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an estimation problem:

I have a die, biased. I do not know the chances of the faces appearing in
a throw. I roll the die n times and observe that face i appeared ni times for
1 ≤ i ≤ 6. of course,

∑

ni = n. let us assume that each ni > 0.

Question: Looking at the data how can I decide the chances for the faces.
In other words, let pi > 0 be the chances of face i for 1 ≤ i ≤ 6. How do I
estimate these numbers?

You say that intuitively ni/n should be an estimate for pi. Yes, right,
that is what intuition suggests. But does any principle also suggest that.
If so, I can use that principle when my intuition fails. Also probably I can
develop a theory about such a principle.

The answer is yes, there is a principle which will give you the same an-
swer that your intuition suggested. To begin, remember that in probability
theory, you build models; assume some probabilities for outcomes and see
the consequences, calculate other interesting probabilities and so on. When
you build such models, you have the feeling that an outcome with higher
probability is more likely to be seen than an outcome with smaller probabil-
ity.

So when it comes to estimation, we turn things around and say that since
I have seen something, it must have larger probability than others. Of course,
you do not reduce it to ridiculous level and say that what I have seen has
probability one. Then the numbers (pi) disappear and there is only one out-
come, namely, (ni; 1 ≤ i ≤ 6) which has probability one. Our premise is that
each pi > 0, that is, the chances for each face are strictly positive. And of
course, this entails that the experiment is not deterministic. The data could
be any thing consistent with multinomial.

In other words we propose the following principle: Our estimate of the
parameters (pi) are those numbers that maximize the probability of our ob-
servation. The multinomial probabilities tell you that in case (pi) are the
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unknown probabilities, then chances of coming up with our observation are

f(p1, · · · , p6) =
n!

n1!n2!n3!n4!n5!n6!
pn1

1 pn2

2 pn3

3 pn4

4 pn5

5 pn6

6 . (∗)

Thus our estimate are those numbers that maximise the above function of
the (pi). Of course, there is a constraint, namely we must have

p1 + p2 + p3 + p4 + p5 + p6 = 1.

Thus we are in Lagrange’s set up. Since ni are given numbers, maximizing
(∗) is same as maximizing the second term there, forgetting the factorials.
But again maximizing this is same as maximizing its logarithm. Note that
we are assuming that each pi > 0. So logarithm makes sense. Thus the
problem reduces to maximizing

L(p1, · · · , pn) =
∑

ni log pi

subject to the constraint
∑

pi = 1. Lagrange tells that at an extremum point
we must have

ni

pi
− λ = 0 1 ≤ i ≤ 6.

We have used −λ for the Lagrange constant instead of +λ. In other words
pi = ni/λ and now

∑

pi = 1 tells us λ = n and finally pi = ni/n.

Of course you need to verify if it is really a point of extremum at all, if so
if it is maximum or minimum. In this case you can be sure it is maximum.
It can not be minimum and there is a maximum. We shall not detail the
argument. it is not difficult. There is no minimum because at the boundary,
that is, when one of the pi = 0 this function assumes the value zero. For the
same reason combined with compactness, it has a maximum.

Hadamard inequality:

Consider an n×n matrix (real entries), say, A. Let us denote its rows by
r1, r2, · · · , rn. Then Hadamard’s inequality says

|det(A)| ≤ ||r1|| ||r2|| · · · ||rn||.

here norm of a vector is the usual Euclidean norm:
√

∑

v2i .

If one of the norms is zero, there is nothing to do, that row is zero and
done. Let us assume that all are strictly positive. thus the problem reduces

2



to the following. We are given n strictly positive numbers d1, · · · , dn. Let us,
as above, denote rows of matrix by ri.

maximize |A|; subject to ||ri|| = di; 1 ≤ i ≤ n.

We are in Lagrange set up. We have a function of n2 variables, instead
of denoting the variables with usual linear index, name the variables (xij).
Define

f({xij}) = det((xij)).

name the n constraints

ϕi({xij}) = d2i 1 ≤ i ≤ n.

where
ϕi({xij}) =

∑

j

x2
ij

See that the each constraint depends on variables only in one row.

