7]

append :: [Int] -> [Int] -> [Int]

append [] ys = ys

append (x:xs) ys = x:(append xs ys)
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Functions on lists . . .

◮ Combine two lists into one — append

◮ append [3,2] [4,6,7] ❀[3,2,4,6,7]

append :: [Int] -> [Int] -> [Int]

append [] ys = ys

append (x:xs) ys = x:(append xs ys)

◮ Builtin operator ++ for append

◮ [1,2,3] ++ [4,3] ❀ [1,2,3,4,3]

◮ concat “dissolves” one level of brackets

concat [[Int]] -> [Int]

concat [] = []

concat (l:ls) = l ++ (concat ls)

◮ concat [[1,2],[],[2,1]] ❀ [1,2,2,1]



List functions: map

◮ String is a synonym for [Char]

◮ touppercase applies capitalize to each Char in as String

◮ capitalize :: Char -> Char does what its name suggests

touppercase :: String -> String

touppercase "" = ""

touppercase (c:cs) = (capitalize c):(touppercase cs)
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List functions: map

◮ String is a synonym for [Char]

◮ touppercase applies capitalize to each Char in as String

◮ capitalize :: Char -> Char does what its name suggests

touppercase :: String -> String

touppercase "" = ""

touppercase (c:cs) = (capitalize c):(touppercase cs)

◮ An example of builtin function map

map f [x0,x1,..,xk] = [(f x0),(f x1),...,(f xk)]

◮ Apply f pointwise to each element in a list

◮ touppercase using map

touppercase :: String -> String

touppercase s = map capitalize s

◮ Note that first argument of map is a function!

◮ Higher order types
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List functions: filter

◮ Select items from a list based on a property

evenonly :: [Int] -> [Int]

evenonly [] = []

evenonly (n:ns)

| mod n 2 == 0 = n:(evenonly ns)

| otherwise = evenonly ns

◮ Same as applying the test

iseven :: Int -> Bool

iseven n = (mod n 2 == 0)

to each element in the list

◮ filter selects all items from l that satisfy p

filter p [] = []

filter p (x:xs)

| (p x) = x:(filter p xs)

| otherwise = filter p xs

◮ evenonly l = filter iseven l
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Polymorphism

◮ Functions like length, reverse do not need to examine
elements in a list

◮ Use a type variable to denote an arbitrary type

length :: [a] -> Int

length [] = 0

length (x:xs) = 1 + (length xs)

◮ Similarly

◮ reverse :: [a] -> [a]
◮ (++) :: [a] -> [a] -> [a]
◮ concat :: [[a]] -> [a]

◮ Polymorphism: same computation rule for multiple types

◮ Overloading: same abstract operation but implementation
varies

◮ Representations of Int and Float are different so + and * are
implemented differently
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◮ Output is list of items generated by f, so type is [b]
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Polymorphism: map and filter

◮ What is the type of map?

map f [x0,x1,..,xk] = [(f x0),(f x1),...,(f xk)]
◮ Most general type for f is a->b
◮ Input list is fed to f, so type is [a]
◮ Output is list of items generated by f, so type is [b]

◮ map : (a -> b) -> [a] -> [b]

◮ What is the type of filter

filter p [] = []

filter p (x:xs)

| (p x) = x:(filter p xs)

| otherwise = filter p xs

◮ filter : (a -> Bool) -> [a] -> [a]



Summary

◮ Haskell: a notation for defining computable functions

◮ Currying to deal with functions of different arities

◮ Computation is rewriting

◮ Haskell uses outermost reduction
◮ Order of evaluation does not change the answer (if an answer

is produced!)

◮ Higher order types

◮ Can pass functions as arguments

◮ Polymorphism

◮ Same rule works for multiple types


