
CMI (BSc I)/BVRao Calculus II, Notes2 2014 second week

Using our expertise with functions of one variable, we have defined partial
derivatives; rate of change in the two directions: horizontal and vertical or
equivalently in the x-direction and y-direction respectively.

There are several peculiarities that take place. We shall just try to un-
derstand some so that they serve as warning. However, the main focus of
our course is to develop smooth calculus and not really to spend time on
pathologies that can occur. They are also interesting, but not part of our
course.

Conditions on f1, f2 for continuity of f :

Let f be a function defined on an open set Ω ⊂ R2 and f : Ω → R and
a = (a1, a2) ∈ Ω. Then

Dxf(a) = lim
h→0

f(a1 + h, a2)− f(a1, a2)

h

and

Dyf(a) = lim
k→0

f(a1, a2 + k)− f(a1, a2)

k

whenever these limits exist. However existence of these derivatives does not
even imply that the function is continuous at the point a. For example the
function

f(x, y) =
xy

x2 + y2
, (x, y) 6= (0, 0); f(0, 0) = 0.

has partial derivatives at the point (0, 0) but is not continuous at that point.

Here is one condition when the existence of these partial derivatives im-
plies continuity. Suppose that the partial derivatives are bounded in Ω. Then
the functioc is continuous in Ω.

Theorem: if the partial derivatives are bounded in Ω then f is continuous
in Ω.

Obviously, you see that, as in the one dimensional case, continuity is a
local property. Recall, though unnecessary, this means the following: if f
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and g are defined in Ω and both agree in B(a, r) for some r > 0, then con-
tinuity of f at a is equivalent to continuity of g at a. In particular, if a ∈ Ω
and if there is a number r > 0 such that f is continuous in B(a, r) then f
is continuous at the point a. Thus if the partial derivatives are bounded in
B(a, r) for some r > 0, then f is continuous at a.

The proof of the theorem is simple. Take a ∈ R and ǫ > 0. First fix
M > 0 a bound for |fx| and |fy|. Fix a small rectangle or square, say,
Q = (a1 − δ, a1 + δ)× (a2 − δ, a2 + δ) ⊂ Ω with δ < ǫ/2M . We show that

x ∈ Q ⇒ |f(x)− f(a)| < ǫ.

we can write x = (x1, x2) where x1 = a1 + h1 and x2 = a2 + h2 with |h1| < δ
and |h2| < δ

|f(x)−f(a)| ≤ |f(a1+h1, a2+h2)−f(a1+h1, a2)|+|f(a1+h1, a2)−f(a1, a2)|.

Note that all the points that appear on the right side are in the rectangle
Q and hence so are the lines joining the first two points (vertical line) and
the last two points (horizontal line). The mean value theorem that we learnt
for functions of one variable tells us that the first term on right side equals
|h2||fy(P1)| for some point P1 on the vertical line. But this is smaller than
(ǫ/2M)M = ǫ/2. similarly the second term is also smaller than ǫ/2. This
completes the proof of continuity.

equality of mixed derivatives:

It is also possible that f has partial derivatives everywhere giving us the
functions fx and fy everywhere. It is also quite possible that they again have
partial derivatives

fxx = (fx)x, fxy = (fx)y, fyx = (fy)x, fyy = (fy)y.

One would like to have fxy = fyx, that is the order in which we differentiate
should not matter. But it is a peculiarity that this may not happen. For
example, if you take the function

f(x, y) =
x3y − y3x

x2 + y2
, (x, y) 6= (0, 0); f(0, 0) = 0.

Then

f1(x, y) =
3x2y − y3

x2 + y2
−

(x3y − y3x)2x

(x2 + y2)2
, (x, y) 6= (0, 0);
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and
f1(0, 0) = 0.

f2(x, y) =
x3 − 3y2x

x2 + y2
−

(x3y − y3x)2y

(x2 + y2)2
, (x, y) 6= (0, 0);

and
f2(0, 0) = 0.

f12(0, 0) = lim
k→0

f1(0, k)− f1(0, 0)

k
= −1.

while

f21(0, 0) = lim
h→0

f2(h, 0)− f2(0, 0)

h
= +1.