Thus Lagrange tells us that at an extremum

Xij − λi2xij = 0 1 ≤ i, j ≤ n.

We denoted by Xij the cofactor of xij; which is (−1)i+j times the determi-
nant obtained by deleting the row and column containing the entry xij (thus
delete i-th row and j-th column). If you expand the determinant with the
help of i-th row, then it is easy to calculate the derivative of f w.r.t. the
variables in that row.

Let us recall two facts about the cofactors.

∑

i

xijXij = det(A).

∑

p

xpjXij = 0 p 6= i.

Combined with the above Lagrange equations we get

det(A) = λi2d
2
i ; 1 ≤ i ≤ n

λi

∑

j

xpjxij = 0; p 6= j.

Note that at a maximum λi 6= 0 for all i. This is because, If some λi = 0
then the first equation above tells us that det(A) = 0 but the diagonal matrix
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(d1, d2, · · · , dn) tells us that this can not be maximum.

Thus at a point of maximum, we must have the rows of A must be or-
thogonal. In other words at a maximum the matrix A is orthogonal matrix.
But then for such a matrix A where the maximum is attained we must have

|det(A)|2 = det(AAt) = diag{d21, d22, · · · , d2n}.

In other words, at a maximum we have the Hadamard inequality. This proves
the inequality.

See how we did not solve the equations and discuss which is max and
which is min. We found the equations to be satisfied at an extremum. Then
we discarded some and found the equations that should be satisfied at the
maximum. This told us that rows must be orthogonal. This was enough to
conclude the required inequality. But actually we have found all solutions
where the equality is achieved in the Hadamard inequality.

recapitulation of the development:

(1). Points in R are x. Points in R2 are (x, y); points in R3 are (x, y, z).

If f : R → R then f(x) is value of f at x. If f : R2 → R then f(x, y) is
value of f at (x, y). Similarly we have for f : R3 → R

If f : R → R then its graph is a subset of R2; consists of all points (x, y)
such that f(x) = y. If f : R2 → R then its graph is a subset of R3; consists
of all points (x, y, z) such that f(x, y) = z. Similarly for f : R3 → R, its
graph is a subset of R4.

(2). Derivative at a point x is denoted by f ′(x) in case of R.

In case of R2 it is denoted at a point (x, y) by f ′(x, y) or ∇f(x, y) or
(f1(x, y), f2(x, y)) or sometimes by (fx(x, y), fy(x, y)). But this last nota-
tion is confusing with x appearing as suffix and also argument. Also it has
the disadvantage of leading to meaningless things f3(3, 4) (substitute blindly
x = 3, y = 4). However if we have a fixed point (a, b) then we could, without
fear of confusion, denote fx(a, b). Similar notation in dimension three holds.

(3) In one dimension we write

dy = f ′(x)dx; df = f ′(x)dx.
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In two dimensions

dz = fxdx+ fydy; df =
∂f

∂x
dx+

∂f

∂y
dy.

Similar notation holds in three dimensions

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

all these notations have their origins in the mean value theorems. df
denotes the change in the value of the function for a small change in the
value of the arguments. For example in one dimension if x is changed to
x+ ǫ then f(x) is changed to f(x+ ǫ) and thus the change in its value is

df = f(x+ ǫ)− f(x) = f ′(?)ǫ.

where (?) is a point in between, x+ǫ and x assuming that f is C1 and noting
that ǫ is very small this number f ′(?) is approximately f ′(x). if you now read
the equation above with ǫ replaced by dx you get the interpretation given
above.

similarly for functions of two variables

f(x+ ǫ1, y + ǫ2)− f(x, y)

= {f(x+ ǫ1, y + ǫ2)− f(x, y + ǫ2)}+ {f(x, y + ǫ2)− f(x, y)}
= f1(?, y + ǫ2) ǫ1 + f2(x, ??) ǫ2.

Again assuming C1 we can argue as above.

