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“Simply typed” A-calculus
A separate set of variables Var; for each type s
Define Ag, expressions of type s, by mutual recursion
» For each type s, every variable x € Vars is in A
> If M € Ay and x € Vars then (Ax.M) € Ns_.;.

> If M € As_t and N € Ag then (MN) € A,.
> Note that application must be well typed



“Simply typed” A-calculus
A separate set of variables Var; for each type s
Define Ag, expressions of type s, by mutual recursion
» For each type s, every variable x € Vars is in A
> If M € Ay and x € Vars then (Ax.M) € Ns_.;.

> If M € As_t and N € Ag then (MN) € A,.
> Note that application must be well typed

(3 rule as usual

> ()\X.M)N —3 M{X — /V}
» We must have A\x.M € A;_.; and N € A, for some types s, t

» Moreover, if Ax.M € As_.+, then x € Vars, so x and N are
compatible



“Simply typed” A-calculus ...

» Extend — 4 to one-step reduction —, as usual
» The reduction relation —™* is Church-Rosser

» In fact, —" is strongly normalizing
» M is normalizing : M has a normal form.

» M is strongly normalizing : every reduction sequence leads to a
normal form

» No infinite computations!



Type checking

» Syntax of simply typed A-calculus permits only well-typed
terms

» Converse question; Given an arbitrary term, is it well-typed?

Theorem
The type-checking problem for the simply typed
A-calculus is decidable



Type checking

» Syntax of simply typed A-calculus permits only well-typed

terms

» Converse question; Given an arbitrary term, is it well-typed?

Theorem
The type-checking problem for the simply typed

A-calculus is decidable

» Principal type scheme of a term M — unique type s such that
every other valid type is an “instance” of s

Theorem
We can always compute the principal type scheme for

any well-typed term in the simply typed A-calculus.



System F

» Add type variables, a, b, ...
» Use /, j, ...to denote concrete types

» Type schemes

su=al|i|s—s|Vas



System F

Syntax of second order polymorphic lambda calculus

» Every variable and (type) constant is a term.

» If M is a term, x is a variable and s is a type scheme, then
(Ax € s.M) is a term.

v

If M and N are terms, so is (MN).

» Function application does not enforce type check

v

If M is a term and a is a type variable, then (Aa.M) is a term.

» Type abstraction

» If M is a term and s is a type scheme, (Ms) is a term.

» Type application



System F

Example A polymorphic identity function

Na.d\x € a.x

Two [ rules, for two types of abstraction

> (Ax € ssM)N —5 M{x «— N}

» (Aa.M)s —3 M{a «— s}



System F

» System F is also strongly normalizing

» ...but type inference is undecidable!

» Given an arbitrary term, can it be assigned a sensible type?



Type inference in System F

Notation
If Ais a list of assumptions, A+ {x : s} is the list where

» Assumption for x in A (if any) is overridden by the new
assumption x : s.

» For any variable y # x, assumption does not change

A+{x:s}-M:t
AF(AxesM):s—t
AFM:s—t AFN:s

AF (MN) : t
A-M:s
Al (ANa.M) :Va.s

AF M :Va.s
AE Mt :s{a«—t}




Type inference in System F

» Type inference is undecidable for System F

» ...but we have type-checking algorithms for Haskell, ML, ...!

v

Haskell etc use a restricted version of polymorphic types

» All types are universally quantified at the top level

» When we write map :: (a -> b) -> [a] -> [b], we
mean that the type is

map ::Va,b. (a — b) — [a] — [b]

v

Also called shallow typing

v

System F permits deep typing

Va. [(Vb. a — b) — a — 4]



Type inference as equation solving

What is the type of twice f x = £ (f x)7?

» Generically, twice :: a -> b -> ¢
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Type inference as equation solving

What is the type of twice f x = £ (f x)7?

» Generically, twice :: a -> b -> ¢

» We then reason as follows

= d -> e (because f is a function)
d (because £ is applied to x)
= d (because f is applied to (f x))
= e (because output of twice is £ (f x))

o o T W
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» Thusb=c=d=eanda=b -> b



Type inference as equation solving

What is the type of twice f x = £ (f x)7?

» Generically, twice :: a -> b -> ¢

» We then reason as follows

= d -> e (because f is a function)

d (because £ is applied to x)

= d (because f is applied to (f x))

= e (because output of twice is £ (f x))

o o T W
Il

» Thusb=c=d=eanda=b -> b

» Most general type is twice :: (b -> b) -> b -> b
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Unification

» Start with a system of equations over terms
» Find a substitution for variables that satisfies the equation

> Least constrained solution : most general unifier (mgu)
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» Each function symbol as an arity

» Constants are functions with arity 0
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Terms

» Fix a set of function symbols and constants : signature
» Each function symbol as an arity

» Constants are functions with arity 0

» Terms are well formed expressions, including variables

» Every variable is a term.

