
LAG Assignment 2 (55 marks) November 5, 2015

Instructions: Full credit will be given only for precise answers. Make appropriate assumptions.

1. Let Σ = {0, 1}. Construct S1S formulas φ1(X) and φ2(X) for the languages L1 and L2 respectively:

L1 = Σ∗111Σω

L2 = (0110)∗1ω

(A set M ⊆ N is an interpretation of φ1(X) iff the characteristic vector of M is in L1. Similarly for L2).

(5 marks)

2. In the following reachability game, Player 0 wins plays that can reach the node with label d. Compute
the winning regions for each player. What are their respective strategies? (3 marks)

a b c d

e f g h

3. Find a family of game arenas (An)n≥1 with designated nodes (Fn)n≥1 for the Büchi winning condition,
such that Recuri+1

0 (Fn) is a strict subset of Recuri0(Fn), that is: Recuri+1
0 (Fn) ⊂ Recuri0(Fn) for

i = 1, . . . , n. Here Recuri0(Fn) is the set of nodes from which Player 0 can force the play to take at least
i visits to nodes in Fn. (4 marks)

4. a) Construct a non-deterministic Büchi tree automaton for the following tree language over {a, b}:

T1 := { t ∈ Tω
{a,b} | there exists a path in t labelled abω}

(in other words: root node should be labelled a and there is a path with all nodes (other than root)
labelled b) (4 marks)

b) Can you construct a deterministic Büchi tree automaton for the above language? Justify.

(5 marks)

5. Let L be an ω-regular language of infinite words over an alphabet Σ. Construct a Muller tree automaton
for the following language: (4 marks)

T2 = { t ∈ Tω
Σ | every path in t is labelled by a word in L}

6. A directed graph can be thought of as a relational structure (V,E) where V is a finite set of elements,
and E ⊆ V × V is a binary relation on the domain V . Properties in graphs can be expressed using
Monadic Second Order logic (MSO) where the first order variables are quantified over V and the second
order variables are over sets in V . For example, the following sentence is true on graphs that have a
triangle:

ContainsTriangle := ∃x, y, z. (x 6= y 6= z) ∧ E(x, y) ∧ E(y, z) ∧ E(z, x)

The above formula is in fact a first-order formula. Using second order quantification allows to express
more properties of graphs. Write MSO sentences that evaluate to true iff:
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a) the graph is connected, (4 marks)

b) the graph is 3-colourable (vertices can be coloured so that vertices connected by an edge have
different colours). (4 marks)

7. Let A = (V,E) be a game arena. Let χ : V 7→ {0, 1, 2, . . . , c} be a coloring function. Consider a
Streett game G = (A, χ,Acc) with Acc = {(E1, F1), . . . , (Em, Fm)}. Each Ei ⊆ {0, 1, 2, . . . , c} and
Fi ⊆ {0, 1, 2, . . . , c}. Recalling Streett acceptance: Player 0 wins a play ρ if for all i = 1, . . . ,m:

Inf(χ(ρ)) ∩ Fi 6= ∅ ⇒ Inf(χ(ρ)) ∩ Ei 6= ∅

a) Give an example of a Streett game in which Player 0 needs at least 2 memory states to win: in
other words any strategy automaton that represents a winning strategy for Player 0 will have at
least 2 states. Give an informal (but complete) argument as to why she needs at least this much
memory to win. (6 marks)

b) Is it possible to transform a (max) parity game (A, χ) with arena A and colouring function χ to a
Streett game (A, χ,Acc) with the same arena and the colouring function? If yes, you need to give
the acceptance condition Acc. If not, you need to give an argument why you think you cannot.

(4 marks)

8. This question is in the form of a proof. You need to fill in the missing details.

Let A = (V,E) be a game arena. Let V be partitioned into Player 0 nodes V0 and Player 1 nodes V1.
Also assume that A does not have dead ends: that is, players always have a next move possible in the
game. Let χ : V 7→ {0, 1, 2, . . . , c} be a coloring function. Consider a Rabin game G = (A, χ,Acc) with
Acc = {(E1, F1), . . . , (Em, Fm)}. Each Ei ⊆ {0, 1, 2, . . . , c} and Fi ⊆ {0, 1, 2, . . . , c}. Recalling Rabin
acceptance: Player 0 wins a play ρ if for there exists an i ∈ {1, . . . ,m} such that:

Inf(χ(ρ)) ∩ Ei = ∅ and Inf(χ(ρ)) ∩ Fi 6= ∅

Claim: In Rabin games, Player 0 has a memoryless winning strategy in her winning region.

Proof of claim: Let W0 and W1 be winning regions of Player 0 and 1 respectively. Pick an arbitrary
node v ∈ V . We will show:

(∗) if Player 0 does not have a memoryless winning strategy from v, then v ∈W1

We will prove (*) by induction on the number of edges n controlled by Player 0: that is, induction on
|E ∩ V0 × V |.

a) Base case: Prove that (*) is true when n = |V0|. (3 marks)

b) Inductive case: Assume n > |V0|. There exists a node q ∈ V0 that has two exiting edges e1 and e2.
Consider the Rabin game (with same Acc) over the arenasA1 = (V,E−{e1}) andA2 = (V,E−{e2})
with one of these edges removed in each. Pick a node v ∈ V .

i) Show that if Player 0 does not have a memoryless winning strategy from v in the game A, then
she does not have a memoryless winning strategy from v in the two smaller games A1 and A2

as well.
(3 marks)

ii) Applying induction hypothesis on the smaller games, if Player 0 does not have memoryless
winning strategies from v in A1 and A2, then Player 1 can win from v in both these games A1

and A2 (using some strategy). Now, show that if Player 1 can win from v in A1 and A2, then
she can win from v in A as well. (6 marks)


