
Programming Language Concepts: Lecture 13

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 13, 09 March 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009

An exercise in concurrent programming

◮ A narrow North-South bridge can accommodate traffic only in
one direction at a time.

An exercise in concurrent programming

◮ A narrow North-South bridge can accommodate traffic only in
one direction at a time.

◮ When a car arrives at the bridge

1. Cars on the bridge going in the same direction ⇒ can cross

2. No other car on the bridge ⇒ can cross (implicitly sets
direction)

3. Cars on the bridge going in the opposite direction ⇒ wait for
the bridge to be empty

An exercise in concurrent programming

◮ A narrow North-South bridge can accommodate traffic only in
one direction at a time.

◮ When a car arrives at the bridge

1. Cars on the bridge going in the same direction ⇒ can cross

2. No other car on the bridge ⇒ can cross (implicitly sets
direction)

3. Cars on the bridge going in the opposite direction ⇒ wait for
the bridge to be empty

◮ Cars waiting to cross from one side may enter bridge in any
order after direction switches in their favour.

An exercise in concurrent programming

◮ A narrow North-South bridge can accommodate traffic only in
one direction at a time.

◮ When a car arrives at the bridge

1. Cars on the bridge going in the same direction ⇒ can cross

2. No other car on the bridge ⇒ can cross (implicitly sets
direction)

3. Cars on the bridge going in the opposite direction ⇒ wait for
the bridge to be empty

◮ Cars waiting to cross from one side may enter bridge in any
order after direction switches in their favour.

◮ When bridge becomes empty and cars are waiting, yet another
car can enter in the opposite direction and makes them all
wait some more.

An example . . .

◮ Design a class Bridge to implement consistent one-way
access for cars on the highway synchronization primitives

◮ Should permit multiple cars to be on the bridge at one time
(all going in the same direction!)

An example . . .

◮ Design a class Bridge to implement consistent one-way
access for cars on the highway synchronization primitives

◮ Should permit multiple cars to be on the bridge at one time
(all going in the same direction!)

◮ Bridge has a public method

public void cross(int id, boolean d, int s)

◮ id is identity of car

◮ d indicates direction

◮ true is North
◮ false is South

◮ s indicates time taken to cross (milliseconds)

An example . . .

public void cross(int id, boolean d, int s)

◮ Method cross prints out diagnostics

1. A car is stuck waiting for the direction to change
Car 7 going North stuck at Thu Mar 13 23:00:11 IST

2009

2. The direction changes
Car 5 switches bridge direction to North at Thu

Mar 13 23:00:14 IST 2009

3. A car enters the bridge.
Car 8 going North enters bridge at Thu Mar 13

23:00:14 IST 2003

4. A car leaves the bridge.
Car 16 leaves at Thu Mar 13 23:00:15 IST 2003

An example . . .

public void cross(int id, boolean d, int s)

◮ Method cross prints out diagnostics

1. A car is stuck waiting for the direction to change
Car 7 going North stuck at Thu Mar 13 23:00:11 IST

2009

2. The direction changes
Car 5 switches bridge direction to North at Thu

Mar 13 23:00:14 IST 2009

3. A car enters the bridge.
Car 8 going North enters bridge at Thu Mar 13

23:00:14 IST 2003

4. A car leaves the bridge.
Car 16 leaves at Thu Mar 13 23:00:15 IST 2003

◮ Use java.util.Date to generate time stamps

Analysis

◮ The “data” that is shared is the Bridge

Analysis

◮ The “data” that is shared is the Bridge

◮ State of the bridge is represented by two quantities

◮ Number of cars on bridge — an int
◮ Current direction of bridge — a boolean

Analysis

◮ The “data” that is shared is the Bridge

◮ State of the bridge is represented by two quantities

◮ Number of cars on bridge — an int
◮ Current direction of bridge — a boolean

◮ The method

public void cross(int id, boolean d, int s)

changes the state of the bridge

Analysis

◮ The “data” that is shared is the Bridge

◮ State of the bridge is represented by two quantities

◮ Number of cars on bridge — an int
◮ Current direction of bridge — a boolean

◮ The method

public void cross(int id, boolean d, int s)

changes the state of the bridge

◮ Concurrent execution of cross can cause problems . . .

