
CMI (BSc I)/BVRao Calculus II, Notes6 2014 sixth week

unbounded intervals/functions:

We discussed functions of one variable obtained from two variable func-
tions by performing integration etc. We also showed that derivative of in-
tegral equals integral of derivative (loosely speaking). But the entire action
took place over bounded intervals. Most of the integrals that we need in
practice are over unbounded intervals. Even if it is over a bounded interval,
the function is usually unbounded. These are what are (unfortunately) called
improper integrals.

Instead of discussing general theory we illustrate with an example. Con-
sider

f(x, t) = e−ttx−1, (x, t) ∈ (0,∞)× (0,∞).

Γ(x) =
∫

∞

0

f(x, t)dt, x ∈ (0,∞).

We have seen last semester that this integral is finite. We shall now show
that this is a continuous function of x on the interval (0,∞). For this it
suffices to show that the two functions

ϕ(x) =
∫

∞

1

f(x, t)dt; ψ(x) =
∫

1

0

f(x, t)dt

are continuous functions.

continuity of ϕ:

Fix 0 < a < b <∞. Enough to show that ϕ is continuous on the interval
[a, b]. Indeed to show continuity at a point α, use the fact that it is continuous
on the interval [α/2, 2α].

If you fix any number c > 1 then the function

ϕc(x) =
∫ c

1

f(x, t)dt

is a continuous from what we have discussed earlier. We show that ϕc → ϕ
uniformly over [a, b] as c→ ∞.

Let ǫ > 0 be given. Choose C > 1 so that
∫

∞

C
f(b, t)dt < ǫ.
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This is possible because ϕc(b) → ϕ(b). Now for x ∈ [a, b], the fact t ≥ 1
implies f(x, t) ≤ f(b, t). Thus for any c > C we have

|ϕc(x)− ϕ(x)| ≤
∫

∞

C
f(x, t)dt ≤

∫

∞

C
f(b, t)dt < ǫ.

continuity of ψ:

Again we fix 0 < a < b <∞ and show ψ is continuous on [a, b].
If you fix any number 0 < c < 1 then the function

ψc(x) =
∫

1

c
f(x, t)dt

is a continuous from what we have discussed earlier. We show that ψc → ψ
uniformly over [a, b] as c→ 0.

Let ǫ > 0 be given. Choose C so that

∫

∞

C
f(a, t)dt < ǫ.

This is possible because ψc(a) → ψ(a). Now if we take any x ∈ [a, b] note
that t ≤ 1 tells us that f(x, t) ≤ f(a, t). Thus for any 0 < c < C we have

|ψc(x)− ψ(x)| ≤
∫ C

0

f(x, t)dt ≤
∫ C

0

f(a, t)dt < ǫ.

This completes the proof that the Gamma function is a continuous function.

The function Γ(x) is a differentiable and

Γ′(x) =
∫

∞

0

e−t tx−1 log t dt.

In other words, you can differentiate under the integral sign.

First we show that this function is a continuous function and the argu-
ment is similar to the above by getting bounds. One needs to go a little below
a or a little above b to compensate for the log factor. Then one shows differ-
entiability under the integral sign by imitating argument similar to the one
we used in power series: tail difference quotients are small and over bounded
interval you can differentiate under integral sign.
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I will not execute this. It is trivial if you have understood the idea and
it needs maturity and clarity in thought. It appears highly non-trivial oth-
erwise. So let us wait for some time. First you assimilate what is done (and
understand why it is done!). These are important matters.

Inverse function theorem:

Recall that the inverse function theorem in one variable is the following.

Let Ω ⊂ R be an open interval, f : Ω → R be C1, and a ∈ Ω. Suppose
that f ′(a) 6= 0. Then there is an open interval U ⊂ Ω and an open interval
V such that the following hold:

(i) a ∈ U and b = f(a) ∈ V .
(ii) f is one-one on U onto V .
(iii) The inverse map g : V → U is differentiable and for y = f(x) ∈ V

we have g′(y) = 1/[f ′(x)].

What is its analogue for functions of two variables? Interestingly, the
exact same theorem is true. here it is.

Theorem: Let Ω ⊂ R2 be open, f : Ω → R2 be C1, and a ∈ Ω. Suppose
that f ′(a) (which is a 2 × 2 matrix) is non-singular. Then there is an open
set U ⊂ Ω and an open set V such that the following hold:

(i) a ∈ U and b = f(a) ∈ V .
(ii) f is one-one on U onto V .
(iii) The inverse map g : V → U is differentiable and for y = f(x) ∈ V

we have g′(y) = [f ′(x)]−1.

