
CMI (BSc I)/BVRao Calculus II, Notes15 2014

We shall complete our discussion on uniform convergence of integrals and
close the chapter. I hope you have got a feeling for the applications I have
outlined last time, namely, to evaluate the characteristic function of the nor-
mal random variable, solving the heat equation. Of course, apart from these
you can think of continuity of the gamma function and its derivatives; which
we explained earlier.

While discussing power series, especially its continuity and term by term
differentiation we have understood how crucial it was to have uniform con-
vergence and how it immediately provides the answers. Just to impress upon
you that there are no new ideas to treat integrals, I shall repeat discussion
of series also as we go along.

uniform convergence:

So let fn be continuous functions defined on [c, d]. Recall that the series
∑

fn converges to ϕ pointwise if for every number y ∈ [c, d] the series of
numbers

∑

fn(y) converges to the number ϕ(y). This means that given y,

the partial sums sn(y) =
n
∑

1

fi(y) converge to ϕ(y). This, in turn, means that

given a point y and ǫ > 0, there is an integer N such that |sn(y)− ϕ(y)| < ǫ
for all n ≥ N . Of course this integer N depends on the number ǫ and also
on the point y.

We say that
∑

fn converges uniformly to ϕ if given ǫ > 0, there is an N
such that |sn(y) − ϕ(y)| < ǫ for all n ≥ N and also all y ∈ [c, d]. Thus the
integer N does not depend on any y in the interval. There is one N that
works for all y. This is the spirit of uniformity.

Similarly, let f(x, y) be a continuous function defined on [0∞) × [c, d].

Recall that the integral
∞
∫

0

f(x, y)dx converges to ϕ(y) point wise if for ev-

ery number y ∈ [c, d] the integral
∞
∫

0

f(x, y)dx converges to the number ϕ(y).

This means that given y, the ‘partial’ integrals sA(y) =
A
∫

0

f(x, y)dx converge

to ϕ(y) as A → ∞. This, in turn, means that given a point y and ǫ > 0,
there is an A0 such that |sA(y)−ϕ(y)| < ǫ for all A ≥ A0. Of course this A0

1



depends on the number ǫ and also on the point y.

We say that
∞
∫

0

f(x, y)dx converges uniformly to ϕ if given ǫ > 0, there

is an A0 such that |sA(y) − ϕ(y)| < ǫ for all A ≥ A0 and also all y ∈ [c, d].
Thus the number A0 does not depend on any y in the interval. There is one
A0 that works for all y. This is the spirit of uniformity as said above.

Let us return to series and use the earlier notation. Assume
∑

fn converge
to ϕ uniformly. Let ǫ > 0 be given and N be as above. then we have

n ≥ N ⇒ |sn(y)− ϕ(y)| < ǫ.

This implies

n > m ≥ N ⇒ |sn(y)− sm(y)| = |sn(y)− ϕ(y)|+ |ϕ(y)− sm(y)| < 2ǫ.

In other words

n > m ≥ N ⇒

∣

∣

∣

∣

∣

∣

m
∑

n+1

fi(y)

∣

∣

∣

∣

∣

∣

< 2ǫ.

Since
∞
∑

1

fi(y) converges, so do all the sums
∞
∑

m

fi(y). Thus the above inequality

also implies that

n > N ⇒

∣

∣

∣

∣

∣

∞
∑

n

fi(y)

∣

∣

∣

∣

∣

≤ 2ǫ.

Returning to integrals let us continue with earlier notation. Assume
∞
∫

0

f(x, y)dx converge to ϕ uniformly. Let ǫ > 0 be given and A0 be as

above. then we have

A ≥ A0 ⇒ |sA(y)− ϕ(y)| < ǫ.

This implies

B > A ≥ A0 ⇒ |sB(y)− sA(y)| = |sB(y)− ϕ(y)|+ |ϕ(y)− sA(y)| < 2ǫ.

In other words

B > A ≥ A0 ⇒

∣

∣

∣

∣

∣

∫

B

A

f(x, y)dx

∣

∣

∣

∣

∣

< 2ǫ.

Since
∞
∫

0

f(x, y)dx converges, so do all the integrals
∞
∫

A

f(x, y)dx. Thus the

above inequality also implies that

A > A0 ⇒
∣

∣

∣

∣

∫

∞

A

f(x, y)dx
∣

∣

∣

∣

≤ 2ǫ.
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continuity:

Suppose that the series of continuous functions
∑

fi converges to ϕ uni-
formly on [c, d]. We show ϕ is continuous. We show uniform continuity of ϕ.
let ǫ > 0 be given. Choose N so that

n ≥ N ⇒ |sn(y)− ϕ(y)| < ǫ/3; ∀y.