(4). The main and very important change of attitude that put all these
definitions on one single platform is to think of these derivatives as linear
maps. Think of elements in R2 as columns and these derivatives are rows.
the row operates from left on a column to give a number. This also helped
later to give a unified method of thinking of derivatives when we have func-
tions from an Rm to an Rn. Derivative is essentially ‘linearizing’ a given
function at a point.

(5). If you have a point (x0, y0) on the graph of a function f : R → R
then tangent at that point to the curve is the affine map on the real line

Ax = y0 + f ′(x0)(x− x0)
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Customarily this is written as

y − y0 = f ′(x0)(x− x0).

You think of, not only the analytical expression, but also the graph of this
map, namely, straight line.

Of course this line is nothing but translate of the line (subspace) through
the origin y = f ′(x0)x by the point (x0, y0).

Similarly for function of two variables f : R2 → R and a point (x0, y0, z0)
on its graph (it is now called surface instead of curve) we define tangent plane
as the set of points satisfying

z − z0 = f1(x0, y0)(x− x0) + f2(x0, y0)(y − y0)

or
z − z0 = ∇f(x0, y0) · (x− x0, y − y0).

again, this plane is nothing but the translate of the subspace

z = ∇f(x0, y0) · (x, y)

by the point (x0, y0, z0).

(6). Chain rule is nothing but composition of linear maps.
In one dimensions if we have a map

t 7→ x(t) 7→ f(x(t))

then we have

d

dt
f(x(t)) = f ′(x(t))x′(t); or

df

dt
=

df

dx

dx

dt
.

In two dimensions
t 7→ (x(t), y(t)) 7→ f(x(t), y(t))

then
d

dt
f(x(t), y(t)) = f ′(x(t), y(t)) · 〈x′(t), y′(t)〉.

Remember f ′ is a row vector and the other is column vector. Sometimes this
is written as

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

You see the usage of d and ∂. When you use d you are indicating you have a
function of one variable and you are differentiating w.r.t. that one variable.
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When you use ∂ you are indicating you have a function of more than one
variable and you are differentiating w.r.t. the variable indicated.
Similarly if we have f(x(t), y(t), z(t)),

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt
.

Or if you denote
ϕ(t) = (x(t), y(t), z(t)) : R → R3

and
g(x, y, z) : R3 → R

and
f(t) = g(ϕ(t))

then
f ′ = g′(ϕ(t))ϕ′(t)

When you think of the derivative as linear map, the distinction between col-
umn and row disappears. You do not need to put dot (scalar product) etc.
It is all composition of linear maps. But of course, you should know what
linear map you are talking about and its domain/range.

(7) Level sets for a function are points of constancy. Thus for f : R → R
its level set corresponding to the number a is the set {x : f(x) = a}. Of
course this may be empty. Thus remember level set is not one set. It de-
pends on the number a.

For f : R2 → R and a number a ∈ R the level set of f corresponding to
the value a is the set {(x, y) : f(x, y) = a}. Thus if f is the temperature
defined on a geographical region Ω ⊂ R2 then level sets are nothing but
isothermal lines. This will give an idea of the function.

what next:

We have developed the basic concepts and ideas to understand functions
of several variables. There are several directions one can take.

We could develop improper integrals completely. We have started once
and I gave up after explaining some ideas. I felt that it was not going well.
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You asked about the fundamental theorem of calculus. Yes, this is one
topic that could be developed. yes, there is an analogue of fundamental
theorem. In one dimensions it said the following. If F ′ = f then

∫

[a,b]
f = F (b)− F (a).

Do not think of this theorem as explaining full evaluation of the integral.
A space of dimension less than one (whatever it may mean) is a set of two
points {a < b}, the boundary of [a, b] If we interpret the right side above
as integral of F over this set, then the fundamental theorem is giving you
a reduction of the complicated integral to a lower dimension. To see the
beauty, let us denote derivative by not prime, but ∂. Thus instead of F ′ = f
we write ∂F = f . Thus the above equality can be written as follows. Let us
abbreviate the interval to I

∫

I
∂F =

∫

∂I
F.

