
CMI (BSc I)/BVRao Calculus II, Notes 12 2014

polar coordinates:

Every point (x, y) ∈ R2 other than (0, 0) can be uniquely expressed as
x = r cos θ; y = r sin θ for some (r, θ) with 0 < r <∞ and 0 ≤ θ < 2π. these
(r, θ) are called polar coordinates of the cartesian point (x, y). The Jacobian
of the transformation is r. Thus when you integrate dxdy is transformed to
rdrdθ.

Every point (x, y, z) ∈ R3 other than (0, 0, 0) can be uniquely expressed
as

x = r cos θ; y = r sin θ cosψ; z = r sin θ sinψ.

where
0 < r <∞; 0 ≤ θ ≤ π; 0 ≤ ψ < 2π.

These (r, θ, ψ) are called the spherical or polar coordinates of (x, y, z). The
Jacibian is r2 sin θ. Thus when you integrate

f(x, y, z) dx dy dz

is transformed to
f(r, θ, ψ) r2 sin θ dr dθ dψ.

In n dimensions lo there is a similar transformation to polar coordinates.
Every point

(x1, x2, · · · , xn)
can be uniquely expressed as

x1 = r cos θ1;

x2 = r sin θ1 cos θ2;

x3 = r sin θ1 sin θ2 cos θ3;

...

xn−1 = r sin θ1 sin θ2 · · · sin θn−2 cos θn−1;

xn = r sin θ1 sin θ2 · · · sin θn−2 sin θn−1;

where
0 < r <∞; θ1, θ2, · · · θn−2 ∈ [0, π]; θn−1 ∈ [0, 2π).
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The Jacobian of this transformation is

rn−1 sinn−2 θ1 sin
n−3 θ2 · · · sin θn−2

The proof is by induction on n. You can write the Jacobian and expand
as sum of two determinants for each of which the induction hypothesis ap-
plies.

Thus
dx1dx2 · · · dxn

is transformed to

rn−1 sinn−2 θ1 sin
n−3 θ2 · · · sin θn−2 drdθ1 · · · dθn−1.

Here the sphere
{x : 0 < ||x|| ≤ R}

is transformed to the rectangle

[0, R]× [0, π]× · · · × [0, π]× [0, 2π).

The representation itself is also proved by induction. You need to put

r =

√

∑

x2i .

you need only represent the unit vector (ui) = (xi/r). You get a θ1 such that

u1 = cos θ1;

√

√

√

√

n
∑

2

u2i = sin θ1.

Since both these numbers are non-negative a number θ1 ∈ [0, π] exists and it
is unique. Now use induction hypothesis.

cylindrical coordinates:

Given a point (x, y, z) ∈ R3 such that (x, y) 6= (0, 0) there is a unique
number 0 < r < ∞ and 0 ≤ θ < 2π such that x = r cos θ; y = r sin θ.
the triple (r, θ, z) are called the cylindrical coordinates of the point (x, y, z).
jacobian of this transformation is r. Thus

dxdydz
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is transformed to
rdrdθdz.

this is easy to establish. Here the cylinder (z-axis deleted)

{(x, y, z) : 0 < x2 + y2 ≤ R2; 0 ≤ z ≤ h}

is transformed to the rectangle

{(r, θ, z) : 0 < r ≤ R; 0 ≤ θ <, 2π; 0 ≤ z ≤ h}.

Lagrange multipliers:

We have discussed analogue of maxima and minima in two variables.
Many a times you need to optimize (find local extrema of) a function subject
to certain constraints. For example you want to find out in the positive
quadrant

max(x+ y) subject to x+ y = 1

(actually you need not say positive quadrant, it follows even if you did not
say it).

Of course in the above problem, you can say y = 1 − x and we need to
maximize x(1−x). Manytimes such a simplification is not possible. Rewrite
the above problem as

max f(x, y) subject to ϕ(x, y) = 0

where f(x, y) = xy and ϕ(x, y) = x+y−1. Lagrange found out that at such
a point (x0, y0) where there is a max (or min) there is a number λ such that

∇f + λ∇ϕ = 0.

