
CMI (BSc I)/BVRao Calculus II, Notes7 2014 seventh week

inverse function theorem:

We proved the inverse function theorem assuming that f ′(a) = I. We
shall now deduce the general case. We start with some auxiliary observa-
tions.

Let A be a 2 × 2 matrix and consider the linear transformation of R2 to
itself, ϕ(x) = Ax. This is a continuous map, simply because each coordinate
of ϕ(x) is a linear combinations of coordinates of x. If A is non-singular,
then it has an inverse A−1 and the map x 7→ A−1x is likewise continuous.

When A is non-singular, then for every closed set S, the set

A(S) = {Ax : x ∈ S}

is closed. Indeed, if yn ∈ A(S) and yn → y, then A−1(yn) ∈ S and
A−1(yn) → A−1(y) and S being closed we conclude A−1(y) ∈ S which shows
that y = A(A−1y) ∈ A(S). Since closed sets are precisely complements of
open sets, we conclude that for any open set V , the set A(V ) is open.

Returning to the inverse function theorem, let f : Ω → R2 be C1 function
with f ′(a) = A, non-singular. Then define the function g(x) = A−1f(x) on
Ω. This is again a C1 function and g′(a) = A−1A = I. Thus there is are
open sets U , V such that a ∈ U , b = g(a) ∈ V , g is one-to-one on U onto
V , the inverse map h : V → U is C1, and h′(y) = [g′(x)]−1 for y ∈ V and
g(x) = y.

the set W = A(V ) is an open set. Easy to see that f : U → W is one-one
on U onto W , indeed f(x) = Ag(x). The inverse map ξ : W → U is given by
ξ(z) = h(A−1z) and is hence composition of C1 maps. Thus it is again C1.
Chain rule now verifies the formula for the derivative of the inverse map ξ.

Integration:

We shall now proceed to imitate the concept of lower sums and upper
sums and the concept of integral for function of two variables. Of course,
this is not just for the sake of imitation. Just as finding areas motivated us
towards integration last semester, finding volumes is one of the reasons for
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integrating functions of two variables, We do not spend time but you should
understand why we are doing all this.

Basically, we would like to start with a bounded function defined on a
bounded region; partition the region into small sets; for each set T in the
partition wish to calculate a(T )M(T ) where a(T ) is the area of T and M(T )
is the supremum of the function in that set T . Sum of all these will then give
us the upper sum. Similarly we define the lower sum.

There is one problem in implementing above plan. How do we know the
area of T in the calculation above? We follow the maxim: solve the simplest
problem first. From high school we are familiar with rectangles and their
areas. so we decide to partition into rectangles. But if your original region
is not a rectangle, then you can not partition it into rectangles.

Thus we consider, as a first step, bounded functions defined on rectan-
gle and also consider partitions into rectangles with sides parallel to the axes.

Till further announcement, rectangle always means usual rectangle with

sides parallel to the two standard axes.

Let S = [a, b]× [c, d] be a (closed) rectangle and f : S → R be a bounded
function. Recall a partition of the interval [a, b] is a finite sequence of points

a = a0 < a1 < a2 < · · · < ak = b

or equivalently the intervals

[a0, a1], [a1, a2], · · · , [ak−1, ak].

If we also have a partition of [c, d]

c = c0 < c1 < c2 < · · · < cl = d

then we define product partition of the rectangle S as the collection of the
non-overlapping rectangles,

Sij = [ai, ai+1] × [bj, bj+1]; 0 ≤ i ≤ k − 1; 0 ≤ j ≤ l − 1.

Such partitions of S are called product partitions. It is denoted simply as
Π = {Sij}.
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Let us agree on meanings to some phrases. if we have a rectangle T =
[α, β] × [γ, δ] we say that points

{(x, y) : α < x < β; γ < y < δ}

are interior points of the rectangle T . In other words it is precisely the set
(α, β) × (γ, δ). The remaining points of T are called boundary points of T .
In other words boundary consists of

{α} × [γ, δ] ∪ {β} × [γ, δ] ∪ [α, β] × {γ} ∪ [α, β] × {δ}.