Did you see how beautifully the ∂ travelled from top to bottom. Left side
is integral of a probably simple function on a complicated set, interval. The
right side is integral of a probably complicated function but on a simpler set.

If you stare at the above equation it makes perfect sense even in R2. For
example you could take a rectangle for I. You know its boundary. You could
take a nice function f on the rectangle. Explain what could be the meaning
of ∂F to make the equation above correct and discover that F . In other
words, the idea is to make a good definition so that the beauty seen above
is preserved. This can be done. This you will learn in the next course on
vector calculus.

One can go to develop some concepts of geometry of curves and surfaces.
We may not be able to do much, but we use integration and develop notions
of lengths of curves. We shall do that.

We can also develop some vector calculus terminology that is useful in
physics. We shall do that. One can develop some physics that explains these
concepts, but we may not do that.

There is a profound symphony, complex analysis, which you will learn
later. We can make a beginning and tie it up with what we learnt so far. We
shall do that.
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lengths of curves:

A curve is a continuous function f defined on a closed bounded interval
[a, b] ⊂ R. Sometimes we have curves defined on an open interval too. But
we do not need this generality. If the function takes values in R2 then it is a
curve in plane; if it takes values in R3 then it is a curve in space. We do not
discuss other curves.

The first question is whether the curve is the function or the set of points
consisting the image. Thus, for example if you consider the curve

f(t) = (cos t, sin t); 0 ≤ t ≤ 2π.

is the curve this function or is it the circle that you see in the plane described
this set of points? Actually, it is both. Suppose you consider the function

g(t) = (cos t, sin t); 0 ≤ t ≤ 4π.

Then this also gives the same circle, but the curve goes along the circle twice.
So thinking of the set of points alone does not completely help. Or consider
the function

h(t) = (cos t/2, sin t/2); 0 ≤ t ≤ 4π.

This is also the same circle, also goes around exactly once but rather slowly.
so you should keep both in mind; the function and the geometric picture. But
in case of a dispute, it is the definition that wins, the curve is the function.

How shall we define length of a curve? To make a beginning, let us recall
how we defined area under a graph. We all agreed upon, without any dispute,
the area of a rectangle, namely, it is the product of lengths of its sides. So we
approximated the area by rectangles. We shall do the same thing for length.
after all, we have agreement on length of a straight line. The line joining two
points (x1, y1) and (x2, y2) in the plane has length

√

(x1 − x2)2 + (y1 − y2)2.

Given a curve ϕ : [a, b] → R2, we take points

t0 = a < t1 < t2 < · · · < tk = b.

Consider the points on the curve

ϕ(t0) = P0;ϕ(t1) = P1;ϕ(t2) = P2; · · · , ϕ(tk) = Pk.
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Length of the curve is at least as much as the sum

k−1
∑

i=0

||Pi+1 − Pi||.

We agree to this because if you have two points, the smallest distance be-
tween them is the length of the line joining them. Any other curve joining
them must have a larger length.

Given the curve ϕ, and a partition π of the interval, we define

L(ϕ, π) =
∑

||ϕ(ti+1)− ϕ(ti)||

Just now we agreed that length of the curve is at least as much as the above.
We define

L(ϕ) = sup{L(ϕ, π) : π partition of [a, b]}.
Thus length of the curve must be at least the above quantity. As the parti-
tion becomes finer, the lines joining the partition points on the curve move
closer and closer to the curve; and finally trace the curve (of course, there
is nothing like ‘finally’). Thus this sup is length of the curve. However this
sup may be ∞. We say that the curve has length if this is finite and then we
define length of the curve to be this number.

Technical name for curves which have length is ‘rectifiable’. Of course
even if the above quantity is infinity, we could have said that the curve has
length and its length is infinity. it makes no difference, but we shall not do it.

For example consider the function

f(t) = t sin
{

π

t

}

; 0 < t ≤ 1; f(0) = 0;

and the curve is its graph, that is,

ϕ(t) = (t, f(t)); 0 ≤ t ≤ 1.

