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integrability:

we shall now prove the following result:

Q is a rectangle [a, b]× [c, d] and f : Q→ R is a bounded function whose
set of discontinuity points is a small set.

Then f is integrable.

Let ǫ > 0. We shall exhibit Π such that U(Π)− L(Π) < ǫ. Tis is done in
a few simple steps. fix M > 1 such that |f(p) ≤M for all points p ∈ Q. Let
α = (b− a)(d− c), area of the rectangle Q.

First consider the set

D =
{

p ∈ Q : O(p) ≥
ǫ

4Mα
.
}

we know that D is a closed bounded set, that is, compact. Since it is a
subset of a small set, it is also small, we can cover it by finitely many open
rectangles S0 whose total area is at most ǫ/4M .

Take each open rectangle in S0 , consider the corresponding closed rect-
angle and denote this family by S. This is a finite family of closed rectangles
with total area still at most ǫ/4M . remember that each point of D is in
the interior of one of these rectangles. we assume that all our rectangles are
contained in Q, otherwise take the closed rectangle and intersect with Q. It
is again a closed rectangle.

Consider the usual product partition starting from S. That is, take all the
corners of rectangles of S, their x-coordinates will give a partition η1 of [a, b]
and their y-coordinates gives a partition η2 of [c, d] and let η = η1×η2 be the
product partition. Clearly, every rectangle in S is union of rectangles from η.

This partition has two types of rectangles. Type 1: part of a rectangle of
S. Type 2; rectangle that does not overlap with any rectangle of S. Whatever
partition Π we produce later on, it will be finer than the present partition
η. Thus every rectangle R ∈ Π will be contained in some rectangle of η. Let
us say a rectangle of Π is type I if it is contained in a type 1 rectangle of η,
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otherwise Type II. Thus if we denote

A =
∑

{ [sup
R

f − inf
R
f ] a(R) : R ∈ Π, Type I}

B =
∑

{ [sup
R

f − inf
R
f ] a(R) : R ∈ Π, Type II}

U(Π)− L(Π) = A+B.

let us observe one thing. No matter what our future partition Π is, we have
A < ǫ/2. Because in each rectangle of type I, we can bound the sup minus inf
by 2M . Thus the sum corresponding to the type I rectangles is at most 2M
times total area of those rectangles. But their total area is at most ǫ/4M .
Thus

A ≤ 2M
ǫ

4M
=
ǫ

2
.

Let us consider a rectangle T of η of type II. At each point of T we have
oscillation at most ǫ/4Mα. Observe a subtle point. Each point of D is in the
interior of one of the rectangles of S. Thus if you take a rectangle of type
II, then even at the boundary points of this rectangle we have oscillation
smaller than ǫ/4Mα. (if it were larger, the point would be in the interior of
one of those rectangles etc). Thus by one of the previous theorems there is
a partition of T , say π(T ) such that

U(π(T ))− L(π(T )) <
ǫ

4Mα
a(T )

. Get such a partition for each T of type II. Consider the product partition
made up of all the rectangles of all these π(T ) as T ranges over type II rect-
angles and all rectangles in η. Remember this means the following. Take all
x-coordinates of all corners of all these rectangles mentioned and similarly
the y-coordinates and consider the product partition Π.

Clearly this Π is finer than η. From the work we did above, we only need
to show that that B < ǫ/2. again keep a subtle point in mind. if you take
the ‘trace’ of this grand partition on T above, you may not get back π(T )
because the other corners also influence this grand partition. Think about
it. But of course the trace of this Π on T will be finer than π(T ) and hence
by the property of upper and lower sums we have

∑

{ [sup
R

f − inf
R
f ] a(R) : R ∈ Π, R ⊂ T}

≤ U(π(T ))− L(π(T )) ≤
ǫ

4Mα
a(T ).
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as a consequence

B =
∑

{ [sup
R

f − inf
R
f ] a(R) : R ∈ Π, Type II}

=
∑

T type II

∑

{ [sup
R

f − inf
R
f ] a(R) : R ∈ Π, R ⊂ T}

≤
∑

T type II
U(π(T ))− L(π(T )) ≤

∑

T type II

ǫ

4Mα
a(T ).

≤
ǫ

4Mα
α ≤

ǫ

2
.

This completes the proof.

Let f and g be two (bounded) functions on a (bounded) rectangle Q and
assume that D = {(x, y) : f(x, y) 6= g(x, y)} is contained in a small compact
set. Then f is integrable iff g is integrable. More over when they are inte-
grable, their integrals are same.