Two rectangles are non-overlapping if any point common to both of them is
boundary point of both the rectangles. Thus, as sets they may not be dis-
joint, but they have no common interior points. Any two different rectangles
above are non-overlapping.

For a rectangle T as above, its area is (β − α) × (δ − γ). This is also
denoted by |T |.

Let us now consider a product partition as above of S. Denote

Mij = sup{f(x) : x ∈ Sij}, mij = inf{f(x) : x ∈ Sij}.

U(f,Π) =
∑
i,j

Mij|Sij| L(f,Π) =
∑
i,j

mij|Sij|.

U(f,Π) is called the upper sum for the partition Π and L(f,Π) is called the
lower sum.

Say that f is integrable if the supremum of all lower sums equals infimum
of the upper sums (over all product partitions). We denote this common value
by ∫

S
f ;

∫
S
f(x, y)d(x, y),

∫

[a,b]×[c,d]

f(x, y)d(x, y).

this is called the integral or double integral of f .

Here are standard facts whose proofs are exactly same (?) as in the one
dimensional case.

Theorem: L(f,Π) ≤ U(f,Π).

Recall that a partition η of the interval [a, b] is finer than a partition π if
every point that appears in π also appears in η. In other words η is obtained
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by adding more (possibly zero) points to π. Thus a finer partition cuts the
interval into more pieces or into finer pieces. A product partition Π2 is finer
than Π1 if the corresponding partitions on each side are finer for Π2.

Theorem: If Π2 is finer than Π1, then

L(f,Π1) ≤ L(f,Π2); U(f,Π1) ≥ U(f,Π2).

In other words as the partition becomes finer the upper sums reduce while
the lower sums increase.

Since we are considering only product partitions the theorem above was
stated for product partitions, but it is true for any partitions, one finer than
the other.

Theorem: For any partitions Π1 and Π2, L(f,Π1) ≤ U(f,Π2).

Theorem: f is integrable iff for any ǫ > 0, there is a product partition Π
such that U(f,Π) − L(f,Π) < ǫ.

Proof: f is integrable iff sup of lower sums equals inf of upper sums. this
is same as saying that for every ǫ > 0, there is a lower sum and an upper sum
which are ǫ-close. Since lower sums increase and upper sums decrease, this
is same as saying that there is one partition for which the lower and upper
sums differ by at most ǫ.

Theorem: Every continuous function is integrable.

The proof is along the expected lines. Given ǫ > 0, use uniform conti-
nuity to get a product partition so that within each rectangle of the par-
tition the values of the function differ by at most ǫ/Aa(S). Remember
a(S) = (b− a)(d− c), area of S,

We have been considering product partitions. We can consider any par-
tition into rectangles, in fact, any reasonable partition. But to see that this
also leads to the same answer, we have to wait. Right now, we can at least
observe one thing. Any partition into rectangles parallel to the axes can also
be considered, we arrive at the same answer.

Let us for this para, by a partition mean partition into rectangles with
sides parallel to the axes. Superficially it appears if you allow all possible, not
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necessarily product, partitions you have many possibilities. But the crucial
fact is the following.

Theorem: given any partition (rectangles, sides parallel to the axes) Π
there is a finer partition Π1 which is product partition.

In fact you only have to consider all the corners of all the rectangles of
the partition Π, take their first coordinates as the partition of the side [a, b];
take all the second coordinates of all the corners as the partition of [c, d] and
consider Π1 to be the product of these partitions of the two sides.

Let A be the set of all lower sums corresponding to only product partitions
and B be the set of all lower sums corresponding to all partitions (into
rectangles with sides parallel to the axes). Thus A ⊂ B, so that supA ≤
supB.

Since finer partitions (whether product or not) have larger lower sums,
the theorem above tells that for every number in B there is something larger
than that in A. Thus supB ≤ supA. This shows that A and B have the
same sup.

