
Programming Language Concepts: Lecture 21

Madhavan Mukund

Chennai Mathematical Institute

madhavan@cmi.ac.in

http://www.cmi.ac.in/~madhavan/courses/pl2009

PLC 2009, Lecture 21, 08 April 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009

Type inference with shallow types

Consider

applypair f x y = (f x,f y)

Type inference with shallow types

Consider

applypair f x y = (f x,f y)

Is the following expression well typed, where id z = z?

applypair id 7 ’c’ = (id 7, id ’c’) = (7,’c’)

Type inference with shallow types

Consider

applypair f x y = (f x,f y)

Is the following expression well typed, where id z = z?

applypair id 7 ’c’ = (id 7, id ’c’) = (7,’c’)

We have to unify the following set of constraints

id :: a -> a

7 :: Int

’c’ :: Char

a = Int (from id 7)

a = Char (from id ’c’)

Type inference with shallow types

Consider

applypair f x y = (f x,f y)

Is the following expression well typed, where id z = z?

applypair id 7 ’c’ = (id 7, id ’c’) = (7,’c’)

We have to unify the following set of constraints

id :: a -> a

7 :: Int

’c’ :: Char

a = Int (from id 7)

a = Char (from id ’c’)

Not possible! Haskell compiler says

applypair :: (a -> b) -> b -> b -> (b,b)}

Type inference with shallow types

In the λ-calculus, we have

λfxy .pair (fx)(fy), where pair ≡ λxyz .(zxy)

Type inference with shallow types

In the λ-calculus, we have

λfxy .pair (fx)(fy), where pair ≡ λxyz .(zxy)

When we pass a value for f , it has to unify with types of both x

and y

Type inference with shallow types

In the λ-calculus, we have

λfxy .pair (fx)(fy), where pair ≡ λxyz .(zxy)

When we pass a value for f , it has to unify with types of both x

and y

Suppose, we write, instead

applypair x y = (f x,f y) where f z = z

Type inference with shallow types

In the λ-calculus, we have

λfxy .pair (fx)(fy), where pair ≡ λxyz .(zxy)

When we pass a value for f , it has to unify with types of both x

and y

Suppose, we write, instead

applypair x y = (f x,f y) where f z = z

Now, we have

applypair :: a -> b -> (a,b)

Type inference with shallow types

In the λ-calculus, we have

λfxy .pair (fx)(fy), where pair ≡ λxyz .(zxy)

When we pass a value for f , it has to unify with types of both x

and y

Suppose, we write, instead

applypair x y = (f x,f y) where f z = z

Now, we have

applypair :: a -> b -> (a,b)

What’s going on?

Type inference with shallow types

Extend λ-calculus with “local” definitions, like where

Λ = Ci | x | λx .M | MN | let f = e in M

Type inference with shallow types

Extend λ-calculus with “local” definitions, like where

Λ = Ci | x | λx .M | MN | let f = e in M

Here is the λ-term for the second version of applypair

let f = λz .z in λxy .pair (fx)(fy)

Type inference with shallow types

Extend λ-calculus with “local” definitions, like where

Λ = Ci | x | λx .M | MN | let f = e in M

Here is the λ-term for the second version of applypair

let f = λz .z in λxy .pair (fx)(fy)

In fact, Haskell allows both

let f z = z in applypair x y = (f x,f y)

and

applypair x y = (f x,f y) where f z = z

Type inference with shallow types

◮ let f = e in λx .M and (λfx .M)e are equivalent with respect
to β-reduction

Type inference with shallow types

◮ let f = e in λx .M and (λfx .M)e are equivalent with respect
to β-reduction

◮ . . . but type inference works differently for the two

Type inference with shallow types

◮ let f = e in λx .M and (λfx .M)e are equivalent with respect
to β-reduction

◮ . . . but type inference works differently for the two

◮ One may be typeable while the other is not

◮ (λI .(II))(λx .x)

◮ let I = λx .x in (II)

Type inference with shallow types

Type inference for M = let f = e in M ′

Type inference with shallow types

Type inference for M = let f = e in M ′

First attempt

◮ Assume f :: t where α, β, . . . are type variables occurring in t

◮ Make a separate copy of type variables for each instance of f

in M ′

Type inference with shallow types

Type inference for M = let f = e in M ′

First attempt

◮ Assume f :: t where α, β, . . . are type variables occurring in t

◮ Make a separate copy of type variables for each instance of f

in M ′

Example

◮ let f = λz .z in λxy .pair (fx)(fy)