This method works even in complicated situations when you can not explic-
itly express one variable as a function of the other variable. More over the
above equations maintain a symmetry without expressing one variable as a
function of the other. Thus you can solve the three equations, namely, above
system of two equations along with the one equation ϕ = 0 to obtain the
three numbers (x0, y0, λ).

Of course you would ask what is the worth of this? You need to find
out precisely the points of max and min and Lagrange only tells us what
happens if you already know that (x0, y0) is such a point. You can utilise the
above discovery to first solve the system of equations and get all solutions
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(x, y, λ) and reduce your search to check only among these points. Usually,
the system does not have too many solutions and so it is easy to check this.

Of course, you need to check whether a solution you obtained is max or
min or neither. There is no simple criterion. remember Lagrange only tells
you at a point of (constrained) local extremum something happens. he does
not say that if such a thing happens then the point is an extremum. We see
examples.

to proceed further, let us define what is meant by constrained extremum.
Let f and ϕ be two real valued functions on an open set Ω ⊂ R2. A point
P ∈ Ω is a local maximum of f subject to the constraint ϕ = 0 if there is an
ǫ > 0 such that the following happens:

ϕ(P ) = 0;

and
Q ∈ Ω; ϕ(Q) = 0; ||P −Q|| < ǫ ⇒ f(Q) ≤ f(P ).

Thus locally at P there is no other point satisfying the constraint and gives
a larger value for f .

Similarly we define local minimum subject to the constraint. These are
called local extrema subject to the given constraint.

Theorem: f and ϕ be C1 functions on an open set Ω ⊂ R2; P = (x0, y0) ∈
Ω is a constrained local extremum. Assume that ϕy(P ) 6= 0.

Then there is a number λ such that

∇f(P ) + λ∇ϕ(P ) = 0.

Proof is simple. Assume we have a local max.

Since ϕ(P ) = 0 and ϕy(P ) 6= 0, the implicit function theorem applies. We
have a rectangle (a, b)× (c, d) which includes P and has the following prop-
erty. For every x ∈ (a, b) there is a unique y ∈ (c, d) such that ϕ(x, y) = 0.
If you define g(x) as this unique y, then g defines a C1 function on (a, b).
In other words the set of points (x, g(x)) captures all zeros of the ϕ in this
rectangle.

If necessary we can take a smaller rectangle so that ϕ(P ) is max in this
rectangle. Since g captures all zeros of ϕ in the sense described above we
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conclude that the function f(x, g(x)) assumes its max value on the interval
(a, b) at the point x0 and hence its derivative is zero at this point. Thus
chain rule for the map

x 7→ (x, g(x)) 7→ f(x, g(x)).

We get
f1(P ) + g′(x0)f2(P ) = 0. (•)

How do we get rid of g that we introduced from the above. apply chain rule
to the map

x 7→ (x, g(x)) 7→ ϕ(x, g(x)) ≡ 0.

ϕx(P ) + g′(x0)ϕy(P ) = 0. (∗)
(You can apply the formula for derivative of function defined implicitly).
Combining (•) and (∗)

(

f1(P ) f2(P )
ϕx(P ) ϕy(P )

)(

1
g′(x0)

)

=

(

0
0

)

.

Thus we have a matrix equation Av = 0 where the vector v is non-zero. Thus
the rows of the matrix must be linearly dependent. Since we know ϕy(P ) 6= 0,
the second row is non-zero row. So the first row must be a multiple of the
second row. The constant denoted by (−λ) satisfies the requirement.

This completes the proof.

Let us see some examples.

(1) maximize f(x, y) = xy subject to x2 + y2 = 1.

Here ϕ(x, y) = x2 + y2 − 1. The equations reduce to

y + 2λx = 0; x+ 2λy = 0; x2 + y2 = 1.

Multiply first eqn by x, second by y; add; use third to see xy + λ = 0. Use
this in the first. You will see the only solutions are

(x, y, λ) = (1, 0, 0); (0, 1, 0); (1/
√
2, 1/

√
2, 1/2).