» If f is a k-ary function symbol in the signature and t;, t, ...

tx are terms, then f(t1, to, ..., tx) is a term.
» Notation
» a,b,c,f,...,x,y,... are function symbos

» AB,C.F,...,X,Y,...are variables



Example

£(X)

f(f(a))
g(Y)

g(2)

fae



Unification

Example

» Substitution: assigns a term to each variable X, Y, Z
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Unification

Example

» Substitution: assigns a term to each variable X, Y, Z
» Unifier: substitution that satisfies equations
» For instance, {X « f(a),Y « g(a),Z <« g(a)} =40

» t0: apply substitution ¢ to term ¢ (not 6(t)!)



Unification

Example
f(X) = f(f(a)
g(Y) = g(2)
» Substitution: assigns a term to each variable X, Y, Z

v

Unifier: substitution that satisfies equations

v

For instance, {X « f(a),Y « g(a),Z < g(a)} =0

v

t0): apply substitution ¢ to term ¢ (not 6(t)!)

v

Apply substitution in parallel
> t=g(p(X), q(f(¥)))



Unification

Example
f(X) = f(f(a)
g(Y) = g(2)
» Substitution: assigns a term to each variable X, Y, Z

v

Unifier: substitution that satisfies equations

v

For instance, {X « f(a),Y « g(a),Z < g(a)} =0

v

t0): apply substitution ¢ to term ¢ (not 6(t)!)

v

Apply substitution in parallel

> t:g(P(X)vq(f(Y)))
> A/:{X<— Y,Y<—f(a)}



Unification

Example
f(X) = f(f(a)
g(Y) = g(2)
» Substitution: assigns a term to each variable X, Y, Z

v

Unifier: substitution that satisfies equations

v

For instance, {X « f(a),Y « g(a),Z < g(a)} =0

v

t0): apply substitution ¢ to term ¢ (not 6(t)!)

v

Apply substitution in parallel
> t=g(p(X), q(f(¥)))
> = (X V.Y f(a)
>ty =g(p(Y), q(f(f(a))))



Unification

Example
f(X) = f(f(a)
g(Y) = g(2)
» Substitution: assigns a term to each variable X, Y, Z

v

Unifier: substitution that satisfies equations

v

For instance, {X « f(a),Y « g(a),Z < g(a)} =0

v

t0): apply substitution ¢ to term ¢ (not 6(t)!)

v

Apply substitution in parallel
> t=g(p(X), q(f(¥)))
- = (X = Y, = f(a))
> ty = g(p(Y), a(f(f(a))))
» g(p(Y)) does not become g(p(f(a)))!



Unification

AR
=
[
PAR
N

» Many solutions are possible:
> 0= {X—f(a),Y —g(a),Z —g(a)}
» ¢ ={X—f(a),Y —aZ—a}
» 0" ={X —f(a),Y — Z}



Unification

» Many solutions are possible:

> 0 ={X —f(a),Y —g(a), Z —gla)}
» ¢ ={X—f(a),Y —aZ—a}
» 0" ={X —f(a),Y — Z}

» 0" is the “least constrained”



Unification

» Many solutions are possible:

» 0 ={X—"f(a),Y —g(a), Z — g(a)}
» O ={X—f(a),Y —a,Z— a}
» 0" ={X —f(a),Y — Z}

» 0" is the “least constrained”

» Any solution 7 breaks up into two steps, first of which is 6"
» 0 is 0" followed by {Y « g(a)}



Unification

» Many solutions are possible:

» 0={X —f(a),Y —g(a),Z — g(a)}
» O ={X—f(a),Y —a,Z— a}
» 0" ={X —f(a),Y — Z}

» 0" is the “least constrained”

» Any solution 7 breaks up into two steps, first of which is 6"
» 0 is 0" followed by {Y « g(a)}

» Least constrained solution: most general unifier



Obstacles to unification

«O>» «Fr «

it
v

A
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Unification

Obstacles to unification

» Equations of the form p(...) =q(...)

» Outermost function symbols don't agree

» No substitution can make the terms equal

» Equations of the form X = f(... X ...)
» Any substitution for X also applies to X nested in f

» These are the only two reasons why unification can fail!



A unification algorithm

» Start with equations

th = tf
th = 5
th =t

» Perform a sequence of transformations on these equations till
no more transformations apply
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1. t = X, tis not a variable ~ X = t.
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Unification algorithm : transformations

1. t = X, tis not a variable ~ X = t.
2. Erase equations of form X = X.

3. Let t =t where t = f(...), t/ = f'(...)
» f # '~ terminate : unification not possible

» Otherwise, f(t1,to,..., tx) = f(t],th,....t)

4. X =t, X occurs in t ~ terminate: unification not possible

5. X =t, X does not occur in t, X occurs in other equations
~~ Replace all occurrence of X in other equations by t.
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Unification algorithm : Examples

F(X) = f(f(a))
gY) = g(2)
X = f(a)
gY) = g(2)

I
N



Unification algorithm : Examples

f(X) = f(f(a)
gY) = &(2)
X = f(a)
gY) = &(2)
X = f(a)
Y = 7

mgu is {X «— f(a),Z — Y}



Unification algorithm : Examples ...

