
CMI (BSc I)/BVRao Calculus II, Notes 2014 First week

Prelude:

Last semester we understood some aspects of the set R of real numbers
—- rational numbers, irrational numbers, sequences, their convergence, se-
ries, absolute convergence, products of series and so on. We understood some
aspects of functions defined on R taking values in R —- continuity, deriva-
tives, power series, integration of bounded functions over bounded intervals,
integration when the function is not bounded or when the interval is not
bounded and so on.

As a by-product of the analysis we saw several interesting facts. Func-
tions which have enough derivatives can be expanded in powers of x (Taylor
expansion), Fundamental theorem on power series says they define contin-
uous functions which can be differentiated term by term just as we do for
polynomials, continuous function on a closed bounded interval can be uni-
formly approximated by a polynomial as close as desired (Weierstrass); n!
can be explained in simpler terms but using complicated numbers like π and
e (Stirling); π can be expressed as a (infinite) product of simple ratios of
integers (Walli) and so on.

We devised methods to compute simple integrals —- fundamental the-
orem of calculus allowed us to recognize differentiation and integration as
inverse operations in a precise sense. This helped us to convert product rule
of differentiation into ‘integration by parts’, chain rule of differentiation into
‘method of substitution’. We devised methods to compute complicated inte-

grals like

∞
∫

0

sin x

x
dx.

At the same time, you should keep in mind, that there are several prob-
lems that we have not discussed. For example, given a bounded interval,
what exactly are the conditions for a bounded function to be Riemann inte-
grable? What reasonable conditions are needed so that we can differentiate a
series of functions term by term? And so on. Questions like the first one are
theoretical in character. However questions like the second are of immense
practical use. We shall discuss some of those later in this course.

It would be a good idea for you to do a quick review of what we did so far.
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Euclidean spaces:

This semester we shall learn about functions of several variables. First
we make clear to ourselves what we mean by ‘several variables’. We shall
consider the set

Rd = {(x1, · · · , xd) : xi ∈ R 1 ≤ i ≤ d}.

That is, the set of d-tuples of real numbers. Here d ≥ 1 is an integer. Of
course, the case d = 1 corresponds to the set of one-tuples, thus it is really
no different from the set of real numbers. These spaces are called Euclidean
spaces. Rd is called d-dimensional Euclidean space.

We have picturized R as a line; plotted all real numbers on the line —- af-
ter arbitrarily marking zero and marking one to its right (then nothing else is
in our hands, other numbers have specific places on the line). Every number
corresponds to a point on the line and every point on the line corresponds
to a real number. In a similar fashion, we can picturize R2 and you have
already done so in high-school (actually we also did when we drew graphs of
functions and calculated areas, but we did not stress this aspect). Here it is.

The paper or board is the picture corresponding to R2. You draw two
perpendicular lines: the horizontal line is called x-axis and vertical line is
called y-axis. Their point of intersection is taken as the pair (0, 0). Now
you think of the two lines as copies of the real line. Plot all numbers on the
horizontal line after fixing the place for 1. Similarly on the y-axis, plot all
numbers. Just as we have fixed the right side of zero as positive numbers,
we fix (just a convention, after all we have to follow something or the other)
numbers ‘above’ zero to be positive on the y-axis. We follow the same units
in both axes (it is pleasing).

The pair (4, 3) is plotted on the paper as follows: Start from (0, 0) move
on the x axis to 4, then move three units up, mark this point as (4, 3). Sim-
ilarly, every pair (a, b) ∈ R2, whether the numbers a and b are positive or
not, is identified with a point on the paper. Conversely, every point on the
paper corresponds to a point in R2.

We could not only picturize, but also ‘draw’ R and R2. You can not draw
R3 but can imagine as follows. Think of three lines from where you stand:
Two lines on the floor they are x-axis and y-axis and the third line is yourself.
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You are standing at (0, 0, 0). If you want to plot the point (4, 7, 3) go four
units right on the floor and from there go seven units to the front and from
there go up three units above, that is the point (4, 7, 3). Of course if the z
coordinate is negative, the point is on the other side of the floor!