◮ First instance of f has type α1 → β1

◮ Second instance of f has type α2 → β2

Type inference with shallow types

A subtle problem

applypair2 w x y = ((tag x),(tag y))

where

tag = pair w

pair s t = (s,t)

Type inference with shallow types

A subtle problem

applypair2 w x y = ((tag x),(tag y))

where

tag = pair w

pair s t = (s,t)

◮ applypair2 w x y ❀ ((w,x),(w,y))

◮ Type should be
applypair2 :: a -> b -> c -> ((a,b),(a,c))

Type inference with shallow types

applypair2 w x y = ((tag x),(tag y))

where

tag = pair w

pair s t = (s,t)

Type inference

applypair2 :: a -> b -> c -> (d,e)

pair :: f -> g -> (f,g)

tag :: h -> (i,h)

Type inference with shallow types

applypair2 w x y = ((tag x),(tag y))

where

tag = pair w

pair s t = (s,t)

Type inference

applypair2 :: a -> b -> c -> (d,e)

pair :: f -> g -> (f,g)

tag :: h -> (i,h)

◮ a = i because tag uses input w from applypair2

Type inference with shallow types

applypair2 w x y = ((tag x),(tag y))

where

tag = pair w

pair s t = (s,t)

Type inference

applypair2 :: a -> b -> c -> (d,e)

pair :: f -> g -> (f,g)

tag :: h -> (i,h)

◮ a = i because tag uses input w from applypair2

◮ Using let rule, two instances of tag get different types

◮ d = h1 -> (i1,h1)
◮ e = h2 -> (i2,h2)

Type inference with shallow types

applypair2 w x y = ((tag x),(tag y))

where

tag = pair w

pair s t = (s,t)

Type inference

applypair2 :: a -> b -> c -> (d,e)

pair :: f -> g -> (f,g)

tag :: h -> (i,h)

◮ a = i because tag uses input w from applypair2

◮ Using let rule, two instances of tag get different types

◮ d = h1 -> (i1,h1)
◮ e = h2 -> (i2,h2)

◮ End up with
applypair2 :: a -> b -> c -> ((i1,b),(i2,c))

◮ The connection a = i = i1 = i2 is lost!

Type inference with shallow types

◮ In tag :: h -> (i,h)

◮ h is local to tag

◮ i is unified with type passed directly to main function

Type inference with shallow types

◮ In tag :: h -> (i,h)

◮ h is local to tag

◮ i is unified with type passed directly to main function

◮ h is called a generic variable

◮ Should not make copies of non-generic variables!

Type inference with shallow types

◮ In tag :: h -> (i,h)

◮ h is local to tag

◮ i is unified with type passed directly to main function

◮ h is called a generic variable

◮ Should not make copies of non-generic variables!

Correct type inference rule for M = let f = e in M ′

◮ Assume f :: t where α, β, . . . are generic type variables
occurring in t

◮ Make a separate copy of these generic type variables for each
instance of f in M ′

◮ Non-generic variables retain their name across all copies of f

Logic programming

◮ Programming with relations . . .

◮ . . . as opposed to programming with functions

Logic programming

◮ Programming with relations . . .

◮ . . . as opposed to programming with functions

◮ Function f with n arguments defines a relation Rf with n+1
arguments

f (x1, x2, . . . , xn) = y iff (x1, x2, . . . , xn, y) ∈ Rf

Logic programming

◮ Programming with relations . . .

◮ . . . as opposed to programming with functions

◮ Function f with n arguments defines a relation Rf with n+1
arguments

f (x1, x2, . . . , xn) = y iff (x1, x2, . . . , xn, y) ∈ Rf

◮ Functional programs compute y given (x1, x2, . . . , xn)

Logic programming

◮ Programming with relations . . .

◮ . . . as opposed to programming with functions

◮ Function f with n arguments defines a relation Rf with n+1
arguments

f (x1, x2, . . . , xn) = y iff (x1, x2, . . . , xn, y) ∈ Rf

◮ Functional programs compute y given (x1, x2, . . . , xn)

◮ Logic programming allows computation of more general
relations

Logic programming

◮ Programming with relations . . .

◮ . . . as opposed to programming with functions

◮ Function f with n arguments defines a relation Rf with n+1
arguments

f (x1, x2, . . . , xn) = y iff (x1, x2, . . . , xn, y) ∈ Rf

◮ Functional programs compute y given (x1, x2, . . . , xn)

◮ Logic programming allows computation of more general
relations

◮ Will follow Prolog syntax

Variables and constants

Two kinds of entities

◮ Variables

◮ Names starting with a capital letter

◮ X, Y, Name, . . .

