Programming Language Concepts: Lecture 10

Madhavan Mukund

Chennai Mathematical Institute
madhavan@cmi.ac.in

http://www.cmi.ac.in/"madhavan/courses/pl2009

PLC 2009, Lecture 10, 16 February 2009

madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan/courses/pl2009

Reflection

Wikipedia says

Reflection is the process by which a computer program
can observe and modify its own structure and behaviour.

Reflection

Wikipedia says

Reflection is the process by which a computer program
can observe and modify its own structure and behaviour.

Two components involved in reflection

» Introspection
A program can observe, and therefore reason about its own
state.

Reflection

Wikipedia says

Reflection is the process by which a computer program
can observe and modify its own structure and behaviour.

Two components involved in reflection

» Introspection
A program can observe, and therefore reason about its own
state.

» Intercession
A program can modify its execution state or alter its own
interpretation or meaning.

Reflection in Java

Simple example of introspection
Employee e = new Manager(...);

if (e instanceof Manager){

}

Reflection in Java

Simple example of introspection
Employee e = new Manager(...);

if (e instanceof Manager){

}

What if we don't know the type that we want to check in advance?

Reflection in Java

Simple example of introspection
Employee e = new Manager(...);

if (e instanceof Manager){

}

What if we don't know the type that we want to check in advance?

Suppose we want to write a function to check if two different
objects are both instances of the same class?

public static boolean classequal(Object ol, Object 02){

// return true iff ol and o2 point to objects of same type

Reflection in Java ...

public static boolean classequal(Object ol, Object o02){...

» Can't use instanceof

» Will have to check across all defined classes
» This is not even a fixed set!

» Can't use generic type variables
» The following code is syntactically disallowed

if (ol instance of T) { ...}

Introspection in Java

Can extract the class of an object using getClass ()

» Import package java.lang.reflect

Introspection in Java

Can extract the class of an object using getClass ()

» Import package java.lang.reflect

import java.lang.reflect.x;
class MyReflectionClass{
public static boolean classequal(Object ol, Object 02){

return (ol.getClass() == o02.getClass());
}

Introspection in Java

Can extract the class of an object using getClass ()

» Import package java.lang.reflect

import java.lang.reflect.x;
class MyReflectionClass{
public static boolean classequal(Object ol, Object 02){

return (ol.getClass() == o02.getClass());
}

What does getClass () return?

Introspection in Java

Can extract the class of an object using getClass ()

» Import package java.lang.reflect

import java.lang.reflect.x;
class MyReflectionClass{
public static boolean classequal(Object ol, Object 02){

return (ol.getClass() == o02.getClass());
}

What does getClass() return?

> An object of type Class that encodes class information

The class Class

A version of classequal the explicitly uses this fact

import java.lang.reflect.x;

class MyReflectionClass{

public static boolean classequal(Object ol, Object 02){
Class cl1, c2;

cl = ol.getClass();
c2 = 02.getClass();
return (cl == c2);

The class Class

A version of classequal the explicitly uses this fact
import java.lang.reflect.x;
class MyReflectionClass{

public static boolean classequal(Object ol, Object 02){
Class cl1, c2;
cl = ol.getClass();
c2 = 02.getClass();
return (cl == c2);

» For each currently loaded class C, Java creates an object of
type Class with information about C

The class Class

A version of classequal the explicitly uses this fact
import java.lang.reflect.x;
class MyReflectionClass{

public static boolean classequal(Object ol, Object 02){
Class cl1, c2;
cl = ol.getClass();
c2 = 02.getClass();
return (cl == c2);

» For each currently loaded class C, Java creates an object of
type Class with information about C

» Encoding execution state as data — reification

» Representing an abstract idea in a concrete form

Using the Class object
Can create new instances of a class at runtime

Class ¢ = obj.getClass();
Object o = c.newInstance();
// Create a new object of same type as obj

Using the Class object
Can create new instances of a class at runtime

Class ¢ = obj.getClass();
Object o = c.newInstance();
// Create a new object of same type as obj

Can also get hold of the class object using the name of the class

String s = "Manager".
Class c¢ = Class.forName(s);
Object o = c.newInstance();

Using the Class object
Can create new instances of a class at runtime

Class ¢ = obj.getClass();
Object o = c.newInstance();
// Create a new object of same type as obj

Can also get hold of the class object using the name of the class

String s = "Manager".
Class c¢ = Class.forName(s);
Object o = c.newInstance();

., or, more compactly

Object o = Class.forName("Manager") .newInstance();

The class Class ...