The reason for this detailed discussion is that you should start making
mental pictures for the cases d = 2, 3. We consider d > 1. You can read
our analysis by thinking d = 1 too and it remains true. But we said d > 1
because we shall be explaining all the concepts using what we already know
about real numbers, namely, the case d = 1.

We would like to now understand sequences. A sequence is a function
defined on natural numbers with values in Rd. Instead of thinking of it as
a function f we think of a sequence by its values at one, at two and so on.
Think of them as the first term, second term etc of the sequence. We write
the sequence , as earlier, as (xn) or (xn : n ≥ 1) or (xn)n≥1. We are using
n as super fix, rather than suffix. This is because we used suffix to denote
coordinates. Thus xn = (xn

1
, xn

2
, · · · , xn

d).

Incidentally, there is nothing new in the concept of function. In fact we
discussed functions from a set A to a set B. But just keep in mind the
following. If f(x) = ±√

x on the interval (0, 1) then it is not a function.
However g(x) = +

√
x and h(x) = −√

x are functions. of course, we made a
convention that

√
x means +

√
x (just as, 2 means +2).

Returning to sequences and paralleling the earlier development, we wish
to say that a sequence converges to a point x ∈ Rd if the terms of the se-
quence are getting closer to the point x. Thus we first need to understand
what is meant by ‘close’.

Norm and Distance:

We define norm on Rd by

||x|| =
√

x2
1 + x2

2 + · · ·+ x2

d; x = (x1, x2, · · · , xd).

Thus, square the coordinates and add them up and then take squareroot.
Of course, if d = 1 this turns out to be just the familiar modulus. Thus,
sometimes we would write |x| instead of ||x||. We think of norm as the dis-
tance of the point from the origin 0, the point with all coordinates zero. The
reason for this definition comes from Pythagoras theorem. Imagine the case

3



d = 2. If you have a point (x, y), you can make the right angled triangle
(0, 0); (x, 0); (x, y) and apply Pythagoras theorem.

As you have noticed, we denoted point in R2 by (x, y) and not (x1, x2).
This is how we are used to in school and so we continue. But this has the
disadvantage that unless you are alert, you may think that x = (x1, x2),
y = (y1, y2) are two points rather than understanding that x y are real num-
bers and the pair (x, y) is the point we are talking about.

In R we felt that the distance from 4 to 10 is same as the distance from 0
to 10−4 = 6. Same philosophy we adapt here too. For two points u, v ∈ Rd,
the distance between them is

d(u, v) = ||u− v|| =
√

√

√

√

d
∑

1

(uj − vj)2.

Squaring is complicated operation where as linear operations are simple
to understand and manipulate. It is pleasing to note that the norm is indeed
driven by a linear operation. Define

u · v =
∑

j

ujvj; u, v ∈ Rd.

This is called inner product between u and v, sometimes also denoted 〈u, v〉.
It is linear in each argument when the other argument is fixed. Now ||u|| is
nothing but u · u. You are probably familiar with these concepts from your
linear algebra course. In fact we do need all that material as we go along.
We have already used the vector space structure when we used u− v above.

Here are some properties of norm and inner product.
Theorem 1:
(A) Norm has the following properties. Here u, v, w ∈ Rd and α ∈ R.
(i) ||u|| is a real number; ||u|| ≥ 0; ||u|| = 0 iff u = 0.
(ii) |u · v| ≤ ||u||||v|| (Cauchy-Schwarz inequality)
(iii) ||αu|| = |α|||u|| and ||u+ v|| ≤ ||u||+ ||v||

(B) Distance satisfies the following
d(u, v) ≥ 0 (positive);
d(u, v) = d(v, u) (symmetric);
d(u, v) = 0 ↔ u = v:
d(u, v) ≤ d(u, w) + d(w, v) (triangle inequality)
d(u+ w, v + w) = d(u, v) (translation invariant)
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d(αu, αv) = αd(u, v) if α > 0.