This is rather unpleasant.

However if f12 and f21 are continuous, then they are equal.

Before you loose track where we are heading, let me repeat the follow-
ing. the concept of derivative is rather delicate, if you are not careful. Many
unpleasant things happen. We are seeing those and along the way try to rem-
edy the situation; if you assume suitable hypothesis then it does not happen.
For every ill, if you use separate hypothesis to rectify it then life becomes
difficult. We soon get out of all these warning signals and assume one nice
hypothesis that allows good things to happen.

Returning to the problem we are discussing, we shall now show that if
f12 and f21 are continuous then they are equal. So let us take a point a ∈ Ω.
Need to show f12(a) = f21(a). You fix any ǫ > 0. We show that

|f12(a)− f21(a)| < ǫ (♦).

You agree that this would suffice.

Using continuity of the ‘mixed’ derivatives, fix a rectangle, or square,
Q = (a− δ, a+ δ) ⊂ Ω such that

x ∈ Q ⇒ |f12(a)− f12(x)| < ǫ/2; |f21(a)− f21(x)| < ǫ/2. (♥)

Here we have used an abbreviation:

(a− δ, a+ δ) = (a1 − δ, a1 + δ)× (a2 − δ, a2 + δ).
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Let us fix 0 < h < δ and consider the quantity

∆ = f(a1 + h, a2 + h)− f(a1 + h, a2)− f(a1, a2 + h) + f(a1, a2).

The plan is to show

(∃ P1, P2 ∈ Q) f12(P1) = ∆ = f21(P2). (†)

If this is done then (♥) with x = P1 in the first inequality and x = P2 in the
second inequality will give us (♦) as required.

Towards proof of (†), consider the functions of one variable,

ϕ(x) = f(x, a2 + h)− f(x, a2); Ψ(y) = f(a1 + h, y)− f(a1, y).

Apply mean value theorem to get 0 < θ1 < 1 and 0 < η2 < 1 such that

ϕ(a1 + h)− ϕ(a1) = hϕ′(a1 + θ1h); Ψ(a2 + h)−Ψ(a2) = hΨ′(a2 + η2h).

Observe
ϕ(a1 + h)− ϕ(a1) = ∆ = Ψ(a2 + h)−Ψ(a2).

and also that

ϕ′(x) = f1(x, a2 + h)− f1(x, a2); Ψ′(y) = f2(a1 + h, y)− f2(a1, y).

Thus
h[f1(a1 + θ1h, a2 + h)− f1(a1 + θ1h, a2)] = ∆,

and
h[f2(a1 + h, a2 + η2h)− f2(a1, a2 + η2h)] = ∆.

Now applying mean value theorem to the left sides of the two equations above
we get 0 < θ2 < 1 and 0 < η1 < 1 such that

h2f12(a1 + θ1h, a2 + θ2h) = ∆ = h2f21(a1 + η1h, a2 + η2h).

Take
P1 = (a1 + θ1h, a2 + θ2h), P2 = (a1 + η1h, a2 + η2h),

to complete the proof of (†).

differentiability:

4



As discussed last time, let us turn to the problem of understanding a
function near a point — either in the sense of geometry like drawing a tan-
gent plane at that point or in the sense of approximating by simpler functions.

Let f : Ω → R where Ω ⊂ R2 is an open set and a ∈ Ω. What is
the simplest function that approximates f near a. First we need to make it
precise. we are looking for a function ϕ(x) on Ω so that f(x) − ϕ(x) → 0
as x approaches a, that is as ||x − a|| → 0. The answer is simple, take the
function whose value at every point is the number f(a). Then this is the
simplest function we can think of and it satisfies the requirement.

Next, as in the case of R, let us demand that ϕ(a) = f(a) and f(x) −
ϕ(x) → 0 faster than ||x − a||. So what is meant by faster. well even the
ratio |f(x) − ϕ(x)|/||x − a|| → 0 as ||x − a|| → 0. But we are now allowed
linear functions. What are linear functions? Just like in the case of R, they
are of the form ϕ(x) = a1x1 + a2x2 + b for some numbers a1, a2, b. This can
be succinctly expressed as ϕ(x) = α ·x+β where α ∈ R2 and dot is the inner
product.