Proof is very simple. Incidentally the hypothesis implies that D itself is
small. But the compact containment tells us that given any ǫ > 0 you can
cover the set by finitely many rectangles of small total area.

Suppose that f is integrable. Let ǫ > 0 be given. Let |f | < M and
|g| < M . Take any partition Π of Q such that U(Π, f)− L(Π, f) < ǫ. cover
D by finitely many open rectangles of total area smaller than ǫ/(2M |Q|),
where |Q| is area of the rectangle Q. Take a product partition η finer than
these finitely many rectangles and Π. When you calculate U or L then the
summand that participates in the sum is same for both f and g in all rect-
angles except those that are involved in covering D. But for each of the
rectangles T involved in covering D the summand is at most 2M |T | and
hence their sum is at most ǫ/2. Thus U(f) and U(g) differ by at most ǫ.
Same argument shows that L(f) and L(g) also differ by at most ǫ. Thus in
particular, U(g) − L(g) < 4ǫ. Since ǫ > 0 is arbitrary, this shows that g is
integrable.

This also shows that integrals are same too. (why?)

definition of integral:

So far we have been discussing a very very special case of integration. We
are dealing with integral for bounded functions defined on a bounded rectan-
gle (with sides parallel to the usual axes). We have defined upper and lower
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sums by taking product partitions with sides parallel to the axes. These are
the simplest.

The whole thing appears very very unsatisfactory. However when we
complete the discussion you see that you can take your function on any kind
of (reasonable) bounded region, not necessarily rectangle. you can also take
any kind of reasonable partition of the region. I am using the adjective rea-
sonable because we need to definitely put some conditions, but the condition
would not be serious; in the sense you have to work hard to find cases not
satisfying the conditions we put!

By the way, do keep in mind, we already know that we can take parti-
tions into rectangles with sides parallel to the axes, not necessarily product
partitions.. You get the same sup of all lower sums and you get the same inf
of all upper sums.

So now let us implement the idea described before introducing small sets.
Take a bounded set S and bounded real function f on S. Take any rectangle
Q ⊃ S. This is possible because S is bounded. Define g on Q by g(p) = f(p)
if the point p ∈ S and for points p ∈ Q− S put g(p) = 0.

Say that f is integrable on S if g is integrable on Q and in that case
declare value of the integral

∫

S
f =

∫

Q
g.

The first question to be addressed is whether this definition depends on
the Q taken. if you take a bigger rectangle Q′ ⊃ Q, then you see that it
makes no difference. You can express Q′ − Q as union of non-overlapping
rectangles, one of them being Q. (First rigorously prove that if a rectangle
is contained in another then the corresponding sides are contained in one
another and proceed).

We already had a theorem: A function is integrable on a rectangle which
is union of non-overlapping rectangles iff it is integrable on each of these
rectangles and then integral is sum of the integrals. apply this theorem to
see integrability of f as well as the value of integral remains same.

Now if you take two different rectangles Q ⊃ S and Q′ ⊃ S, possibly
one not contained in the other, you can arrive at the same answer by taking
another bigger rectangle which includes both Q and Q′ and comparing both
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with that rectangle.

The second thing to be attended to is whether it gives the same answer as
earlier in case the set S is already a rectangle. This is easily settled because
you can take the original rectangle itself as the Q containing S.

The third question is whether many functions are integrable and whether
integral has properties that we would like, linearity etc. We shall discuss this
now.

Even though we made the definition for functions defined on an arbitrary
set S, we shall be interested in concrete sets. For example f be a continu-
ous function on the disc {(x, y) : x2 + y2 ≤ 1}, is it integrable? Or f is a
continuous function on a closed triangle or quadrilateral which may not be a
rectangle. is it integrable? all these questions are answered rather easily. if
you take any rectangle which contains the disc or triangle or whatever and
define g on the rectangle as suggested, namely, define zero for the new points,
then it is easy to see that this function has all its discontinuity points con-
tained the boundary of the disc/triangle/quadrilateral. Thus the only thing
one needs to verify is that these sets are small.

The set D = {(x, y) : 0 ≤ x = y ≤ 1} is a small set. Indeed, the set

n
⋃

1

[(k − 1)/n, k/n] × [(k − 1)/n, k/n]

is a union of rectangles, contains D and sum of areas of these rectangles is
1/n. Thus D is small. This is prototype of proof.