Thus whether you make lower sums with product partitions or you make
lower sums with all possible partitions (rectangles with sides parallel to the
axes) you get the same sup. Similar remark holds for the upper sums. As a
consequence if you define integrability using these partitions you get nothing
new.

Theorem: If f and g are (bounded) integrable then so is f + g and cF
where c is any number. Further,

∫
(f + g) =

∫
f +

∫
g;

∫
cf = c

∫
f.

First observe the following. If f and g are two functions (real valued) on
a set T with supremums M(f) and M(g), then for any point x ∈ T

(f + g)(x) = f(x) + g(x) ≤ M(f) + M(g).

Thus M(f + g) ≤ M(f) + M(g). Similar remark applies for the infimums.
This leads to the followng. For any partition Π

L(f) + L(g) ≤ L(f + g) ≤ U(f + g) ≤ U(f) + U(g).

Since f and g are integrable, take partitions Πn such that

L(f,Πn) →
∫
f ; U(f,Πn) →

∫
f ;
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L(g,Πn) →
∫
g, U(g,Πn) →

∫
g.

Then the earlier display shows that

L(f + g,Πn) →
∫
f +

∫
g; U(f + g,Πn) →

∫
f
∫
g.

Tis shows that f + g is integrable and
∫

(f + g) =
∫
f +

∫
g.

Similar and simpler argument shows
∫
cf = c

∫
f.

Let S be union of non-overlapping rectangles S1, · · ·Sk all having sides
parallel to the axes. Then
Theorem: f is integrable on S iff it is integrable on each Si and then

∫
S
f =

∑∫
Si

f.

Strictly speaking, we should not say f is integrable on Si, we should say
restriction of f to Si is integrable on Si. Similarly, we should be writing

∫
Si

fi

where fi is restriction of f to Si. But we shall not be so strict.

Proof: If f is integrable on S then you can take a partition Π such that
U(f, S,Π) − L(f, S,Π) < ǫ. By taking a larger partition, if necessary, we
assume that each Si is union of sets in the partition. If this is not already so,
you only need to put-in the x coordinates of all the corner points of all the Si

in the partition of [a, b] on the x-axis, and similarly put-in the y coordinates of
all the corner points of all the rectangles Si to get a partition of [c, d]. clearly
for each i, those sets in Π that are contained in Si is a product partition Πi

of Si and

U(f, Si,Πi) − L(f, Si,Πi) ≤ U(f, S,Π) − L(f, S,Π) ≤ ǫ

showing that f is integrable on each Si.

Conversely, if f is integrable on each Si then you take product partition
of ηi of Si for each i so that

U(f, Si, ηi) − L(f, Si, ηi) < ǫ/k.

Putting all the x coordinates of all the corners of all the partition rectan-
gles together we get a partition of [a, b] and and putting together all the
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y-coordinates of all the corners of all the partition rectangles together we get
a partition of [c, d] and thus we get product partition Π of S. If we restrict
this Π to Si we get a product partition Πi which is finer than the ηi we started
with on Si. Thus

U(f, S,Π) − L(f, S,Π) =
k∑
1

[U(f, Si,Πi) ≤ ǫ.

This shows that f is integrable on S.

In fact this last display can be strengthened into

U(f, S,Π) =
∑

U(f, Si,Πi); L(f, S,Π) =
∑

L(f, Si,Πi)

Small sets:

In case of functions of one variable, we did not answer the question: which
functions (bounded function on a bounded interval) are integrable. This was
because most of the functions that we come across at the elementary level
have finitely many discontinuities and we have shown that such functions are
integrable. This was enough for life to go on.

