
CMI (BSc I)/BVRao Calculus II, Notes 10 2014

Normal integral:

The following integral appears in several contexts.

I =
∫ ∞

−∞
e−t2/2dt.

We can calculate this integral by using some tricks. But the simplest is to
valculate

I2 =
∫

R2

e−(x2+y2)/2dxdy.

Note that by iterated integral process, if you integrate w.r.t. y first you get
I and then you integrate w.r.t. x to get I2.

We shall use the jacobian rule. Put

x = r cos θ; y = r sin θ (♠)

A little give and take is needed here because this transformation is not really
C1, in fact not even continuous. Let us first precisely define the transforma-
tion.

Given any point (x, y) different from zero, we set r = +
√
x2 + y2. Thus

the given point is r(x/r, y/r) We know from last semester, there is a unique
angle θ ∈ [0, 2π) such that

x

r
= cos θ;

y

r
= sin θ.

Thus given any point different from (0, 0) in R2 there is a unique pair of
numbers r > 0 and 0 ≤ θ < 2π satisfying (♠). These are called polar coor-
dinates of the cartesian point (x, y).

Thus given a point P , the number r is the distance of the point P from
the origin and θ is the angle determined by the positive x-axis and the line
joining origin to P .
to the point.

For the point (0, 0) we can and should take r = 0 but any θ would do.
For other points we have a unique choice. It is easy to show uniqueness.
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If a sequence (Pn) of points from the fourth quadrant approach a point
P on the x-axis, then θ(Pn) approaches 2π where as θ(P ) = 0.

Let us consider the open set

Ω = R2 − {(x, y) : y + 0, x ≥ 0}

We remove the non-negative x-axis from R2. Now it is easy to see that

T (x, y) = (r, θ); Ω 7→ (0,∞)× (0, 2π)

is one-one and is in fact C1 map. Also Jacobian at a polar point (r, θ) is
given by

(

cos θ −r sin θ
sin θ r cos θ

)

|T ′| = r.

Remember that the set removed is a small set and hence if we integrate over
Ω instead of R2 we still gate I2. Thus the integral reduces to

I2 =
∫

Ω
=
∫ ∞

0

∫ 2π

0
e−r2/2rdrdθ

Integrate w.r.t. —theta and then w.r.t r to get

I2 = 2π, I =
√
2π

Thus we have
∫ ∞

−∞

1√
2π

e−t2/2dt = 1.

This integrand is called standard normal density.

The way we evaluated is the integral is not right. We treated the whole
space as if we have a bounded region. We should actually calculate over
bounded regions and take limit. Thus take R > 0 and consider

Ω(R) = {(x, y) : x2 + y2 ≤ R2}

We calculate the integral over this region. We have a nice bounded continuous
function on this bounded region. From earlier theorems you can give up a
little bit, this integral is same as integral over the region with non-negative
x-axis (the part which is in the region) removed. You need to calculate
integral, after transforming to polar coordinates, over the region

{(r, θ) : 0 < r < R; 0 < θ < 2π.}
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This can be easily done and you can take the limit to get the same answer
as above.

Even this is not really right. Imagine calculating integral of the function
f(x, y) = x over this region. We will get zero. Are we then going to say
integral of f over R2 is zero?

We should first show that the integral exists and only then proceed to
calculate the integral Since our integrand is positive, we can afford not to
do this. If over one sequence of regions increasing to R2 the integrals of the
positive continuous integrand are bounded, then the integral exists and you
can choose your own convenient regions increasing to R2 to calculate the
integral

We have observed in the process

∫

R2

e−(x2+y2)/2dxdy = 2π.

suppose you now take µ = (µ1, µ2) ∈ R2. Then we have

∫

R2

e−{(x−µ1)2+(y−µ2)2}/2dxdy = 2π.

This follows from the Jacobian rule again. Simply change the variables. This
can be rewritten as ∫

R2

e−(x−µ)t(x−µ)/2dx = 2π.

Remember vectors in R2 are column vectors. Also we use the notation
x = (x1, x2) for pints of R

2 rather than (x, y). Also we use dx for dx1dx2.

Now suppose that you have a symmetric 2× 2 positive definite matrix Σ.
Then ∫

R2

e−(x−µ)tΣ−1(x−µ)/2dx = 2π
√

|Σ|.

This again follows from Jacobian rule. First, Get a symmetric positive defi-
nite matrix B with BtB = B2 = Σ.

First change the variables u1 = x1−µ1 and u2 = x2−µ2. that is u = x−µ

then change u = Bv. Jacobian is B and |B| =
√

|Σ|

Beta and Gamma:
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Recall that for numbers a, b > 0

β(a, b) =
∫ 1

0
xa−1(1− x)b−1dx

and
Γ(a) =

∫ ∞

0
e−xxa−1dx

We shall now show

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

Start with
Γ(a)Γ(b) =

∫

Ω
e−(x+y)xa−1yb−1dxdy

where
Ω = (0,∞)× (0,∞).

This is true because if you perform the integration w.r.t. y first and then
w.r.t. x you get it. Now we shall change the variable

x+ y = u; y = y

The range set is
Ω′ = {(u, v) : 0 < y < u < ∞}

In other words, Ω′ is an open set and on that there is the C1 map T (u, y) =
(u− y, y) which will take you to Ω and you are integrating a function on Ω
Here the Jacobian is one. Thus

Γ(a)Γ(b) =
∫

Ω′

e−u(u− y)a−1yb−1dudy

=
∫ ∞

0
e−u

[
∫ u

0
(u− y)a−1yb−1dy

]

du

Integrate w.r.t. y by substituting y = vu so that dy v duandrangeofviszero
to 1. You get

Γ(a)Γ(b) = β(a, b)Γ(a+ b).

See how all the theorems are at work.

We have simply written the range of (u, y) without explanation. here it
is. x, y range over Ω Thus first of all

0 < u < ∞; 0 < y < ∞
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But not every such u, y come from a point of Ω if you want this pair to come
from Ω, since the only pair from which it can come is (u− y, y) e must have

0 < u− y < ∞; 0 < y < ∞

These four inequalities will tell us 0 < u < ∞. And if you take such a u,
then y ranges over

0 < y < ∞; 0 < u− y < ∞
If you want both these to be satisfied we must have

0 < y < u.

Of course here again the integrand could be unbounded and actually we
should go through integrals over (ǫ,∞). But we do not do.

∫ ||x||−α:

Let us consider α > 0. We want to find out if the following integral exists.

∫

Ω
||x||−αdx

where
Ω = {(x1, x2) : x

2
1 + x2

2 < 1.}
If you take 0 < ǫ < 1 and

Ωǫ = {(x1, x2) : ǫ
2 < x2

1 + x2
2 < 1.}

then change to polar coordinates (you need to remove the line segment
{(x1, 0) : ǫ < x1 < 1}) we get

∫

Ωǫ

=
∫ 1

ǫ

∫ 2π

0
r−αrdrdθ.

You can explicittly calculate this integral and see that a limit as ǫ → 0 exists
iff α < 2.
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