All the properties can be easily verified. We only recall proof of (ii). If
u1, · · · , uk and v1, · · · , vk are non-negative real numbers then the following
quadratic in λ is always non-negative,

∑

(uj − λvj)
2 = (

∑

v2j )λ
2 − (2

∑

ujvj)λ+ (
∑

u2

j) ≥ 0.

The fact that its discriminant is nonpositive is precisely the C-S inequality.

To get familiarity with distance, let us get a feel for the following. Given
a point u what are all the points which are at a distance smaller than one
from u? In case of real line, we have already noted that this distance is same
as |u − v|. Thus given a number u, the set of points that are at a distance
smaller than 1 is just the interval (u− 1, u+ 1).

In case u ∈ R2, your high school familiarity tells you that this set consists
precisely points in the interior of the circle with radius 1 and centered at u.
In case u ∈ R3 it is the set of all points in the interior of the sphere with ra-
dius one and centered at u. In a sense, this is the meaning of circle and sphere.

convergence of sequences:

Returning to sequences, we say that a sequence (xn) of points in Rd con-
verges to a point x in Rd, in case the points of the sequence are getting closer
and closer to the point x. More precisely, given ǫ > 0, there is a N such that
d(xn, x) < ǫ for all n ≥ N . We denote this by xn → x.

It is useful to explain this notion in terms of sequences of real numbers
familiar to us.

Theorem: Let (xn) be a sequence in Rd and a ∈ Rd. Then the following
are equivalent.

(i) xn → a.
(ii) given ǫ > 0, there is N such that |xn

j − aj| < ǫ for each j; 1 ≤ j ≤ d
and for each n ≥ N .

(iii) For each j, xn
j → aj.

Most of you could guess the proof, I suggest you practice writing proof.

This will immediately tell us several things. If un → u and vn → v, then
(un+vn) → (u+v). Also if we have real numbers αn → α, then αnun → αu.
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In other words the vector space operations are respected by this notion of
convergence.

Thus for example the sequence (1/n, 1 + 2−n) → (0, 1).
The sequence (e−n sinn, e−n cosn) → (0, 0). You plot this sequence and

see that it spirals around the origin, getting closer to (0, 0). Intuitively speak-
ing, it is not heading in any fixed direction.

continuous functions:

A function f : Rd → R is continuous at a point a if for points close to
a functional values are close to f(a). More, precisely, given ǫ > 0, there is
a δ > 0 such that |f(x) − f(a)| < ǫ whenever |x − a| < δ. A function is
continuous if it is continuous at every point.

The concept of continuity makes sense, and is useful, for functions not
necessarily defined on all of R. suppose f is defined on a set S ⊂ Rd and
a ∈ S. We say that f is continuous at a if the following happens: given ǫ > 0
there is a δ > 0 such that |f(x)− f(a)| < ǫ whenever |x− a| < δ and x ∈ S.

Just as in the case of real line, we have the following result.
Theorem: Let f be defined on S ⊂ Rd and a ∈ S. the following are

equivalent.
(i) f is continuous at a.
(ii) f(xn) → f(a) whenever (xn) is a sequence of points in S and xn → a.

You should be careful, superficial appearance may be deceptive. Consider
the function

f(x, y) =
xy

x2 + y2
; (x, y) 6= (0, 0); f(0, 0) = 0.

If you fix any number x, say, 4 or π or zero, whatever, then y 7→ f(π, y) is a
function of one variable. Similarly when you fix a value of y, say,

√
2, then

x 7→ f(x,
√
2) is a function of one variable. In the present example these are

all continuous functions. However the function f is not a continuous function
on R2. Reason: calculate f(1/n, 1/n) and see.

Does the intermediate value theorem hold? Yes. Suppose f is a function
defined on all of Rd. Let f(a) = 4 and f(b) = 20. Is there a point c such
that f(c) = 15? Yes. Join a and b by straight line. In other words consider
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the set {λa + (1 − λ)b : 0 ≤ λ ≤ 1}. This is not part of real line, but none-
the-less looks like a line segment and there must be a point on this line with
value of f as desired. In fact, if we define g(λ) = f(λa + (1 − λ)b), then g
is a continuous function on the interval [0, 1] and from what you have learnt
earlier, there must be a number λ with g(λ) = 15 giving what we wanted.