Let ϕ : [0, 1] → R be a continuous function. Then its graph

G = {(x, y) : 0 ≤ x ≤ 1; ϕ(x) = y}

and
H = {(x, y) : 0 ≤ y ≤ 1; ϕ(y) = x}

are small sets. This is seen as follows. let ǫ > 0 be given. get n ≥ 1 such
that

|x1 − x2| ≤ 1/n⇒ |ϕ(x)− ϕ(y)| < ǫ/2

Denote yk = ϕ(k/n). Then

G ⊂
n
⋃

1

[(k − 1)/n, k/n] × [yk − ǫ/2, yk + ǫ/2].
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a finite union of rectangles whose total area is at most ǫ. Similar argument
applies for H.

You can see that the interval could be any closed bounded interval, not
necessarily [0, 1]. Either you can repeat this proof or use that a finite union
of small sets is small.

In particular you get that boundaries of rectangles, discs, triangles, quadri-
laterals are all small. There are open sets whose boundaries are not small,
but you need to work a little hard. There are also simple open sets whose
boundaries are not small. Here simple means their boundaries are given as
image of a continuous function on the unit interval (a simple closed curve).
However to construct such things you need to work very vey hard. Thus the
open sets you come across have boundaries small.

Here are simple facts that follow from properties of integrals on rectangles
and properties of small sets.

(1) if f1 and f2 are integrable on S so is f1 + f2 and

∫

S
(f1 + f2) =

∫

S
f1 +

∫

S
f2.

39f is integrable and

∫

S
(39f) = 39

∫

S
f.

(2) Let S be a bounded open set whose boundary is small. suppose that
f is a bounded continuous function on S. Then f is integrable.

If you extend f to a rectangle, then the set of discontinuities are small.

Let us say that a set S has area in case the function f ≡ 1 (defined on
S) is integrable. In that case we put

a(S) =
∫

S
1.

We denote area by |S| also.

(3) If V is a bounded open set with small boundary, then it has area.
simply because the function 1 on V is continuous and (2) above takes care.
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Such sets arise often and let us give a name. an open set is good if it is
bounded and its boundary is small.

(4) if V is a good open set and if V = V ∪ ∂V then both have areas and
|V | = |V |.

this is because they differ on a small set and an earlier theorem takes care.

(5) if f ≤ g are both integrable on S then
∫

S
f ≤

∫

S
g.

(6) Let V be good open set and let m ≤ f ≤M on V , then

m a(S) ≤
∫

S
f ≤M a(S).

This follows from the above. We already knew f is integrable.

(7) Let S1 and S2 be disjoint sets and f1 and f2 defined on S1, S2 respec-
tively are integral. Define

S = S1 ∪ S2; f = f1 on S1; = f2 on S2.

Then f is integrable on S and
∫

S
f =

∫

S1

f1 +
∫

S2

f2.

This follows by taking large rectangle that includes both S1 and S2 and ap-
plying known results for integrals on rectangles. Observe that you are already
told that f1 and f2 are integrable and that S1 and S2 are disjoint.

(8) V is a good open set and f a bounded continuous function on V .
Then f is integrable on V (this means restriction of f to V is integrable on
V ) and f is integrable on V and

∫

V
f =

∫

V
f

This is because when you put both in a rectangle, they differ on a small set.
Go by the rule book. Take large rectangle Q that includes V . when you
calculate

∫

V

f you take g on Q to be zero outside V . When you calculate
∫

V

f

you take g′ to be zero outside V .
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(9) Let V1 and V2 be good open sets, then so is their union and

|V1 ∪ V2| = |V1| ∪ |V2|.

This follows from (7).

Thus area adds up for disjoint open sets.

Let V be an open set with small boundary. A finite collection of open
sets Π is said to be a good partition of V , if they are disjoint open subsets of
V each having a small boundary and their closures cover V . By closure of
an open set W we mean W ∪ ∂W .

if you feel uncomfortable with this definition you can consider V to start
with. Then the family {W : W ∈ Π} is indeed a partition of V . Theses sets
are non-overlapping with union equal to V .

We shall now show that you can take any nice open set and any good
partition of it to calculate integrals. This removes the unnatural conditions
of taking partitions with rectangles sides parallel to the axes.

We need a definition. For a bounded set A, diameter of A is defined by

d(A) = sup{d(p, q) : p ∈ A, q ∈ A}.

here d(p, q) is the distance between the two points p and q, that is ||p− q||.
if you take a disc with diameter a then the diameter of the set consisting of
the disc, as defined above, is indeed a, verify this.