Let us not bother on n ≥ N , but just consider this integer N . Since sN
is a finite sum of continuous functions it is continuous and hence uniformly
continuous on [c, d]. So choose δ > 0 so that

|y1 − y2| < δ ⇒ |sN(y1)− sN(y2)| < ǫ/3.

If we take this δ then

|y1 − y2| < δ ⇒ |ϕ(y1)− ϕ(y2)|

≤ |ϕ(y1)− sN(y1)|+ |sN(y1)− sN(y2)|+ |sN(y2)− ϕ(y2)|

≤ ǫ.

Let us now return to integrals. Suppose that we have continuous functions

f(x, y) as above with
∞
∫

0

f(x, y)dx converging to ϕ uniformly on [c, d]. We

show ϕ is continuous. We show uniform continuity of ϕ. let ǫ > 0 be given.
Choose A0 so that

A ≥ A0 ⇒ |sA(y)− ϕ(y)| < ǫ/3; ∀y.

Let us not bother on A ≥ A0, but just fix just one number A ≥ A0. Since

sA(y) =
∫

A

0

f(x, y)dx

is integral over a finite interval, we know from earlier theorems that sA is
a continuous function and hence uniformly continuous on [c, d]. So choose
δ > 0 so that

|y1 − y2| < δ ⇒ |sA(y1)− sA(y2)| < ǫ/3.

If we take this δ then

|y1 − y2| < δ ⇒ |ϕ(y1)− ϕ(y2)|

≤ |ϕ(y1)− sA(y1)|+ |sA(y1)− sA(y2)|+ |sA(y2)− ϕ(y2)|

≤ ǫ.
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This shows that the uniformly convergent improper integral defines a con-
tinuous function (if f is continuous).

differentiation:

Let us first consider series. Let us now assume that fi are C
1 functions

on [c, d] with derivative gi. Assume that
∑

fi converges to ϕ uniformly and
∑

gi converges to ψ uniformly. then ϕ is differentiable and ϕ′ = ψ. In other
words derivative of sum equals sum of derivatives.

Of course we do not need
∑

fi to converge uniformly, enough if it con-
verges point wise so that we have a function ϕ to talk about. But uniform
convergence of the series

∑

gi is important. But this remark can be ignored
because usually you have uniform convergence of both the series

∑

fi and
∑

gi.

Let us fix a point y0. Let us fix ǫ > 0. Need to show δ > 0 so that

0 < |h| < δ ⇒

∣

∣

∣

∣

∣

ϕ(y0 + h)− ϕ(y0)

h
− ψ(y0)

∣

∣

∣

∣

∣

< ǫ.

(while reading you should assume that y0 as well as y0 + h ∈ [c, d].

First fix N so that

n > m ≥ N ⇒

∣

∣

∣

∣

∣

n
∑

m

gi(y)

∣

∣

∣

∣

∣

< ǫ/3; ∀y.

In particular note that
∣

∣

∣

∣

∣

∣

∞
∑

N+1

gi(y)

∣

∣

∣

∣

∣

∣

< ǫ/3.

Let us concentrate on this N . Since sN is a finite sum of C1 functions, it is
differentiable. So fix δ > 0 such that

0 < |h| < δ ⇒

∣

∣

∣

∣

∣

sN(y0 + h)− sN(y0)

h
−

N
∑

1

gi(y0)

∣

∣

∣

∣

∣

< ǫ/3.

Now

0 < |h| < δ ⇒

∣

∣

∣

∣

∣

ϕ(y0 + h)− ϕ(y0)

h
− ψ(y0)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

sN(y0 + h)− sN(y0)

h
−

N
∑

1

gi(y0)

∣

∣

∣

∣

∣
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+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

N+1

fi(y0 + h)−
∞
∑

N+1

fi(y0)

h

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∞
∑

N+1

gi(y0)

∣

∣

∣

∣

∣

∣

First and last terms are at most ǫ/3 by choice of δ and N respectively.
Regarding the middle term observe that the mean value theorem applied to

the C1 function
m
∑

N+1

fi we get

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

N+1

fi(y0 + h)−
m
∑

N+1

fi(y0)

h

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

m
∑

N+1

gi(θ)

∣

∣

∣

∣

∣

∣

< ǫ/3.