Analysis

◮ The “data” that is shared is the Bridge

◮ State of the bridge is represented by two quantities

◮ Number of cars on bridge — an int
◮ Current direction of bridge — a boolean

◮ The method

public void cross(int id, boolean d, int s)

changes the state of the bridge

◮ Concurrent execution of cross can cause problems . . .

◮ . . . but making cross a synchronized method is too restrictive

◮ Only one car on the bridge at a time

◮ Problem description explicitly disallows such a solution

Analysis . . .

◮ Break up cross into a sequence of actions

Analysis . . .

◮ Break up cross into a sequence of actions

◮ enter — get on the bridge

◮ travel — drive across the bridge

◮ leave — get off the bridge

Analysis . . .

◮ Break up cross into a sequence of actions

◮ enter — get on the bridge

◮ travel — drive across the bridge

◮ leave — get off the bridge

◮ enter and leave can print out the diagnostics required

Analysis . . .

◮ Break up cross into a sequence of actions

◮ enter — get on the bridge

◮ travel — drive across the bridge

◮ leave — get off the bridge

◮ enter and leave can print out the diagnostics required

◮ Which of these affect the state of the bridge?

Analysis . . .

◮ Break up cross into a sequence of actions

◮ enter — get on the bridge

◮ travel — drive across the bridge

◮ leave — get off the bridge

◮ enter and leave can print out the diagnostics required

◮ Which of these affect the state of the bridge?

◮ enter : increment number of cars, perhaps change direction

◮ leave : decrement number of cars

Analysis . . .

◮ Break up cross into a sequence of actions

◮ enter — get on the bridge

◮ travel — drive across the bridge

◮ leave — get off the bridge

◮ enter and leave can print out the diagnostics required

◮ Which of these affect the state of the bridge?

◮ enter : increment number of cars, perhaps change direction

◮ leave : decrement number of cars

◮ Make enter and leave synchronized

Analysis . . .

◮ Break up cross into a sequence of actions

◮ enter — get on the bridge

◮ travel — drive across the bridge

◮ leave — get off the bridge

◮ enter and leave can print out the diagnostics required

◮ Which of these affect the state of the bridge?

◮ enter : increment number of cars, perhaps change direction

◮ leave : decrement number of cars

◮ Make enter and leave synchronized

◮ travel is just a means to let time elapse — use sleep

Analysis . . .

Code for cross

public void cross(int id, boolean d, int s){

// Get onto the bridge (if you can!)

enter(id,d);

// Takes time to cross the bridge

try{

Thread.sleep(s);

}

catch(InterruptedException e){}

// Get off the bridge

leave(id);

}

Analysis . . .

Entering the bridge

◮ If the direction of this car matches the direction of the bridge,
it can enter

Analysis . . .

Entering the bridge

◮ If the direction of this car matches the direction of the bridge,
it can enter

◮ If the direction does not match but the number of cars is zero,
it can reset the direction and enter

Analysis . . .

Entering the bridge

◮ If the direction of this car matches the direction of the bridge,
it can enter

◮ If the direction does not match but the number of cars is zero,
it can reset the direction and enter

◮ Otherwise, wait() for the state of the bridge to change

Analysis . . .

Entering the bridge

◮ If the direction of this car matches the direction of the bridge,
it can enter

◮ If the direction does not match but the number of cars is zero,
it can reset the direction and enter

◮ Otherwise, wait() for the state of the bridge to change

◮ In each case, print a diagnostic message

Code for enter

private synchronized void enter(int id, boolean d){

Date date;

// While there are cars going in the wrong direction

while (d != direction && bcount > 0){

date = new Date();

System.out.println("Car "+id+" going "+direction_name(d)+" s

// Wait for our turn

try{

wait();

}

catch (InterruptedException e){}

}

...

}

Code for enter

private synchronized void enter(int id, boolean d){

...

while (d != direction && bcount > 0){ ... wait() ...}

...

// Switch direction, if needed

if (d != direction){

direction = d;

date = new Date();

System.out.println("Car "+id+" switches bridge direction

to "+direction_name(direction)+" at "+date);

}

// Register our presence on the bridge

bcount++;

date = new Date();

System.out.println("Car "+id+" going "+direction_name(d)+"

enters bridge at "+date);

}

Analysis . . .

Leaving the bridge is much simpler

◮ Decrement the car count

Analysis . . .