If that happens, then

f(a) = ϕ(a) = α · a+ β; that is β = f(a)− α · a.

Thus the function is ϕ(x) = α · x + f(a) − α · a. Of course, we still do not
low what is the vector α. It should satisfy, |f(x) − ϕ(x)|/||x − a|| → 0 as
||x− a|| → 0.

Let us agree to say that the function f is differentiable at the point a in
case there is a vector α ∈ R2 such that

lim
||x−a||→0

f(x)− f(a)− α · (x− a)

||x− a||
→ 0. (•)

In such a case, we can refer to the vector α as the derivative of f at a.

Let us see what could be the vector α. Taking the sequence xn =
(a1 +

1

n
, a2) we see that α1 = f1(a). Similarly, taking xn = (a1, a2 +

1

n
)

we see α2 = f2(a).

Thus if the function is differentiable then

α = (f1(a), f2(a)).
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But is this enough, that is, if the partial derivatives exist then will (•) hold?
Not always.

In fact, existence of partial derivatives need not even imply that the func-
tion is continuous. We shall return to this in a minute, but let us also see
the geometric picture of the derivative.

Just as the graph {(x, y) : y = mx+c} of a linear function ϕ(x) = mx+c
is a straight line (never mind, we have missed y-axis by loosely representing
line as above), the graph {(x, y, z) : z = ax + by + c} of linear function
ϕ(x, y) = ax + by + c is a plane. Just as graphs of functions on R to R are
called curves in the plane R2, graphs of functions from R2 to R are called
surfaces in R3.

How do you imagine surfaces. Imagine the ground to be the plane and
think of a tent that has height f(x, y) at the point (x, y) on the ground.
You can imagine it as a tent or bowl or inverted bowl etc, whatever you are
comfortable with. of course specific functions have specific shapes.

A tangent plane to the surface z = f(x) at the point a = (a1, a2) ∈ Ω
is the graph of a map ϕ(x) = α · x + β that passes through the point
(a, f(a)) ∈ R3 on the surface but makes ‘stronger’ contact with the surface
than the constant function Ψ(x) ≡ f(a). What does this mean? We mean,
the ratio [f(x)− ϕ(x)]/||x− a|| → 0 as x → a; not simply f(x)− ϕ(x) → 0.

This concept of tangent plane again leads to the same conclusion as ear-
lier, namely solving (•) for vector α and you end up with the same answer
as above.

continuity of f1, f2 implies differentiability:

We saw that existence of partial derivatives does not imply (•) holds.
However if the partial derivatives are continuous then the function is differ-
entiable and at any point a, the vector (f1(a), f2(a)) is indeed the derivative.

Theorem: Let Ω ⊂ R2 be open set and f : Ω → R be such that the partial
derivatives f1 and f2 are continuous. Then f is differentiable and derivative
of f at a point a ∈ Ω is the vector (f1(a), f2(a)).
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Fix a ∈ Ω and denote α = (f1(a), f2(a)). Need to show

lim
||x−a||→0

f(x)− f(a)− α · (x− a)

||x− a||
→ 0.

Fix ǫ > 0. Using continuity of f1 and f2 choose δ > 0 so that B(a, δ) ⊂ Ω
and

||x− a|| < δ ⇒ |f1(x)− f1(a)| < ǫ/2; |f2(x)− f2(a)| < ǫ/2.

Let us take any point x = (x1, x2) ∈ B(a, δ). Then using the mean value the-
orem (for functions of one variable) get points P1 and P2 on the appropriate
horizontal and vertical line segments such that

f(x)− f(a) = [f(x1, x2)− f(a1, x2)] + [f(a1, x2)− f(a1, a2)]

= (x1 − a1)f1(P1) + (x2, a2)f2(P2) = (x− a) · v

where v is the vector v = (f1(P1), f2(P2). Thus

|f(x)− f(a)− α · (x− a)| = |(x− a) · (v − α)|

≤ ||x− a|| ||v − α|| ≤ ||x− a||
√

2ǫ2/4 ≤ ǫ||x− a||.