The first two are not extrema. third is.

(2) Maximize f(x, y, z) = xyz subject to x2 + y2 + z2 = 1.
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Exactly the same procedure leads to

yz + 2λx = 0; xy + 2λz = 0; zx+ 2λy = 0; x2 + y2 + z2 = 1

so that Multiply first eqn by x etc and add; use the constraint to see

2λ = −3xyz.

substitute in the above three eqns to get the solutions

(±1, 0, 0) (0,±1, 0) (0, 0,±1)

(

± 1√
3
,± 1√

3
,± 1√

3

)

.

It is easy to see that the first six solutions are neither max nor min. At these
points f is zero. In the neighbourhood of these points f takes values positive
and also negative. Of the next four points four are maxima and four minima.

In an extremal problem where ∇f(P ) = 0, if there are points Q in every
neighbourhood of P such that f(P ) > f(Q) as well as there are points Q in
every neighbourhood of P with f(P ) < f(Q); then we say p is a saddle point.

Similarly in a constrained extremal problem suppose we have a solution
(P, λ) for the Lagrange method, that is, satisfying ∇f(P ) + λϕ(P ) = 0.
Suppose that in every neighbourhood of P there are points Q satisfying the
constraint and f(P ) > f(Q) as well as points Q satisfying the constraint such
that f(P ) < f(Q). Then we say that P is saddle point for the constrained
problem.

In the above problem, the first six points are saddle points.

(3) We are given an n× n symmetric matrix A.

maximize xtAx subject to ||x||2 = 1.

Note that the set ||x|| = 1 is a compact set and and the expression has a
maximum.

The expression f(x) = xtAx =
∑

i,j
aijxixj is called a quadratic form. Here

ϕ(x) =
∑

x2i − 1.
The equations are, denoting the lagrange constant by (−λ),

2
∑

j

aijxj − 2λxi = 0; i = 1, 2, · · · , n.
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That is
Ax− λx = 0; Ax = λx.

In other words the Lagrange constant λ is an eigen value and x corresponding
eigen vector. But which eigen value is it? At this point

xtAx = xtλx = λ.

Thus Lagrange method helps you to identify the largest eigen value as
maximum of the quadratic form. Of course, there are several eigen values
and corresponding eigen vectors. We know a priori that there is a maximum
and hence this procedure gives it along with others.

(4) Find box with sides parallel to the coordinate planes which has the
largest volume and is contained in the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
≤ 1.

A box (or rectangular parallelopiped) is a figure with rectangular sides. It
may not be having sides parallel to the coordinate planes. For example start
with a box with sides parallel to the coordinate planes and apply a rotation.
What you get is still a box with rectangular faces. It should be possible to
show that such a box contained in the above ellipsoid, having largest volume
must actually have sides parallel to the coordinate planes. I do not have a
proof right now.

Returning to our problem let us consider boxes as stated. If none of the
corners is on the boundary of the ellipsoid, then you can enlarge the box
increasing the volume. If one corner (x0, y0, z0) is on the boundary then
the box must have corners (±x0,±y0,±z0) and hence volume 8x0y0z0. Thus
the geometric problem can be formulated as the following analytical problem.

Maximize 8xyz subject to x2

a2
+ y2

b2
+ z2

c2
= 1.

Proceeding exactly as above you get corners to be (a/
√
3, b/

√
3, c/

√
3).

and hence the volume is 8abc/(3
√
3).

Lagrange with two constraints:

Lagrange method works with any variables with reasonable number of
constraints. I shall state the general theorem. But before that I shall state
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for three variables with two constraints.

Maximize f(x, y, z) subject to ϕ(x, y, z) = 0; ψ(x, y, z) = 0.

We assume all are C1 functions defined on an open set Ω. We assume
that P = (x0, y0, z0) ∈ Ω is a solution for the problem. We show there are
numbers λ and µ such that

∇f(P ) + λ∇ϕ(P ) + µ∇ψ(P ) = 0.