This curve is not rectifiable. That is, the sup will be infinity. Observe that
this is a continuous function. This is easy to see. if you take the partition

{0, 1/100, 1/99, · · · , 1/2, 1}.

Note that at successive points of the partition the points on the curve can
be easily calculated and you get partial sum of the series

∑

(1/n).
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We shall show that for a C1 curve, length exists (and so the curve is
rectifiable). We shall also give a formula for its length. Let us denote the
curve by

ϕ(t) = (x(t), y(t)); a ≤ t ≤ b.

The curve is C1 means that these functions x and y are C1 functions. If you
took a partition π and calculate L(ϕ, π) then mean value theorem tells you

L(ϕ, π) =
∑

√

[x′(ξi)]2 + [y′(ηi)]2 (ti=1 − ti).

Here (ξi) and (ηi) are selections for the partition. This should remind you of

∫ b

a
||ϕ′(t)|| dt.

We shall show that this is actually true. Where is the problem? We have
two selections, if there is only one selection (ξi) for both x′ and y′ then the
above sum is exactly the Riemann sum for the later integral.

Riemann sums revisited:

We need a fact. suppose we have continuous functions as follows:

x : [a, b] → R; y : [a, b] → R

g : R2 → R

We define
f(t) = g(x(t), y(t)) : [a, b] → R

From last semester we know the following. Suppose we have a sequence of
partitions πn of [a, b] with ||πn|| → 0 and for each n, a selection ξn for the
partition πn. Then

R(f, πn, ξn) =
∑

g(x(ξi), y(ξi))(ti+1 − ti) →
∫ b

a
f(t)dt.

Of course, here the sum is over the partition points of πn and also what we
denoted by ξi is actually ξn(i), from the selection ξn. We did not burden the
notation. But if you have confusion, you should write for yourself completely
and clearly.

What we shall now claim is the following. Suppose that we have the
above situation and two selections ξn and ηn for each n. Then
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R(f, πn, ξn, ηn) =
∑

g(x(ξi), y(ηi))(ti+1 − ti) →
∫ b

a
f(t)dt.

Integral is robust, it will accommodate you if you deviate little bit. after
all, since the norms of the partitions are getting smaller, if you take two
selections, then they must be close and it should make no difference. Here is
the proof.

We only need to show

∑

{g(x(ξi), y(ηi))− g(x(ξi), y(ξi))} (ti+1 − ti) → 0. (∗)

Please note that the ξ and η appearing above are the n-th selections ξn and ηn.

Let ǫ > 0 be given. Choose δ1 such that

|a1 − a2| < δ1; |b1 − b2| < δ1 ⇒ |g(a1, b1)− g(a2, b2)| < ǫ/(b− a).

choose δ > 0 so that

|s− t| < δ ⇒ |y(s)− y(t)| < δ1

Both are possible by uniform continuity of the functions involved. Now

||πn|| < δ ⇒ |{g(x(ξi), y(ηi))− g(x(ξi), y(ξi))} | < ǫ/(b− a)

so that the sum in (∗) is at most ǫ.

This completes the proof of the claim.

return to length:

the result proved just now shows

||πn|| → 0 ⇒ L(ϕ, πn) →
∫ b

a
||ϕ′(t)||dt.

Thus every C1 curve has length and is given by

L =
∫ b

a
||ϕ′(t)||dt.

You might be wondering what happened to the sup we took of the L(ϕ, π).
There are several ways to see this. Here is a way.
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Take a sequence of partitions πn such that L(ϕ, πn) converges to the sup.
Remember sup of any set is actually limit of a carefully chosen sequence of
points from the set. Note that if π1 has one extra point than π then triangle
inequality immediately gives you L(ϕ, π) ≤ L(ϕ, π1). Thus by considering
the partition

Πn = π1 ∨ π2 ∨ · · · ∨ πn

you see that
||Πn|| ↓; L(ϕ,Πn) → L.