Unfortunately, in higher dimensions, we do need to tackle this problem
head on. The reason is the following. Afterall, we need to integrate func-
tions which areanot necessarily defined on rectangles, even if it ias defined on
rectangles, then the rectangle need not have sides parallel tot eh axes. Thus
partitions that we have been considering will be not enough. Of course, we
would not complicate too much. If f is afunction given on a bounded set Ω,
we just enclose Ω in a rectangle S, extend f to all of Ω by defining its value
to be zero for points of S − Ω to be zero.

But then even if we started with a nice continuous function on Ω, this
extensionn is rarely continuous on S and we need some assurance that we
have not destroyed continuity too much and this extended function on S is
indeed integrable. If moreover this value does not depend on which rectan-
gle you choose to enclose Ω, then we are justified to regard integral of this
extended function on the rectangle S as integral of f on Ω.

A set is small if it can be fit into any bag, no matter how small is the
bag. More precisely, a set A ⊂ R2 is small if given any ǫ > 0, we can get
finitely many or countable many rectangles S1, S2, · · · such that

∑
a(Si) < ǫ; A ⊂ ∪iSi.
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It does not matter whether we take closed rectangles or open rectangles
in the above definition. The reason is the following. If you can do with open
rectangles (ai, bi) × (ci, di) then you can, without changing areas consider
theirclosed rectangles [ai, bi] × [ci, di]. Conversely, if you can do with closed
recatngles, such a simple minded argument of removing boundary will not
work because those open rectangles may not cover all of the set A. But this
is achieved as follows. Let ǫ > 0 be given. Get closed rectangles with total
area smaller than ǫ/2 covering A. Increase each of the rectangles a little
bit so that the area of i-th rectangle is increased by only ǫ/2i+2 an make it
closed. These will do.

Clearly every single point set is small. Even a countable set is a small
set because you can useǫ/2i argument. In fact the samev ǫ/2i allows you to
show that union of countably many small sets is small. Also clear is that
subset of a small set is small. It is a nice exercise to show that this concept
agrees with your intuition by showing the following. A rectangle [a, b]× [c, d]
with a < b, c < d is indeed not small where as its boundary is small.

Here is then the relevance of small sets to our problem.

Theorem: Let f be a bounded function on a bounded rectangle S =
[a, b] × [c, d]. then f is integrable iff its set of discontinuity points form a
small set.

We shall prove this theorem. But we first need some preliminaries.

Oscillation:

so we have to finally understand discotinuity points. Of course we did
discuss a little about left limits, right limits and discontinuity points last
semester. But now we need to get a quantitative feeling for discontinuity.

Let f : S ⊂ R2 → R and a ∈ S. We want to understand how far away
from continuity is f at the point a. for δ > 0, let us define

O(a, δ) = sup{f(x) : x ∈ [a− δ, a + δ]} − inf{f(x) : x ∈ [a− δ, a + δ]}.

Here we have used a notation, [a − δ, a + δ] is not an interval but is the
rectangle [a1 − δ, a1 + δ] × [a2 − δ, a2 + δ]. This is suggestive if understood

8



carefully, otherwise it would be confusing.

In case the function is continuous at a then definition of continuity tells
us that, given any ǫ > 0 we can choose a δ > 0 so that O(a, δ) < 2ǫ. Observe
that O(a, δ) decreases as δ ↓ 0. Let us define

O(a) = lim
δ↓0

O(δ).

This is called oscillation of the function at the point a. Here is its importance.

Theorem: f is continuous at a iff O(a) = 0.

In fact if the function is continuous we have already seen that given ǫ > 0
there is δ > 0 such that O(a, δ) < 2ǫ and this holds for all smaller δ too. This
shows that O(a) = 0. Conversely, if O(a) = 0 then given ǫ > 0, there is a
δ > 0 so that O(a, δ) < ǫ. In particular |(x)− f(a)| < ǫ whenever |x− a| < δ
showing continuity of f at a.

Theorem: For any ǫ > 0, the set {a ∈ S : O(a) ≥ ǫ} is closed in S. That
is, if an → a and all these points an and a are in S and if each an is in this
set then so is a.