This being true for every m > N we conclude that the middle term is also
at most ǫ/3 completing the proof.

You will now see that exactly the same proof works for integrals.

Let us now assume that there is a continuous function g on [0,∞)× [c, d]
such that for each x as a function of y it is derivative of y 7→ f(x, y). Assume

that
∞
∫

0

f(x, y)dx converges to ϕ uniformly and
∞
∫

0

g(x, y)dx converges to ψ

uniformly. then ϕ is differentiable and ϕ′ = ψ. In other words derivative of
integral equals integral of derivative.

As in the case of series, we do not need
∫

∞

0 f(x, y)dx to converge uni-
formly, enough if it converges point wise so that we have a function ϕ to

talk about. But uniform convergence of
∞
∫

0

g(x, y)dx is important. But this

remark can be ignored because usually you have uniform convergence of both
integrals.

Let us fix a point y0. Let us fix ǫ > 0. Need to show δ > 0 so that

0 < |h| < δ ⇒

∣

∣

∣

∣

∣

ϕ(y0 + h)− ϕ(y0)

h
− ψ(y0)

∣

∣

∣

∣

∣

< ǫ.

(we assume that y0 + h ∈ [c, d]).

First fix N so that

B > A ≥ N ⇒

∣

∣

∣

∣

∣

∫

B

A

g(x, y)dx

∣

∣

∣

∣

∣

< ǫ/3; ∀y.
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In particular note that
∣

∣

∣

∣

∫

∞

N

g(x, y)dx
∣

∣

∣

∣

< ǫ/3.

Let us concentrate on this N . Since sN is integral over finite interval, from
the results we proved earlier, it is differentiable. So fix δ > 0 such that

0 < |h| < δ ⇒

∣

∣

∣

∣

∣

sN(y0 + h)− sN(y0)

h
−
∫

N

0

g(x, y0)dx

∣

∣

∣

∣

∣

< ǫ/3.

Now

0 < |h| < δ ⇒

∣

∣

∣

∣

∣

ϕ(y0 + h)− ϕ(y0)

h
− ψ(y0)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

sN(y0 + h)− sN(y0)

h
−
∫

N

0

g(x, y0)dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∫

N

f(x, y0 + h)dx−
∞
∫

N

f(x, y0)dx

h

∣

∣

∣

∣

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

∞

N

g(x, y0)dx
∣

∣

∣

∣

First and last terms are at most ǫ/3 by choice of δ and N respectively.
Regarding the middle term observe that the mean value theorem applied to

the C1 function
B
∫

N

f(x, y)dx (note that range of integration is finite) we get

∣

∣

∣

∣

∣

∣

∣

∣

∣

B
∫

N

f(x, y0 + h)dx−
B
∫

N

f(x, y0)dx

h

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

B

N

g(x, ξ)dx

∣

∣

∣

∣

∣

< ǫ/3.

This being true for every B > N we conclude that the middle term in the
earlier string of terms is also at most ǫ/3 completing the proof.

integration:

With the same hypothesis as in continuity assume that the series
∑

fi
uniformly converges to ϕ. Then

∑

i

∫

d

c

fi(y)dy =
∫

d

c

ϕ(y)dy =
∫

d

c

∑

i

fi(y)dy.

In other words infinite sum and integral can be interchanged. Similarly with
the same hypothesis as in continuity,

∫

∞

0

(

∫

d

c

f(x, y)dy

)

dx =
∫

d

c

ϕ(y)dy =
∫

d

c

(
∫

∞

0

f(x, y)dx
)

dy.
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The integrals can be interchanged. Proof is similar to the above, you only
need to make the tail sum (or tail integral) smaller than ǫ/(d− c) and argue
carefully.

criterion for uniform convergence:

Consider series
∑

fn. If there are numbers Mn such that |fn| ≤Mn for each
n and

∑

Mn converges then the series
∑

fn converges uniformly. Given ǫ > 0

you only need to choose N so that
∞
∑

N

Mn < ǫ. This is known as Weierstrass

M -test.

Similarly, suppose we have continuous function f(x, y) on [0,∞)× [c, d].
Suppose that there is a function M(x) such that |f(x, y)| ≤ M(x) for every

(x, y) and
∞
∫

0

M(x)dx converges. then the integral
∞
∫

0

f(x, y)dx converges uni-

formly.

GOOD LUCK
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