For a collection Π of sets,

||Π|| = sup{d(A) : A ∈ Π}.

(10). Let V be a good open set. f be a continuous function on V . Given
ǫ > 0, there is an δ > 0 such that for any good partition Π of V with ||Π| < δ

|U(Π, f)−
∫

V
f | < ǫ; |L(Π, f)−

∫

V
f | < ǫ.

In other words even if you take finer and finer partitions with sets you
like and calculate upper or lower sums you will still get the integral we got.
But you need to take good partitions. After all, you need to calculate the
sup of the function and multiply by the area, so you need areas for your sets.
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Otherwise you can not calculate the sums.

if you feel uncomfortable with the function being given on V and integrals
being talked about are on V , you can take integrals also on V . an earlier
theorem tells you both are same.

Proof is simple. Using uniform continuity of the continuous function f
on the compact set V take δ > 0 so that

p, q ∈ V ; d(p, q) < δ → |f(p)− f(q) <
ǫ

2|V |
.

Let now be Π be any good partition. We have enough theorems above to
justify each of the following equalities.

L(Π, f) =
∑

T∈Π

mT |T | ≤
∑

T∈Π

∫

T
f =

∫

∪Π
f =

∫

V
f

Last equality is from the fact that ∪Π and V differ by a small set, namely
at most union of all the ∂T for T ∈ Π put together. similarly

U(Π, f) =
∑

T∈Π

MT |T | ≥
∑

T∈Π

∫

T
f =

∫

∪Π
f =

∫

V
f

finally

U − L ≤
ǫ

2|V |
|V | = ǫ/2.

This completes the proof.

Thus you can use some rectangles with sides not necessarily parallel to
the axes, some sets could be interior of triangles and so on. There is no
restriction.

We shall prove one theorem that will allow us to reduce all the double
integrals to integrals of one variable ‘at a time’. this is analogue of the fol-
lowing theorem we proved: if f is continuous on a closed rectangle, than the
repeated integrals are equal and in fact they equal the double integral.

Theorem: Let Q be a rectangle [a, b]×[c, d] and f be a bounded integrable
function. Define for each x,

H(x) =
∫ d

c
f(x, y)dy; G(x) =

∫ d

c
f(x, y)dy.
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Then G, H are integrable on [a, b] and

∫

Q
f =

∫ b

a
G(x)dx =

∫ b

a
H(x)dx.

The notation
∫ d

c
ϕ(y)dy.

is the upper integral of the function ϕ, it is the lower bound of all upper
sums of the function. Since our hypothesis is only that the function f is in-
tegrable on Q and it does not imply that for each x the function y 7→ f(x, y)
is integrable we need to take upper integral. similarly lower integral is the
sup of all lower sums.

Also you can consider the other iterated integrals too, that is, lower and
upper integrals w.r.t. x first. The corresponding statement is also be true.

Proof is simple. Let ǫ > 0. Since f is integrable, take a product partition
π1 × π2 = Π such that

U(f,Π)− L(f,Π) < ǫ.

let us see what will be U(H, π1). Take a rectangle T × S ∈ Π Then

mT×S(f) ≤ f(x, y); (x, y) ∈ T × S.

mT×S(f)|S| ≤
∫

S
f(x, y)dy.

∑

S∈π2

mT×S(f)|S| ≤
∑

S∈π2

∫

S
f(x, y)dy ≤

∫ d

c
f(x, y)dy.

(Justify this last inequality) Hence

∑

S∈π2

mT×S(f)|S| ≤ H(x); x ∈ T

∑

S∈π2

mT×S(f)|S| ≤ mT (H)

∑

T∈π1

∑

S∈π2

mT×S(f)|S||T | ≤
∑

T∈π1

mT (H)|T |

L(f,Π) ≤ L(H, π1)

Similarly
U(f,Π1) ≥ U(H, π1).
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Thus
L(f,Π) ≤ L(H, π1) ≤ U(H, π1) ≤ U(f,Π).

First of all this shows, since ǫ > 0 is arbitrary and the two extremities differ
by at most ǫ, that H is integrable. The same inequalities show that

∫

Q
f =

∫ b

a
H

Similarly argument holds for G, completing the proof.

In practice we have a continuous function f(x, y) defined on a region of
the following type

S = {(x, y) : a ≤ x ≤ b;ϕ(x) ≤ ψ(x).}

where ϕ and ψ are continuous functions defined on the interval [a, b] Thus
the boundary of S consists of the graphs of ϕ, ψ and the two vertical lines
at a and b. here it is assumed that ϕ(x) ≤ ψ(x) for all x ∈ [a, b]. Since
the boundary of S is small and f is continuous we first conclude that f is
integrable.