Let us understand the theorem. For every x ∈ Ω, f associates a point
of R2, let its coordinates be denoted by f1(x) and f2(x). Thus f(x) =
(f1(x), f2(x)). Then function f is C1 means the two real valued functions f1
and f2 have continuous partial derivatives. The derivative at a point x is the
linear transformation whose matrix representation is

f ′(x) =

(

∇f1
∇f2

)

=

(

D1f1(x) D2f1(x)
D1f2(x) D2f2(x)

)

.

Why is this theorem non-trivial in R2. After all, in R we said the follow-
ing. Assume without loss of generality f ′(a) > 0. Then in a small interval
I = (a− δ, a+ δ) around a, we have f ′(x) > 0 and [a− δ, a+ δ] ⊂ Ω. denote
y1 = f(a− δ) and y2 = f(a+ δ). Thus f is strictly increasing on [a− δ, a+ δ]
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and transforms it to [y1, y2]. It is then clear that f transforms the interval
I onto J = (y1, y2). The fact that it is increasing makes matters simple.
Unfortunately in R2 such an argument is no longer possible.

On R, if f ′ 6= 0 then the fact that f ′ is continuous tells us that either
f ′ > 0 always or f ′ < 0 always. Thus on all of the interval Ω the function
is one-one. Again this depends on the fact that f is strictly increasing or
strictly decreasing. However such a conclusion can not be drawn in R2.

Consider

f : R2 → R2; f(x, y) = (ex cos y, ex sin y).

Just be careful, though we denote points, in general, by x = (x1, x2); in
specific examples we do not follow this. This is done not to confuse you, but
to make you comfortable. You are used to (x, y) for points of R2 and it is
better to keep it that way.

For the function above

f ′(x, y) =

(

ex cos y −ex sin y
ex sin y ex cos y

)

which is non-singular, in fact its determinant is e2x. Thus at every point in
R2 the derivative is an invertible linear transformation. Yet this function is
not one-one.

Its range is all of R2 except the point (0, 0). Each value in the range is
assumed infinitely many times. Each horizontal strip R × [k2π, (k + 1)2π)
is mapped to R2 − {(0, 0)}. Any horizontal strip of width 2π does this. For
each fixed x the values of f trace the circle of radius ex around the origin.
Of course, in this case given any point you can clearly plot an disc around
that point on which f is one-one and invertible.

Before starting proof of the theorem, we make three observations about
the landscape in R2. These are true in all Rn, but that is for later.

1. Let us use the word ‘compact’ to denote closed bounded sets. here is
a fact.

If K ⊂ R2 is compact and f : K → R2, then its range f(K) is again
compact.

This is easy to see because from what we have already proved about real
valued functions, the first coordinates of points in f(K) form a bounded set
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and so is the set of second coordinates of points in f(K). This is enough to
conclude that f(K) is a bounded set. to show that it is closed, let yn → y
and f(xn) = yn. We exhibit x so that f(x) = y. This will show that the
limit y is in f(K) showing that f(K) is closed. Of course if xn converges to
x, then K being closed we se x ∈ K and continuity of f tells us that

f(x) = lim f(xn) = lim yn = y.

If xn does not converge, take a subsequence of (xn) that converges and argue
with its limit. Note that K being compact every sequence in K has a limit
point and every sequence has a convergent subsequence.

2. Let K be a compact set and z 6∈ K. Then there is an r > 0 such that
the ball B(z, r) ⊂ Kc. recall ball B(z, r) means the set of points x such that
||x− z|| < r.

This is easy because our earlier characterisation: a set is closed iff its
complement is open. Thus z is in the open set Kc and hence a ball around
z is contained in this open set.

3. Let U ⊂ R2 be an open set and f : U → R2 be continuous. then for
any open set V ⊂ R2 we have f−1(V ) is an open subset of U .

This again clear because if x ∈ f−1(V ), then f(x) ∈ V . Since V is open
there is ǫ > 0 so that B(f(x), ǫ) ⊂ V . Continuity of f gives a δ > 0 so that
B(x, δ) ⊂ f−1(V ).

We shall prove the theorem assuming that f ′(a) is the identity matrix.
That is,

f ′(a) =

(

1 0
0 1

)

. (♠)

This will make things neat, otherwise we need to hang on to maximum of its
entries etc making some of the estimates ugly. the general case then follows
easily as we see later. We start drawing some simple consequences of out
hypotheses.

4. Non-singularity is expressed in terms of the determinant, namely

D1f1(x)D2f2(x)−D2f1(x)D1f2(x)

which is a continuous function of x we see that if it is non-zero at a, then it
is non-zero in a ball around a.
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5. There is a ball around a such that for x in that ball

|Djfi(x)−Djfi(a)| < 1/4.

This is follows from the continuity of the partial derivatives.

6. There is a ball around a such that for all points x 6= a in that ball,
f(x) 6= f(a).

If this is false, we get xn 6= a, xn ∈ B(a, 1/n), f(xn) = f(a). Since
f ′(a) = I we conclude

||f(xn)− f(a)− I(xn − a)||

||xn − a||
→ 0.