Leaving the bridge is much simpler

◮ Decrement the car count

◮ notify() waiting cars

Analysis . . .

Leaving the bridge is much simpler

◮ Decrement the car count

◮ notify() waiting cars

. . . provided car count is zero

Analysis . . .

Leaving the bridge is much simpler

◮ Decrement the car count

◮ notify() waiting cars

. . . provided car count is zero

private synchronized void leave(int id){

Date date = new Date();

System.out.println("Car "+id+" leaves at "+date);

// "Check out"

bcount--;

// If everyone on the bridge has checked out, notify the

// cars waiting on the opposite side

if (bcount == 0){

notifyAll();

}

}

The challenge of concurrent programming

◮ Concurrent programming is difficult

◮ Over the years, semaphores, monitors . . . to lock and unlock
shared data

The challenge of concurrent programming

◮ Concurrent programming is difficult

◮ Over the years, semaphores, monitors . . . to lock and unlock
shared data

◮ Thesis

◮ Lock based programming is difficult to design and maintain
◮ Lock based programs do not compose well

The challenge of concurrent programming

◮ Concurrent programming is difficult

◮ Over the years, semaphores, monitors . . . to lock and unlock
shared data

◮ Thesis

◮ Lock based programming is difficult to design and maintain
◮ Lock based programs do not compose well

◮ With multicore architectures, concurrent programming will
become more ubiquitous

◮ Goal

◮ Design a new mechanism for reliable, modular concurrent
programming with shared data

The challenge of concurrent programming

◮ Concurrent programming is difficult

◮ Over the years, semaphores, monitors . . . to lock and unlock
shared data

◮ Thesis

◮ Lock based programming is difficult to design and maintain
◮ Lock based programs do not compose well

◮ With multicore architectures, concurrent programming will
become more ubiquitous

◮ Goal

◮ Design a new mechanism for reliable, modular concurrent
programming with shared data

◮ Software Transactional Memory!

The problem with locks

A bank account class

class Account {

Int balance;

synchronized void withdraw(int n) {

balance = balance - n;

}

synchronized void deposit(int n) {

withdraw(-n);

}

}

◮ Each object has a lock

◮ synchronized methods acquire and release locks

The problem with locks . . .

How do we transfer money from one account to another?

The problem with locks . . .

How do we transfer money from one account to another?

void transfer(Account from,

Account to, Int amount) {

from.withdraw(amount);

to.deposit(amount);

}

The problem with locks . . .

How do we transfer money from one account to another?

void transfer(Account from,

Account to, Int amount) {

from.withdraw(amount);

to.deposit(amount);

}

Is there a problem?

The problem with locks . . .

How do we transfer money from one account to another?

void transfer(Account from,

Account to, Int amount) {

from.withdraw(amount);

to.deposit(amount);

}

Is there a problem?

◮ Intermediate state when money has left from and not been
deposited in to should not be visible!

◮ Having withdraw and deposit synchronized does not help

The problem with locks . . .

To fix this, we can add more locks

void transfer(Account from,

Account to, Int amount) {

from.lock(); to.lock();

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

The problem with locks . . .

To fix this, we can add more locks

void transfer(Account from,

Account to, Int amount) {

from.lock(); to.lock();

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

Is there a problem?

The problem with locks . . .

To fix this, we can add more locks

void transfer(Account from,

Account to, Int amount) {

from.lock(); to.lock();

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

Is there a problem?

◮ Two concurrent transfers in opposite directions between
accounts i and j can deadlock!

The problem with locks . . .

Order the locks

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

The problem with locks . . .

Order the locks

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

Is there a problem?

The problem with locks . . .

Order the locks

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

Is there a problem?

◮ Need to know all possible locks in advance

The problem with locks . . .

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

◮ What if from is a Super Savings Account in which most of
the money is in a medium term fixed deposit fromFD?

The problem with locks . . .

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

◮ What if from is a Super Savings Account in which most of
the money is in a medium term fixed deposit fromFD?

◮ from.withdraw(amt) may require an additional transfer
from fromFD to from

◮ transfer may not know anything about fromFD
◮ Even if it did, it has to acquire a third lock

The problem with locks . . .

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

◮ What if transfer can block in case of insufficient funds?

◮ Wait on a condition variable (monitor queue)
◮ Becomes more complex as number of locks increase

The problem with locks . . .