To integrate we can apply the previous theorem. Of course, you need not
complicate life because for each x this function y 7→ f(x, y) is integrable. To
be more precise, if you go by the rule book, you will put S in a rectangle,
apply previous result, then if you look at the vertical line at x the function
y 7→ f(x, y) is continuous except possibly at the two points y = ϕ(x) and
y = ψ(x). this is integrable. You need not make fuss about upper and lower
integrals.

thus we conclude
∫

S
f =

∫ b

a

[

∫ ψ(x)

ϕ(x)
f(x, y)dy

]

dx.

The main point is that double integral is reduced to integrating one vari-
able at a time, something we learnt last semester.

Let us work out one example: Find the volume of the ellipsoid,

{(x, y, z) :
x2

a2
+
y2

b2
+
z2

c2
≤ 1}

Here a, b, c > 0. Consider the region in R2

S = {(x, y) :
x2

a2
+
y2

b2
≤ 1}
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and define the function

f(x, y) = +c

√

1−
x2

a2
−
y2

b2

The ellipsoid is the region bounded by the function −f(x, y) and f(x, y) on
the region S. Thus the volume required is found by calculating

2
∫

S
f

This is done by the above method and we get

4

3
πabc.

In particular, if we have the sphere of radius r , that is a = b = c = r we get

4

3
πr3.

Change of variables:

We shall now proceed to analogue of the change of variable formula.

Recall that in one dimension it states the following. Let V be a bounded
interval. Let ϕ be a C1 function on V , which is one-to-one and onto ϕ(V )
another bounded interval. Let f be a bounded continuous function on ϕ(V ).
Then ∫

V
f(ϕ(x))|ϕ′(x)|dx =

∫

ϕ(V )
f(y)dy.

of course we did not put modulus sign, stated it when ϕ is increasing and
when it is decreasing separately. In practice, this translates to: put y = ϕ(x)
so that dy = ϕ′(x)dx.

The exact same formula remains true even in R2. In one dimension, we
had an easy proof of this formula taking recourse to the chain rule of differ-
entiation and fundamental theorem of calculus. Here we do have chain rule,
but at this moment we do not have fundamental theorem of calculus. We
have to take recourse to a different method.

In one dimensions, a small interval around x is transformed to an interval
around y = ϕ(x) and the length of this interval is ‘approximately’ ϕ′(x)dx.
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So first we need to understand how areas change under mappings. Of
course the simplest mappings are linear mappings. Just bear in mind that
R2 is column vectors. For typographical convenience we are showing as rows.
usually books put a transpose, but we are not taxing ourselves with this. This
may be confusing, but as long as you know what you are talking about, it
will not be confusing.

Consider the map: interchange coordinates

T (x, y) = (y, x)

This is given by the matrix

T =

(

0 1
1 0

)

Assuming you will not get confused, we are using the same symbol for the
linear map as well as its matrix representation. If you take any rectangle Q
(sides parallel to the axes, to start with) then

|T (Q)| = |Q|

In other words the area is multiplied by |T |, the absolute value of the deter-
minant of the matrix representing T .

Consider the map: multiply a coordinate

T (x, y) = (31x, y).

This is given by the matrix

T =

(

31 0
0 1

)

if you take a rectangle Q (sides parallel to the axes, to start with)

|T (Q)| = 31|Q|.

again the area is multiplied by |T |, absolute value of the determinant of the
matrix representing T . Try multiplication by −31 too.

Consider the map: add one coordinate to the first one

13



T (x, y) = (x+ y, y).

This is given by the matrix

T =

(

1 1
1 0

)

We see for rectangle (sides parallel etc)

|T (Q)| = |Q|

again the area gets multiplied by |T |. of course this is not as obvious as the
earlier ones. take first the unit square, that is the rectangle [0, 1] × [0, 1],
verify that it is transformed to a parallelogram. Then take other rectangles.

It is believable that this should be true for any linear transformation.
Let us consider only non-singular transformations because these are the only
things we will be interested in. (In any case if you take a singular linear
transformation, the statement we are going to make is true and trivial.)

Fact: If T is a non-singular linear transformation of R2 to itself with
matrix representation T , then for any bounded rectangle with sides parallel
to the axes

|T (Q)| = |T ||Q|.

This is actually done because any non-singular transformation is a com-
position of the above three types!
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