Of course, this comes with a price. We assume that

(

ϕy(P ) ϕz(P )
ψy(P ) ψz(P )

)

(♠)

is non-singular, that is, the determinant is non zero.
Under the hypothesis, we can apply implicit function theorem. get an

interval I = (x0 − δ, x0 + δ) and an box (rspa) Q such that
(i) (y0, z0) ∈ Q; I ×Q ⊂ Ω.
(ii) for x ∈ I there is unique (y, z) ∈ Q such that ϕ(x, y, z) = 0 and

ψ(x, y, z) = 0. Moreover the functions g : I → Q that maps x 7→ (y, z) is a
C1 map. Denote g(x) = (g1(x), g2(x)). Thus g(x0) = (y0, z0).

Thus region I × Q contains (x0, y0, z0) and all common zeros of ϕ and
ψ are captured by {(x, g(x)) : x ∈ I} in this region. In other words x0 is
a extremal point for the function f(x, g(x)). so derivative of this function
must be zero at x0. applying chain rule

x 7→ (x, g1(x), g2(x)) 7→ f(x, g1(x), g2(x))

fx(P ) + fy(P )g
′

1
(x0) + fz(P )g

′

2
(x0) = 0. (∗)

Applying chain rule to
x 7→ 〈x, g1(x), g2(x)〉

7→ 〈ϕ(x, g1(x), g2(x)), ψ(x, g1(x), g2(x))〉 ≡ 〈0, 0〉.
(

ϕx(P ) ϕy(P ) ϕz(P )
ψx(P ) ψy(P ) ψz(P )

)







1
g′
1
(x0)

g′
2
(x0)





 =

(

0
0

)

(∗∗)

combining (∗) and (∗∗) we see







fx(P ) fy(P ) fz(P )
ϕx(P ) ϕy(P ) ϕz(P )
ψx(P ) ψy(P ) ψz(P )













1
g′
1
(x0)

g′
2
(x0)





 =







0
0
0







8



We have a matrix equation Av = 0 with a non-zero vector v. so A has
dependent rows. Last two rows are independent, because y hypothesis, the
2 × 2 bottom corner is non-singular. Thus the first row must be a linear
combination of the last two. This gives λ and µ.

Instead of (♠) we could have assumed

(

ϕz(P ) ϕx(P )
ψz(P ) ψx(P )

)

is non-singular. Then we get an interval around y0 etc. the same proof works.
Or we could assume, instead,

(

ϕx(P ) ϕy(P )
ψx(P ) ψy(P )

)

is non-singular.

general Lagrange:

Let f, ϕ1, · · ·ϕm be all real valued C1 functions defined on an open set
Ω ⊂ Rn. Assume m < n. Suppose x0 ∈ Ω is an extremal for f subject to

ϕi(x) = 0; i = 1, 2, · · · ,m.

Then there are numbers (λi : 1 ≤ i ≤ m) such that

∇f(x0) + λ1∇ϕ1(x
0) + λ2∇ϕ2(x

0) + · · ·+ λm∇ϕm(x
0) = 0.

This comes with a price. We need to assume that the matrix

(

∂

∂xj
ϕi(x

0) : 1 ≤ i, j ≤ m

)

is non-singular. we have considered the m×m matrix by differentiating the
constraining function w.r.t. the first m coordinates. You can take any m
coordinates and use them for all the functions. Demand that this matrix be
non-singular. Remember we are evaluating the matrix at the point x0.

you should keep in mind two things. the method reduces the search for
extremals among solutions of the following n+m equations.

∇f(x) + λ1∇ϕ1(x) + λ2∇ϕ2(x) + · · ·+ λm∇ϕm(x) = 0.
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ϕ(x) = 0;ϕ2(x) = 0; · · ·ϕm(x) = 0.

solve these n+m equations to get solutions

(x, λ) : x ∈ Rn;λ ∈ Rm

and search those x for max or min. of course not all may be extremals. But
extremals are definitely contained among these.
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