Variables and constants

Two kinds of entities

◮ Variables

◮ Names starting with a capital letter

◮ X, Y, Name, . . .

◮ Constants

◮ Names starting with a small letter

◮ ball, node, graph, a, b,

Variables and constants

Two kinds of entities

◮ Variables

◮ Names starting with a capital letter

◮ X, Y, Name, . . .

◮ Constants

◮ Names starting with a small letter

◮ ball, node, graph, a, b,

◮ Uninterpreted — no types like Char, Bool etc!

Variables and constants

Two kinds of entities

◮ Variables

◮ Names starting with a capital letter

◮ X, Y, Name, . . .

◮ Constants

◮ Names starting with a small letter

◮ ball, node, graph, a, b,

◮ Uninterpreted — no types like Char, Bool etc!

◮ Exception: natural numbers, some arithmetic

Defining relations

A Prolog program describes a relation

Defining relations

A Prolog program describes a relation

Example: A graph

1

5 2

4 3

Defining relations

A Prolog program describes a relation

Example: A graph

1

5 2

4 3

◮ Want to define a relation path(X,Y)

◮ path(X,Y) holds if there is a path from X to Y

Facts and rules

1

5 2

4 3

Represent edge relation using the following facts.

edge(3,4).

edge(5,4).

edge(5,1).

edge(1,2).

edge(3,5).

edge(2,3).

Facts and rules . . .

1

5 2

4 3

Define path using the following rules.

path(X,Y) :- X = Y.

path(X,Y) :- edge(X,Z), path(Z,Y).

Facts and rules . . .

1

5 2

4 3

Define path using the following rules.

path(X,Y) :- X = Y.

path(X,Y) :- edge(X,Z), path(Z,Y).

Read the rules read as follows:

Rule 1 For all X,Y, (X,Y) ∈ path if X is same as (i.e.,
unifies with) Y.

Rule 2 For all X,Y, (X,Y) ∈ path if there exists Z such that
(X,Z) ∈ edge and (Z,Y) ∈ path.

Facts and rules . . .

path(X,Y) :- X = Y.

path(X,Y) :- edge(X,Z), path(Z,Y).

◮ Each rule is of the form

Conclusion if Premise1 and Premise2 . . . and Premisen

Facts and rules . . .

path(X,Y) :- X = Y.

path(X,Y) :- edge(X,Z), path(Z,Y).

◮ Each rule is of the form

Conclusion if Premise1 and Premise2 . . . and Premisen

◮ if is written :-

◮ and is written ,

Facts and rules . . .

path(X,Y) :- X = Y.

path(X,Y) :- edge(X,Z), path(Z,Y).

◮ Each rule is of the form

Conclusion if Premise1 and Premise2 . . . and Premisen

◮ if is written :-

◮ and is written ,

◮ This type of logical formula is called a Horn Clause

Facts and rules . . .

path(X,Y) :- X = Y.

path(X,Y) :- edge(X,Z), path(Z,Y).

◮ Each rule is of the form

Conclusion if Premise1 and Premise2 . . . and Premisen

◮ if is written :-

◮ and is written ,

◮ This type of logical formula is called a Horn Clause

◮ Quantification of variables

Facts and rules . . .

path(X,Y) :- X = Y.

path(X,Y) :- edge(X,Z), path(Z,Y).

◮ Each rule is of the form

Conclusion if Premise1 and Premise2 . . . and Premisen

◮ if is written :-

◮ and is written ,

◮ This type of logical formula is called a Horn Clause

◮ Quantification of variables

◮ Variables in goal are universally quantified

◮ X, Y above

Facts and rules . . .

path(X,Y) :- X = Y.

path(X,Y) :- edge(X,Z), path(Z,Y).

◮ Each rule is of the form

Conclusion if Premise1 and Premise2 . . . and Premisen

◮ if is written :-

◮ and is written ,

◮ This type of logical formula is called a Horn Clause

◮ Quantification of variables

◮ Variables in goal are universally quantified

◮ X, Y above

◮ Variables in premise are existentially quantified

◮ Z above

Computing in Prolog

◮ Ask a question (a query)

?- path(3,1).

Computing in Prolog

◮ Ask a question (a query)

?- path(3,1).

◮ Prolog scans facts and rules top-to-bottom

◮ 3 cannot be unified with 1, skip Rule 1.

Computing in Prolog

◮ Ask a question (a query)

?- path(3,1).