But what happens if the function is not defined on all of R? If you can
draw paths joining points, then the result should be true. Yes. We take this
occasion to develop some set theoretic terminology.

Open, Closed, Connected sets:

For a point a ∈ Rd and a real number r ≥ 0, we put

B(a, r) = {x ∈ Rd : ||x− a|| < r}. B(a, r) = {x ∈ Rd : ||x− a|| ≤ r}.
These are called the open ball and closed ball respectively, with center a
and radius r. As already seen earlier, in R this amounts to the intervals
(a− r, a+ r) and [a− r, a+ r] respectively. In case of R2, B(a, r) is precisely
points inside the circle with centre a radius r. And B(a, r) is precisely set of
points inside as well as points on the circle.

A set V ⊂ Rd is open if whenever a ∈ V , some space around a is also
in the set V . More precisely, there is an r > 0 such that B(a, r) ⊂ V . For
example in R, the set of rational numbers, the set [0, 1] are not open where
as the set (0, 1) is open.

Clearly union of any number of open sets is open. In fact if a point a is
in the union, then it must be in one of those sets and then some ball around
is contained in that set and hence in the union. Also intersection of finitely
many open sets is open. In fact if a is in the intersection then it is in all of
them so some ball around a is contained in each of them, take minimum of
those finitely many radii to see that this ball around a is contained in the
intersection.

Each of the sets (−1/n,+1/n) are open sets and their intersection is just
the singleton {0} which is not an open set.

Let S ⊂ Rd and a ∈ Rd. We say that a is a limit point of the set S if every
B(a, r) contains a point of S other than a. We say that a set C ⊂ Rd is closed
if all limit points of S are in S. In other words the set is ‘closed under limits’.
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Just as in case of R we can show that point a is a limit point of S iff
there is a sequence (xn) such that each xn 6= a and xn → a.

A set is closed iff its complement is open. Let us prove this. Let A be the
set. suppose A is open. If a ∈ A then there is r > 0 such that B(a, r) ⊂ A.
In other words, it has no point of Ac. Thus if you take a point of A it can
not be a limit point of Ac. As a result all limit pouts of Ac are already in
Ac. Thus Ac is closed.

Conversely, let us assume that Ac is closed. To show that A is open, fix
a ∈ A. If we can not show r > 0 such that B(a, r) ⊂ A, it means that every
B(a, r) contains points of Ac. This is precisely the statement that a is a limit
point of Ac, see definition. But then Ac does not contain its limit point a,
contradicting that Ac is closed.

This shows that closed sets are precisely complements of open sets. There
are sets which are neither closed nor open. For example consider the set [0, 1).

A set S ⊂ Rd is connected if whenever you cut it into two pieces, there is
a point which is on the boundary of both pieces. More precisely, if S = A∪B
where A 6= ∅, B 6= ∅, A ∩B = ∅ then there is a point x ∈ S such that x is a
limit point of A and also x is a limit point of B.

For example very interval contained in R is connected and actually these
are the only connected sets in R. Recall, interval means whenever there are
two numbers in the set, everything in between is also in the set.

Returning to intermediate value property, here is the precise result.

Let S ⊂ Rd be a connected set and f : S → R be continuous. Then f
has intermediate value property.

Indeed, let α < γ < β be three numbers and α, β are both in the range
of f . let us define

A = {x ∈ S : f(x) ≤ γ}, B = {x ∈ S : f(x) ≥ γ}
Since α and β are in the range of f it is clear that these sets are non-empty.
Also S = A ∪ B.

The set A contains all its limit points. Indeed let xn ∈ A for all n and
xn → x. Then f(xn) ≤ γ for all n and f(xn) → f(x). Hence f(x) ≤ γ. Thus
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x ∈ A. Similarly B contains all its limit points.

Thus there is no point of S which is a limit point of both A and B. In
case A ∩ B = ∅ we have a contradiction for the connectedness of S. Thus
there is a point common to both A and B. Clearly value of f at such a point
equals γ. This proves the intermediate value property.