If ||Πn|| 6→ 0, add extra points to make it converge to zero. Thus you have a
sequence of partitions Πn with norm converging to zero and the correspond-
ing chord length sums converge to L. But these chord lengths are precisely
the Riemann sums converging to the integral. This completes the proof.

You can calculate length of circle and see that it coincides with what you
felt.

You saw two examples of ‘parametrizing’ the circle, both go through ex-
actly once but with different speeds. It is possible to bring in uniform code
for curves so that the parametrisation traces the curve at uniform speed.
This is how we make it precise.

Let ϕ : [a, b] → R2 be a C1 curve with length L. Let us assume that ϕ′

does not completely vanish during any interval. In other words, in any given
interval, ||ϕ′(t)|| 6= 0 for at least one t. For each a ≤ t ≤ b, let L(t) be the
length of the curve upto t. That is, it is length of the curve

γ(s) = ϕ(s); a ≤ s ≤ t.

you will see that its length is nothing but

L(t) =
∫ t

0
||ϕ′(t)||dt.

Thus L is a strictly increasing C1 function on [a, b] onto [0, L]. Let its inverse
be denoted by L−1. Define the curve

Ψ(s) = ϕ(L−1(s)); 0 ≤ s ≤ L

Then it is not difficult to see that Ψ describes the same curve, has the same
length L. The interesting point is the following. At any time s if you ask:
what is the length of the curve Ψ traced so far; the answer is s. This is called
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parametrisation of the curve by arc length.

vector calculus:

Actually Rn is a vector space and what we have been doing is indeed
calculus on (finite dimensional real) vector spaces. However, the word vector
calculus is usually referred to certain notions that are found useful in physics.
We have discussed some of these in a homework.

Physicists have a good nomenclature for functions to distinguish: real
valued or vector valued. if f is real valued, they say it is a scalar function. If
f takes values in R2 or R3and so on, they say it is a vector field. Of course,
from a mathematical point real numbers are also vectors, one dimensional
vectors. (And when you study vector spaces, you have a underlying field
and R also plays the role of that field and you refer to elements of the field
as scalars.) Usually small letters f , g etc.are used for scalar functions and
capital letters F , G etc. are used for vector fields.

Let f : R3 → R be a scalar function then ∇f is a vector field. for every
point P it associates the vector (fx(P ), fy(P ), fz(P )). If you think of ∇ as
the symbolic operator

∇ =

(

∂

∂x
,
∂

∂y
,
∂

∂z

)

.

Thus you can think of ∇ operating on f and giving ∇f .

suppose that F : R3 → R3 is a vector field. Thus

F (P ) = (F1(P ), F2(P ), F3(P )).

Since now ∇ and F are vectors of size three it makes sense to talk about
their scalar product (inner product) and their vector product. They are very
important and are defined s follows.

divF (P ) = ∇ · F (P ) =
∂F1

∂x
(P ) +

∂F2

∂y
(P ) +

∂F3

∂z
(P )

This is called divergence of the vector field F . This is a scalar function.

curl F = ∇× F = (D2F3 −D3F2, D3F1 −D1F3, D1F2 −D2F1).

This is again a vector field. For every point P it associates a vector, namely
the right side where the derivatives are evaluated at the point P .
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There is another important operator

∆ = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

This is called Laplacian. For a scalar C2 function f , its Laplacian is ∆f
another scalar function.

There are several important relations among them. Here are some. Most
of them are routine to verify.

(1) Curl(grad f) =0; that is, ∇×∇f = 0

(2) div (Curl F ) =0; that is ∇ · (∇× F ) = 0.

(3) div(fF ) = F · ∇f + f · divF

(4) Curl(fF ) = ∇f × F + f curl(F ).

(5) div(F ×G) = G · curl(F )− F · Curl(G).