Note that if O(a) < ǫ then there is δ > 0 so that O(a, δ) < ǫ. But then
for every point b ∈ (a− δ, a+ δ) we have small square around b contained in
(a− δ, a + δ) which shows that O(b) < ǫ. In other words none of the an are
in this square ahowing an does not converge to a; a contradiction.

In defining oscillation we have used squares. It is alright to use recatngles,
but then O(δ) will be indexed by two numbers O(δ1, δ2), lengths of the two
sides. You should take limit as both δ1 → 0 and δ2 → 0. You get nothing
new, simply because every such rectangle contains a square.

You can also take instead of square around a, a disc around B(a, δ) =
{x : ||x − a|| ≤ δ} and define O(a, δ). Again since every square contains a
disc and conversely, you get nothing new.

As you may have noticed, we have been taking closed square or closed
disc. But you can take open squares or open discs too. Since closed squares
contain open squares and open square contains a closed square, we get noth-
ing new.

9



compact sets:

A closed bounded subset K ⊂ R2 is simply called a compact set. Com-
pact sets ahve the following nice property: if some one puts into many bags,
we can fit it in finitely many of those bags.

Theorem: Let K be a compact set and you have a collection of open
rectangles which cover K. This means that every point of K is in one of
these rectangles. Then you can select finitely many of the given rectangles
which also cover K.

The argument is standard and was seen several times. First put the set
K in a big closed bounded rectangle S. Let U be a collection of open rectan-
gles covering K for which the conclusion is false. Cut the rectangle into four
parts at the mid points of the sides, one of these parts can not be covered by
finitely many sets from U . Take one such part S1. Cut this into four pieces
as above and pick a part S2 so that the part of K in S2 can not be covered by
finitely many sets from U . Thus we get a sequence of closed rectangles (Sn)
which are decreasing.n fact lengths of sides are hlf length of the previous one;
the part of K in Sn can not be covered by finitely many sets from U . Cantor
intersection theorem gives you a point a common to all the rectangles which
will be in S because S is closed. This point is in some open rectangkle T of
the family U
and hence some Sn ⊂ T contradicting the choice of Sn.

back to integration:

suppose that f : S → R bounded function on a rectangle S = [a, b]×[c, d].
If O(a) < ǫ for all a ∈ S, then there is a product partition Π such that
U(Π) − L)Π) < ǫa(S).

Proof. For every point a ∈ S there is a open rectangle Ta such that
O(f, Ta) < ǫ. In stead of showing δ we are showing the rectangle Ta. These
open rectangles cover S and use finitely many of them to cover. Take their
intersection with S to obtain finitely many rectanglesT1, T2, · · · , Tk which
cover S and in each of them the sup minus inf of the fumction is < ǫ.. Now
do the usual thing. Take first coordinates of the corners of these rectangles
and the second coordinates of the corners to obtain partition of the sides of
S Take product partition. Within each rectangle fo the partition, we have
sup minus inf of the function is < ǫ. Thus for this partition Π, we have
U(Π) −  L(Π) < ǫa(S).
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We shall now prove the theorem on integrability. Let f be a closed
bounded rectangle and f : S → R be bounded, say |f | ≤ M . Let us as-
sume that the set D of points where f is not continuous is a small set. Fix
ǫ > 0. We wish to exhibit a partition so that U − L < ǫ. The idea is the
following. The set Dǫ = {x : O(x) ≥ ǫ/2a(S).} is a closed and bounded set
and hence is compact. Put each of these points in a small open rectangle of
area < ǫ/2Ma(S). Take finitely many of these which cover Dǫ. Let this part
of S be denoted S1. Thios finite collection already gives a partition of S1 On
the remaing part S2 = S − S1 the oscillation is small and we can make UL

smaller than ǫ/2 by proper choice of partition, using previous result. The
previous theorem is for a rectangle and our S2 is unlikely to be a rectangle.
We need to carefully argue and this we shall do later.

This is simple and will be precisely executed later..
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