The argument that we gave earlier using paths is also interesting and let
us show the following interesting fact. Suppose that V is a connected open
set. Then any two points of V can be connected by a path which lies entirely
in V . We have seen several open sets, U -shaped; star shaped, open sets with
holes and so on where it was tricky to join points by a path. The fact that
we can do at all is a miracle and definitely needs proof. Also, this involves
absolutely no complicated maths. If you omit ‘open’ it is no longer true in
general. Of course if you omit ‘connected’ it is never true.

Well, what do we mean by path? A path is a continuous function
γ : [0, 1] → Rd. This is called path joining the points γ(0) and γ(1). The
path lies entirely in a set if all values of γ belong to that set.

Returning to our problem, let V be an open connected set. Let us agree
temporarily to say x ∼ y if we can join x and y by a path entirely lying in
V . Fix any point a ∈ V you like. Let

A = {x ∈ V : x ∼ a}; B = {x ∈ V : x 6∼ a}.
Clearly A and B are disjoint. Also A is non-empty. Indeed, using the fact
that V is open take r > 0 with B(a, r) ⊂ V . Every point in this ball can be
joined to a by straight line which lies entirely in V . Further A ∪B = V .

We show A is open. Let x ∈ A. Take r > 0 such that B(x, r) ⊂ V , pos-
sible because V is open. Every point of this ball can be joined to a because
you join to x and then draw a straight line from x to the point in the ball. In
other words, this entire ball is contained in A. Thus A is open. In particular,
no point of A can be limit point of B.

We show that B is open. Let x ∈ B. Take r > 0 with B(x, r) ⊂ V . If
any point of this ball can be joined to a, then we can join that end point to
x by straight line contradicting the fact that x can not be joined to a. In
other words this entire ball is contained in B. Thus B is open. In particular,
no point of B can be limit point of A.

9



If both the sets A, B are non-empty, then connectedness of V is contra-
dicted. Since A is already known to be non-empty, we conclude that B must
be empty. This proves our result.

There are many interesting properties and facts about these three con-
cepts; open, closed, connected sets. We can not afford to spend much time
on these matters; even if we do, some of you may find it rather abstract. We
pick them up when needed.

Differentiation:

The idea of derivative is to understand the rate at which a function is
changing; or to find the best linear function that approximates ‘near’ a given
point or to understand velocity etc.

Let f : R2 → R be given and a = (a1, a2) ∈ R2.
Remembering our expertise on R, we can try to get functions of one

variable using f . This is easily done. We can restrict the function to the
horizontal line and study. Thus put,

g(x) = f(x, a2).

This is a function of one variable. If it has a derivative at the point a1, it is
reasonable to feel that this is the rate of change at a when you consider the
horizontal line, that is, the direction of x-axis. If so, then we look at

lim
h→0

f(a1 + h, a2)− f(a1, a2)

h
= fx(a1, a2).

When this limit exists, it is called partial derivative of f w.r.t. x at the point
a. This has several notations

fx(a);
∂

∂x
f(a);

∂f

∂x
(a); f1(a); Dxf(a).

Or, one could try to understand the function along the y-axis; in other words,
see if the function y 7→ f(a1, y) has a derivative at a2. It is reasonable to feel
that this is the rate of change at a when you consider the vertical line, that
is the direction of y-axis. If so, then we consider

lim
k→0

f(a1, a2 + k)− f(a1, a2)

k
= fy(a1, a2).

This is called (when it exists) partial derivative of f w.r.t. y at the point a.
This has several notations

fy(a);
∂

∂y
f(a);

∂f

∂y
(a); f2(a); Dyf(a).

10



Interestingly, even if these partial derivatives, vertical and horizontal, boh
exist at a point, the function need not be continuous. Try the example given
earlier xy/(x2 + y2). Moreover, there are several other directions, lines pass-
ing through the given point and we can talk about the rate of change along
all those lines. Situation appears unmanageable.

Let us see what we are lead to if we take the other attitude: what is the
best linear fit?
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