◮ Take too few locks — data integrity is compromised

◮ Take too many locks — deadlocks, lack of concurrency

◮ Take wrong locks, or in wrong order — connection between
lock and data it protects is informal

◮ Error recovery — how to recover from errors without leaving
system in an inconsistent state?

◮ Lost wake-ups, erroneous retries — Easy to forget to signal a
waiting thread, recheck condition after wake-up

The problem with locks . . .

◮ Take too few locks — data integrity is compromised

◮ Take too many locks — deadlocks, lack of concurrency

◮ Take wrong locks, or in wrong order — connection between
lock and data it protects is informal

◮ Error recovery — how to recover from errors without leaving
system in an inconsistent state?

◮ Lost wake-ups, erroneous retries — Easy to forget to signal a
waiting thread, recheck condition after wake-up

Lack of modularity

Cannot easily make use of smaller programs to build larger ones

◮ Combining withdraw and deposit to create transfer

requires exposing locks

Transactions

◮ Import idea of transactions from databases

◮ Hardware support for transactions in memory
[Herlihy,Moss 1993]

◮ Instead, move transaction support to run time software

◮ Software Transactional Memory [Shavit,Touitou 1995]

◮ An implementation in Haskell
[Harris, Marlow, Peyton Jones, Herlihy 2005]

◮ Tutorial presentation
Simon Peyton Jones: Beautiful concurrency,
in Beautiful code, ed. Greg Wilson, OReilly (2007)

Transactions . . .

◮ A transaction is an indivisible unit

◮ Execute a transaction as though it was running sequentially

Transactions . . .

◮ A transaction is an indivisible unit

◮ Execute a transaction as though it was running sequentially

◮ Check at the end of the transaction if any shared variables
touched by the transaction have changed (due to external
updates)

Transactions . . .

◮ A transaction is an indivisible unit

◮ Execute a transaction as though it was running sequentially

◮ Check at the end of the transaction if any shared variables
touched by the transaction have changed (due to external
updates)

◮ Maintain a transaction log for each transaction, noting down
values that were written and read

◮ If a value is written in a transaction and read later, look it up
in the log

◮ At the end of the transaction, use log to check consistency

Transactions . . .

◮ A transaction is an indivisible unit

◮ Execute a transaction as though it was running sequentially

◮ Check at the end of the transaction if any shared variables
touched by the transaction have changed (due to external
updates)

◮ Maintain a transaction log for each transaction, noting down
values that were written and read

◮ If a value is written in a transaction and read later, look it up
in the log

◮ At the end of the transaction, use log to check consistency

◮ If no inconsistency was seen, commit the transaction

◮ Otherwise, roll back and retry

Transactions . . .

Use atomic to indicate scope of transactions

void withdraw(int n) {

atomic{ balance = balance - n; }

}

void deposit(int n) {

atomic{ withdraw(-n); }

}

Transactions . . .

Use atomic to indicate scope of transactions

void withdraw(int n) {

atomic{ balance = balance - n; }

}

void deposit(int n) {

atomic{ withdraw(-n); }

}

Now, building a correct version of transfer is not difficult

void transfer(Account from, Account to, Int amount) {

atomic { from.withdraw(amount);

to.deposit(amount); }

}

Transaction interference

Independent transactions updating the same object

atomic{ // Transaction 1

if a.getName().equals("B")

a.setVal(8);

}

atomic{ // Transaction 2

int previous = a.getVal();

a.setVal(previous+1);

}

Transaction interference

Independent transactions updating the same object

atomic{ // Transaction 1

if a.getName().equals("B")

a.setVal(8);

}

atomic{ // Transaction 2

int previous = a.getVal();

a.setVal(previous+1);

}

◮ If Transaction 1 executes between first and second instruction
of Transation 2, transaction log shows that value of previous
is inconsistent

◮ Transaction 2 should roll back and reexecute

Transactions . . .

What else do we need?

Transactions . . .

What else do we need?

◮ Blocking
◮ If amount to be withdrawn is more than current balance, wait

void transfer(Account from, Account to, Int amount) {

atomic {

if (amount < from.balance) retry;

from.withdraw (amount);

to.deposit(amount);

}

}

Transactions . . .

What else do we need?