(6) ∆(F ) = ∇(div(F ))− Curl(Curl(F )).
Here Laplacian for the field F is coordinate-wise.

complex derivative:

Recall that we have made R2 into a field by defining addition as usual
coordinate-wise. Multiplication is defined as follows:

(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

to be clear whether we are talking about R2 as a vector space or as a field
with the above multiplication, we denote R2 by C when we think of it as a
field. We also write z = x+ iy instead of (x, y). Thus as a set they are same
but the way we think about them depends on what we are talking about. For
example when you are thinking of it as a vector space, it makes no sense to
divide by a vector. When we are thinking of it as a field, division definitely
makes sense.

For a complex number z = x+ iy we refer to x as the real part of z and
y as the imaginary part of z. We also use Re(z) and Im(z) for the real and
imaginary parts of z. Thus, remember the real and imaginary parts are real
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numbers. Conjugate of a complex number z = x + iy is the number x − iy
denoted by z.

When the imaginary part is zero, we would not take the trouble of writing
x + i0 but just write x. similarly, when the real part is zero we shall not
write 0 + iy, but simply as iy.

The real number system is a subset of C, identified as complex numbers
with imaginary part zero. The multiplication and additions agree. By the
way multiplication is defined we have i × i = −1. Thus sometimes we also
write

√
−1 or +

√
−1 for i.

Since you are familiar and also we discussed in an homework, we shall
not spend time on routine matters.,

The definition of convergence is same as that of R2. Thus a sequence
of complex numbers zn converge to a complex number z if the real parts
converge to the real part of z and similarly the imaginary parts converge.
Functions from C to C are thus essentially functions from R2 to R2. Con-
tinuity is just the same. Thus f : C → C is continuous if f(zn) → f(z)
whenever zn → z.

Let now Ω ⊂ C be an open set. We say that f is (complex) differentiable
at a point z0 ∈ Ω if there is a complex number α such that

zn → z0; (∀n)zn 6= z0 ⇒ f(zn)− f(z0)

zn − z0
→ α

or equivalently

hn ∈ C;hn → 0, (∀n)hn 6= 0 ⇒ f(z + hn)− f(z)

hn

→ α.

The important question is the following. Set theoreticlly C is same as
R2. How does this derivative relate to what we have learnt? if you think of
f as f(x, y) (from R2 to R2) then does it have derivative? Is that all?

We shall now see that the real and imaginary parts of f do have partial
derivatives and are related. Complex analysis has intrinsic beauty, if f is C1

in a region then it is actually C∞! You will have a course in complex analysis
later when you will learn these. Right now our interest is only the relation
to what we have learnt so far.
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so let f : C → C be differentiable at a point z0 = x0 + iy0. Let the
derivative be a+ ib. Let us denote

f(x+ iy) = u(x+ iy) + iv(x+ iy).

Here u and v are the real and imaginary parts. Let us take a sequence of
real numbers (hn) all different from zero. Thus we have

u(x0 + hn, y0) + iv(x0 + hn, y0)− u(x0, y0)− iv(x0, y0)

hn

→ a+ ib.

Since the real parts and imaginary parts converge, this implies u and v have
partial derivatives w.r.t. x and

ux(x0, y0) = a; vx(x0, y0) = b. (∗)

since ihn → 0 whenever hn → 0 we also have

u(x0, y0 + hn) + iv(x0, y0 + hn)− u(x0, y0)− iv(x0, y0)

ihn

→ a+ ib.

This means,

u(x0, y0 + hn) + iv(x0, y0 + hn)− u(x0, y0)− iv(x0, y0)

hn

→ ia− b.

This means that u and v have partial derivatives w.r.t. y and

vy(x0, y0) = a; uy(x0.y0) = −b. (∗∗)

comparing (∗) and (∗∗) we see

ux = vy; uy = −vx (♠)

at the point (x0, y0). The equations above are called Cauchy-Riemann

equations.

Thus any complex differentiable function satisfies the Cauchy Riemann
equations; this means the real and imaginary parts of the complex function
satisfy the above equations. Interestingly enough, if u and v are real val-
ued C1 functions on Ω and satisfy the above equations, then the function
f(z) = u(z) + iv(z) is a complex differentiable function.
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