X
f(g(2), W, Z)

=
>
=~
e
3
[



Unification algorithm : Examples ...

g(Y) = X
FIX,h(X),Y) = f(g(2),W,2)
X = g(v)
FIX,h(X),Y) = f(g(2),W,2)
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g(Y) = X
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X = g(v)
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X = g(v)

X = g(2)
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Y = Z



Unification algorithm : Examples ...

g(Y) = X
FIX,h(X),Y) = f(g(2),W,2Z2)
X = g(v)
FIX,h(X),Y) = f(g(2),W,2Z2)
X = g(v)

X = g(2)

h(X) - W

Y = Z
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Unification algorithm : Examples ...

g(Y) = X
FIX,h(X),Y) = f(g(2),W,2Z2)
X = g(v)
FIX,h(X),Y) = f(g(2),W,2Z2)
X = g(v)

X = g(2)

h(X) - W

Y = Z

< T xX®
AR
N
[T
NI



Unification algorithm : Examples ...

<= XN
=
N
I [
NSR <



Unification algorithm : Examples ...

Z = Y
X = g(2)
h(g(Z2)) = W
% = Z
Z = Z
X = g(2)
h(g(Z2)) = W
% = Z



Unification algorithm : Examples ...
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N
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—~~

N
NN

N X T >

—~~

N
N &= N

N X & >

x = >



Unification algorithm : Examples ...

z Y
X = g(2)
h(g(2)) = W
1% - Z
z - Z
X = g(2)
h(g(2)) = W
1% - Z
X = g(2)
w = h(g(2))
Y - Z

Equations : g(Y) =X, f(X,h(X),Y)="F(g(2),W,2)
mgu X —g(Z2),W — h(g(2)),Y « Z}



Unification algorithm : Correctness

1. t = X, tis not a variable ~ X = t.
2. Erase equations of form X = X.

3. Let t =t where t = f(...), t/ = f'(...)
» f # '~ terminate : unification not possible

» Otherwise, f(t1,to,..., tx) = f(t],th,....t)

4. X =t, X occurs in t ~ terminate: unification not possible

5. X =t, X does not occur in t, X occurs in other equations
~~ Replace all occurrence of X in other equations by t.
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Unification algorithm : Correctness

» The algorithm terminates

» Rules 1-4 can be used only a finite number of times without
using Rule 5

» Rule 5 can be used at most once for each variable

» When the algorithm terminates, all equations are of the form
X; = t;. This defines a substitution

{X1 — t1, X0 — to, ..., Xy < tp}

» This substitution is a unifier

» Every transformation preserves the set of unifiers



Unification algorithm : Correctness

» The algorithm terminates

» Rules 1-4 can be used only a finite number of times without
using Rule 5

» Rule 5 can be used at most once for each variable

» When the algorithm terminates, all equations are of the form
X; = t;. This defines a substitution

» This substitution is a unifier

» Every transformation preserves the set of unifiers

» This substitution is an mgu

» More complicated, omit
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Type inference with shallow types
Syntax
» Built-in types /,/, k, ...

> A set of constants C; for each built-in type /

» eg., i =Char, GG={"a’,’b’,... }
> \-terms

N=c|x|xM|MN
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> M=ceC~ M:i
» M =x~+ M :: « for a fresh type variable «

» M =M .M ~ M ::a — 3 for fresh type variables o, (3.

» Inductively, x :: v in M’
» Add equation o =~

» M = M'N’" ~ M :: 3 for fresh type variables 3.
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Type inference with shallow types

> M=ceC~ M:i
» M =x~+ M :: « for a fresh type variable «

» M = .M~ M ::a — 3 for fresh type variables «,

» Inductively, x :: v in M’
» Add equation o =~

» M = M'N’" ~ M :: 3 for fresh type variables 3.

» Inductively, M' - v — 3, N' ::

» Add equation oo =7y

G.
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7 :: Int
’c’ :: Char
= Int (from id 7)
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a = Char (from id ’c’)



Type inference with shallow types

Consider
applypair f x y = (f x,f y)

Is the following expression well typed, where id z = z7
applypair id 7 ’c’ = (id 7, id ’c’) = (7,°c’)

We have to unify the following set of constraints

id :: a -> a

7 :: Int

’c’ :: Char

a = Int (from id 7)
a = Char (from id ’c’)

Not possible! Haskell compiler says

applypair :: (a => b) -> a -> a -> (b,b)}
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Type inference with shallow types
In the A-calculus, we have

Mxy.pair (fx)(fy), where pair = Axyz.(zxy)

When we pass a value for f, it has to unify with types of both x
and y

Suppose, we write, instead

applypair x y = (f x,f y) where f z = z
Now, we have

applypair :: a -> b -> (a,b)

What's going on?
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Type inference with shallow types

Extend A-calculus with “local” definitions, like where

A=GC | x| x.M|MN|letf=einM

Here is the A-term for the second version of applypair

let f = \z.zin Axy.paif (fX)(fy)

In fact, Haskell allows both
let f z = z in applypair x y = (f x,f y)
and

applypair x y = (f x,f y) where f z = z
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Type inference with shallow types

> let f = ein Ax.M and (Afx.M)e are equivalent with respect
to (-reduction

» ...but type inference works differently for the two

» One may be typeable while the other is not

» (AL(I)(Ax.x)
» let / = Ax.x in (/)