◮ Blocking
◮ If amount to be withdrawn is more than current balance, wait

void transfer(Account from, Account to, Int amount) {

atomic {

if (amount < from.balance) retry;

from.withdraw (amount);

to.deposit(amount);

}

}

◮ retry suspends transaction without any partial, inconsistent
side-effects

◮ Transaction log indicates possible variables that forced retry

◮ Wait till one of these variables changes before attempting to
rerun transaction from scratch

Transactions . . .

What else do we need?

Transactions . . .

What else do we need?

◮ Nested atomic allows sequential composition

◮ How about choosing between transactions with alternatives

◮ If amount to be withdrawn is more than current balance, move
money from linked fixed deposit

Transactions . . .

What else do we need?

◮ Nested atomic allows sequential composition

◮ How about choosing between transactions with alternatives

◮ If amount to be withdrawn is more than current balance, move
money from linked fixed deposit

void transfer(Account from, Account to, Int amount) {

atomic {

atomic{ from.withdraw (amount); }

orElse

atomic{ LinkedFD[from].withdraw (amount); }

to.deposit(amount);

}

}

What could go wrong?

void b(Account from, Account to, Int amount) {

atomic {

x = a.getVal();

y = b.getVal();

if (x > y){ launchMissiles(); }

...

}

}

What could go wrong?

void b(Account from, Account to, Int amount) {

atomic {

x = a.getVal();

y = b.getVal();

if (x > y){ launchMissiles(); }

...

}

}

◮ If an inconsistency is found later, the transaction should roll
back and retry

◮ How do we recall the missiles that have been launched?

◮ Need a strong type system to ensure that transactions affect
only transactional memory

Dealing with exceptions

atomic{

a = q1.extract();

q2.insert(a);

}

Dealing with exceptions

atomic{

a = q1.extract();

q2.insert(a);

}

◮ Suppose q2.insert(a) fails because q2 is full

Dealing with exceptions

atomic{

a = q1.extract();

q2.insert(a);

}

◮ Suppose q2.insert(a) fails because q2 is full

◮ Reasonable to expect that value in a is pushed back into q1.

Dealing with exceptions

atomic{

a = q1.extract();

q2.insert(a);

}

◮ Suppose q2.insert(a) fails because q2 is full

◮ Reasonable to expect that value in a is pushed back into q1.

How about

try { atomic{

a = q1.extract(); q2.insert(a);

}

catch (QueueFullException e) { a = q3.extract() } ;

◮ What is the state of q1?

STM summary

◮ Mechanism for delimiting transactions (atomic)

◮ Programmer writes “sequential” code
◮ Implementation determines granularity of concurrency — e.g.

using transaction logs

STM summary

◮ Mechanism for delimiting transactions (atomic)

◮ Programmer writes “sequential” code
◮ Implementation determines granularity of concurrency — e.g.

using transaction logs

◮ Transactions can be sequentially composed — nesting of
transactions

STM summary

◮ Mechanism for delimiting transactions (atomic)

◮ Programmer writes “sequential” code
◮ Implementation determines granularity of concurrency — e.g.

using transaction logs

◮ Transactions can be sequentially composed — nesting of
transactions

◮ Transactions can block — retry

STM summary

◮ Mechanism for delimiting transactions (atomic)

◮ Programmer writes “sequential” code
◮ Implementation determines granularity of concurrency — e.g.

using transaction logs

◮ Transactions can be sequentially composed — nesting of
transactions

◮ Transactions can block — retry

◮ Choice between transactions – orElse

STM summary

◮ Mechanism for delimiting transactions (atomic)

◮ Programmer writes “sequential” code
◮ Implementation determines granularity of concurrency — e.g.

using transaction logs

◮ Transactions can be sequentially composed — nesting of
transactions

◮ Transactions can block — retry

◮ Choice between transactions – orElse

◮ Need to restrict what transactions can encompass —
LaunchMissiles()

STM summary

◮ Mechanism for delimiting transactions (atomic)

◮ Programmer writes “sequential” code
◮ Implementation determines granularity of concurrency — e.g.

using transaction logs

◮ Transactions can be sequentially composed — nesting of
transactions

◮ Transactions can block — retry

◮ Choice between transactions – orElse

◮ Need to restrict what transactions can encompass —
LaunchMissiles()

◮ Exceptions and transactions interact in a complex manner