» From the Class object for class C, we can extract details
about constructors, methods and fields of C

The class Class ...

» From the Class object for class C, we can extract details
about constructors, methods and fields of C

» Constructors, methods and fields themselves have structure

» Constructors: arguments
» Methods : arguments and return type
» All three: modifiers static, private etc

The class Class ...

» From the Class object for class C, we can extract details
about constructors, methods and fields of C

» Constructors, methods and fields themselves have structure

» Constructors: arguments
» Methods : arguments and return type
» All three: modifiers static, private etc

» Additional classes Constructor, Method, Field

The class Class ...

» From the Class object for class C, we can extract details
about constructors, methods and fields of C

» Constructors, methods and fields themselves have structure

» Constructors: arguments
» Methods : arguments and return type
» All three: modifiers static, private etc

» Additional classes Constructor, Method, Field

» Use getConstructors(), getMethods () and getFields ()
to obtain constructors, methods and fields of C in an array.

The class Class ...

Extracting information about constructors, methods and fields

Class c = obj.getClass();

Constructor[] constructors = c.getConstructors();
Method[] methods = c.getMethods();

Field[] fields = c.getFields();

The class Class ...

Extracting information about constructors, methods and fields

Class c = obj.getClass();

Constructor[] constructors = c.getConstructors();
Method[] methods = c.getMethods();

Field[] fields = c.getFields();

Constructor, Method, Field in turn have functions to get
further details

The class Class ...

Example: Get the list of parameters for each constructor

Class c = obj.getClass();
Constructor[] constructors = c.getConstructors();
for (int i = 0; i < constructors.length; i++){
Class params[] = constructors[i].getParameterTypes();

Each parameter list is a list of types

» Return value is an array of type Class[]

The class Class ...
We can also invoke methods and examine/set values of fields.

Class ¢ = obj.getClass();

Method[] methods = c.getMethods();
Object[] args = { ... }

// construct an array of arguments
methods[3] . invoke (obj,args);

// invoke methods[3] on obj with arguments args

The class Class

= obj.getClass();
Method[] methods =
Object[] args

c.getMethods () ;
={ ...}
// construct an array

We can also invoke methods and examine/set values of fields.
Class c

of arguments
methods[3] . invoke (obj,args);
// invoke methods[3] on obj with arguments

args
Field[] fields =
Object o

c.getFields();
= fields[2].get(obj);

// get the value of fields[2] from obj
fields[3].set(obj,value);

// set the value of fields[3] in obj to value

Reflection and security

» Can we extract information about private methods, fields, ...7
» getConstructors(), ...only return publicly defined values
» Separate functions to also include private components

» getDeclaredConstructors()

» getDeclaredMethods ()

» getDeclaredFields()
» Should this be allowed to all programs?
» Security issue!
» Access to private components may be restricted

Using reflection

» BluelJ, a programming environment to learn Java

Using reflection

» BluelJ, a programming environment to learn Java

» Can define and compile Java classes

Using reflection

» BluelJ, a programming environment to learn Java
» Can define and compile Java classes

» For compiled code, create object, invoke methods, examine
state

Using reflection

» BluelJ, a programming environment to learn Java
» Can define and compile Java classes

» For compiled code, create object, invoke methods, examine
state

> Uses reflective capabilities of Java — BlueJ need not
internally maintain “debugging” information about each class

Using reflection

» BluelJ, a programming environment to learn Java

» Can define and compile Java classes

» For compiled code, create object, invoke methods, examine
state

> Uses reflective capabilities of Java — BlueJ need not
internally maintain “debugging” information about each class

» Look up http://www.bluej.org

Limitations of Java reflection

» Cannot create or modify classes at run time
» The following is not possible
Class ¢ = new Class(....);

» Note that BlueJ must invoke Java compiler before you can
use a new class

Limitations of Java reflection

» Cannot create or modify classes at run time
» The following is not possible
Class ¢ = new Class(....);

» Note that BlueJ must invoke Java compiler before you can
use a new class

» Languages such as Smalltalk allow redefining methods at
run time