But f(xn) = f(a) tells that this ratio is always one, leading to a contradiction.

7. Take an open ball B(a, r) such that the closed ball

B(a, r) = {x : ||x− a|| ≤ r} ⊂ Ω

and 4,5,6 hold in this ball. we claim that

x, x̃ ∈ B(a, r) ⇒ ||f(x)− f(x̃)|| ≥
1

2
||x− x̃||. (♣)

Note that this will in particular shows that f is one-to-one in this ball. In
fact norm being continuous function,the inequality remains true in the closed
ball and that f is actually one-to-one in the closed ball.

This inequality is shown as follows. Consider the function g(x) = f(x)−x
in the closed ball. The mean value theorem applied to the first and second
coordinate functions

g1(x) = f1(x)− x1; g2(x) = f2(x)− x2

of g will give the following (use 5.)

|[f1(x)− x1]− [f(x̃1)− x̃1]| ≤

√

2

16
||x− x̃||

and

|[f2(x)− x2]− [f(x̃2)− x̃2]| ≤

√

2

16
||x− x̃||

so that

||[f(x)− x]− [f(x̃)− x̃]|| ≤

√

4

16
||x− x̃|| =

1

2
||x− x̃||.
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Thus using triangle inequality,

||x− x̃|| ≤ ||[f(x̃)− x̃]− [f(x)− x]|| + ||f(x)− f(x̃)||

≤
1

2
||x− x̃||+ ||f(x)− f(x̃)||

proving (♣).

8. Let us denote f(a) = b.

The set K = {x : ||x− a|| = r} is clearly closed (norm is continuous) and
bounded so that f(K) is compact by 1. and b 6∈ f(K) by 7. Hence by 2.
there is an η > 0 so B(b, 2η) ∩ f(K) = ∅.

Let V = B(b, η). Note that

y ∈ V ⇒ ||y − f(x)|| > ||y − f(a)|| ∀x ∈ K (•).

This is because ||y − b|| < η whereas ||y − f(x)|| ≥ η for x ∈ K.

We now claim that for y ∈ V there is a unique x ∈ B(a, r) such that
f(x) = y. That there can not be two points x and x̃ satisfying the condition
follows from (♣). we only need to show the existence of a point.

As you realise, in the one dimensional case the strictly increasing nature
and the intermediate value theorem for continuous functions settled the mat-
ter. Here we do not have it. But what you can not see easily will be shown
by linear algebra as follows.

So take one y ∈ V and define the function

ϕ(x) = ||f(x)− y||2 = [f1(x)− y1]
2 + [f2(x)− y2]

2

on the compact set B(a, r). This real valued function assumes a minimum at
some point. Also this is assumed in the open ball B(a, r) because (•) shows
that ϕ(x) > ϕ(a) for all x ∈ K. Since the minimum is attained at a point,
say x∗ in an open set (not on the boundary) we conclude that ∇ϕ(x∗) = 0.
That is,

[f1(x
∗)− y1]D1f1(x

∗) + [f2(x
∗)− y2]D1f2(x

∗) = 0

[f1(x)− y1]D2f1(x
∗) + [f2(x)− y2]D2f2(x

∗) = 0.

If we denote

f1(x
∗)− y1 = v1; f2(x

∗)− y2 = v2; v = (v1, v2)
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A =

(

D1f1(x
∗) D2f1(x

∗)
D1f2(x

∗) D2f2(x
∗)

)

then in matrix notation, we have

vA = 0.

But A is non-singular by 4. Thus v = 0 which means f(x∗) = y.

9. Let U = f−1(V )∩B(a, r). Then U is open by 3. From 8. we see that
f : U → V is one-one and onto. Thus it has inverse g : V → U.

A restatement of (♣) is

||g(y)− g(ỹ)|| ≤ 2||y − ỹ||; y, ỹ ∈ V.

This shows that g is continuous.

10. Fix y ∈ V and let g(y) = x, that is, f(x) = y. We show that g is
differentiable at y and g′(y) = [f ′(x)]−1 = A−1, say. Take yn ∈ V , yn 6= y for
all n. Need to show

g(yn)− g(y)− A−1(yn − y)

||yn − y||
→ 0. (∗)

Since A is an invertible matrix, in order to show that vn → 0 for a sequence
of vectors (vn) one could as well show Avn → 0. Denoting g(yn) = xn, that
is, f(xn) = yn we need to show

A(xn − x)− (f(xn)− f(x))

||f(xn)− f(x)||
→ 0.

That is, need to show

(f(xn)− f(x))− A(xn − x)

xn − x

xn − x

||f(xn)− f(x)||
→ 0.

Because of (♣) the second term is bounded by 2, the first term converges to
zero because A = f ′(x).

This completes proof of the inverse function theorem.
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