Thus for x ∈ B(a, δ) we have

∣

∣

∣

∣

∣

f(x)− f(a)− α · (x− a)

||x− a||

∣

∣

∣

∣

∣

< ǫ.

proving the result.

differentiability 6⇒ f1, f2 conitnuous:

We have shown that if the partial derivatives f1, f2 are continuous then f
is differentiable. However differentiability is not equivalent to the continuity
of partial derivatives.

Let us consider the function,

f(x, y) = (x2 + y2) sin
1

x2 + y2
, (x, y) 6= (0, 0); f(0, 0) = 0.

Then

f1(0, 0) = lim
h→0

f(h, 0)− 0

h
= lim

h→0

h sin
1

h2
= 0.
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When (x, y) 6= (0, 0)

f1(x, y) = 2x sin
1

x2 + y2
−

2x

x2 + y2
cos

1

x2 + y2
.

You can see that f1 is not continuous at (0, 0). Indeed the first term in f1
converges to zero. Argue that the second term is unbounded. However, f is
differentiable at (0, 0) simply because

f(x, y)

||(x, y)||
→ 0.

showing that f is differentiable and the derivative is the vector (0, 0). you
can show that f2 is also not continuous at (0, 0).

bringing some order:

I hope you do understand how confusing is the situation. so to avoid all
bad things, we are going to assume that the functions we deal with are all
C1 functions. A function is C1 if its first partial derivatives are continuous
functions. Recall, then the function is differentiable and derivative at point
a is the vector (f1(a), f2(a)). Derivative is denoted by ∇f(a)., read it as
gradient or grad or nabla.

Let f be a C1 function on Ω ⊂ R2 and a ∈ Ω. Denoting points in R2 by
x = (x1, x2); the hyperplane x3 = f(a) +∇f(a) · (x− a) is the tangent plane
to the surface x3 = f(x1, x2) at the point a.

We shall study properties of the derivatives. But before we do this, let us
get back to a statement regarding partial derivatives. We did recognise the
possibility of rate of change, not only in the x and y directions, but also in
any direction at the point. Let us take-up this idea now.

What is meant by direction? it is simply a unit vector u. It is the di-
rection pointed by that vector. More precisely, join origin to u and consider
the full line — extended both ways, but remember the direction is from ori-
gin to u. In common parlance, it is customary to say the line extended in
both directions. we would not use it, because it would be confusing. There
are no two directions, there is only one direction, namely that pointed by u.
When one uses the phrase, the line extended in ‘both directions’, one is only
referring to the act of drawing the line to ‘both sides’ — join origin to u and
extend beyond u and also beyond zero.
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Now, let f be a C1 function on Ω ⊂ R2 and a ∈ Ω. If we take the unit
vector e1 = (1, 0) then the quantity

lim
t→0

f(a+ te1)− f(a)

t

gives precisely the partial derivative f1(a). similarly, if we take the unit
vector e2 = (0, 1), then

lim
t→0

f(a+ te2)− f(a)

t

gives precisely f2(a). We use the same idea to define the directional derivative
in the direction of u;

Duf(a) = lim
t→0

f(a+ tu)− f(a)

t
.

You agree that this does indeed give rate of change of the function in the
direction of u. You already know that

f1(a) = ∇f(a) · e1; f2(a) = ∇f(a) · e2.

It is natural to expect that Duf(a) = ∇f(a) · u. This is indeed so. We see
this soon. But note that in the new notation, f1 and f2 become De1f and
De2f respectively.

It is also natural to think of direction as an angle θ, 0 ≤ θ ≤ 2π. of
course angles zero and 2π correspond to the same direction. Thus x direc-
tion corresponds to θ = 0, y direction corresponds to θ = π/2. The negative
x direction corresponds to θ = π and the negative y direction corresponds to
θ = 3π/2.

The reason we did not use angles is because, in higher dimensions you
need several angles. Of course unit vector still specifies a direction. all the
concepts and results that we discussed have analogues in Rd as well.
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