◮ Prolog scans facts and rules top-to-bottom

◮ 3 cannot be unified with 1, skip Rule 1.
◮ Rule 2 generates two subgoals. Find Z such that

◮ (3,Z) ∈ edge and

◮ (Z,1) ∈ path.

Computing in Prolog

◮ Ask a question (a query)

?- path(3,1).

◮ Prolog scans facts and rules top-to-bottom

◮ 3 cannot be unified with 1, skip Rule 1.
◮ Rule 2 generates two subgoals. Find Z such that

◮ (3,Z) ∈ edge and

◮ (Z,1) ∈ path.

◮ Sub goals are tried depth-first

◮ (3,Z) ∈ edge?

◮ (3,4) ∈ edge, set Z = 4

Computing in Prolog

◮ Ask a question (a query)

?- path(3,1).

◮ Prolog scans facts and rules top-to-bottom

◮ 3 cannot be unified with 1, skip Rule 1.
◮ Rule 2 generates two subgoals. Find Z such that

◮ (3,Z) ∈ edge and

◮ (Z,1) ∈ path.

◮ Sub goals are tried depth-first

◮ (3,Z) ∈ edge?

◮ (3,4) ∈ edge, set Z = 4

◮ (4,1) ∈ path? 4 cannot be unifed with 1, two subgoals, new
Z’

◮ (4,Z’) ∈ edge
◮ (Z’,1) ∈ path

Computing in Prolog

◮ Ask a question (a query)

?- path(3,1).

◮ Prolog scans facts and rules top-to-bottom

◮ 3 cannot be unified with 1, skip Rule 1.
◮ Rule 2 generates two subgoals. Find Z such that

◮ (3,Z) ∈ edge and

◮ (Z,1) ∈ path.

◮ Sub goals are tried depth-first

◮ (3,Z) ∈ edge?

◮ (3,4) ∈ edge, set Z = 4

◮ (4,1) ∈ path? 4 cannot be unifed with 1, two subgoals, new
Z’

◮ (4,Z’) ∈ edge
◮ (Z’,1) ∈ path

◮ Cannot find Z’ such that (4,Z’) ∈ edge!

Backtracking

◮ (3,Z) ∈ edge?

◮ (3,4) ∈ edge, set Z = 4

◮ (4,1) ∈ path? 4 cannot be unified with 1, two subgoals,
new Z’

◮ (4,Z’) ∈ edge
◮ (Z’,1) ∈ path

◮ No Z’ such that (4,Z’) ∈ edge

Backtracking

◮ (3,Z) ∈ edge?

◮ (3,4) ∈ edge, set Z = 4

◮ (4,1) ∈ path? 4 cannot be unified with 1, two subgoals,
new Z’

◮ (4,Z’) ∈ edge
◮ (Z’,1) ∈ path

◮ No Z’ such that (4,Z’) ∈ edge

◮ Backtrack and try another value for Z

◮ edge(3,5) ∈ edge, set Z = 5

Backtracking

◮ (3,Z) ∈ edge?

◮ (3,4) ∈ edge, set Z = 4

◮ (4,1) ∈ path? 4 cannot be unified with 1, two subgoals,
new Z’

◮ (4,Z’) ∈ edge
◮ (Z’,1) ∈ path

◮ No Z’ such that (4,Z’) ∈ edge

◮ Backtrack and try another value for Z

◮ edge(3,5) ∈ edge, set Z = 5

◮ (5,1) ∈ path? (5,1) ∈ edge, path(1,1),
√

Backtracking

◮ (3,Z) ∈ edge?

◮ (3,4) ∈ edge, set Z = 4

◮ (4,1) ∈ path? 4 cannot be unified with 1, two subgoals,
new Z’

◮ (4,Z’) ∈ edge
◮ (Z’,1) ∈ path

◮ No Z’ such that (4,Z’) ∈ edge

◮ Backtrack and try another value for Z

◮ edge(3,5) ∈ edge, set Z = 5

◮ (5,1) ∈ path? (5,1) ∈ edge, path(1,1),
√

Backtracking is sensitive to order of facts

◮ We had put edge(3,4) before edge(3,5)

Reversing the question

◮ Consider the question

?- edge(3,X).

Reversing the question

◮ Consider the question

?- edge(3,X).

◮ Find all X such that (3,X) ∈ edge

Reversing the question

◮ Consider the question

?- edge(3,X).

◮ Find all X such that (3,X) ∈ edge

◮ Prolog lists out all satisfying values, one by one

X=4;

X=5;

X=2;

No.

