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1 Budget Constraints

Our discussion so far has assumed that each agent has quasi-linear utility, meaning that it
acts to maximize its valuation vi(ω) for the chosen outcome ω minus the payment pi that
it has to make. Thus, a bidder’s utility is a linear function of the payment made. We
have placed no restrictions on payments, other than the minimal conditions that they are
nonnegative and no more than the bid bi(ω) agent i made for the chosen outcome.

In some important applications, payments are constrained. We first focus on budget
constraints, which limit the amount of money that an agent can pay. Sometimes, there is
little need to incorporate budget constraints. In a single-item auction, where we interpret
the valuation of an agent as its maximum willingness-to-pay, its valuation is presumably
bounded above by its budget. In other applications, especially where an agent might wind
up buying a large number of items, budgets are crucial.

For example, every keyword auction used in practice asks a bidder for its bid-per-click
(e.g., $.25) and its daily budget (e.g., $100). Per-item values and overall budgets model well
how many people made decisions in auctions with lots of items, especially when the items
are identical.

The simplest way to incorporate budgets into our existing utility model is to redefine the
utility of player i with budget Bi for outcome ω and payment pi as

vi(ω) − pi if pi ≤ Bi

−∞ if pi > Bi.

One can of course study smoothed version of this utility function, where there is a cost that
is an increasing function of the budget violation.
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Payment constraints such as budget constraints join the two other types of constraints
we’ve been operating under along: incentive constraints, often in the form of monotonicity;
and allocation constraints, such as allocating each good to at most one agent. Surplus
maximization, where payments appear neither in the objective function nor in the constraints
(other than being between 0 and bidders’ bids), is special. The VCG mechanism, and its
precursors in Lectures 2–4, maximizes surplus “ex post,” meaning as well as if all of the
private data is known a priori. Maximizing revenue, where payments participate in the
objective function, requires new auction formats and new measures of success (Lectures 5
and 6). The same is true of mechanism design with payment constraints, the subject of this
and the next lecture.

We certainly can’t maximize the surplus
∑n

i=1
vi(ω) ex post when there are budget con-

straints. Consider the simple case of a single-item auction, where every bidder has a known
budget of 1 and a private valuation.1 The Vickrey auction charges the winner the second-
highest bid, which might well be more its budget. Since the Vickrey auction is the unique
DSIC surplus-maximizing auction (Exercise 9), surplus-maximization is impossible without
violating budgets. As shown in the exercises, no DSIC auction that respects budgets can
approximate the surplus well. We need new auction formats to accommodate budget con-
straints.

2 The Clinching Auction

The original clinching auction, by Ausubel [1], is an ascending implementation of the VCG
mechanism when there are multiple identical items, analogous to the English auction for
a single item. In [1], a bidder might want more than one item but is assumed to have
nonincreasing marginal values for items. We discussed last lecture why ascending auctions
can be more desirable than direct-revelation mechanisms. Unlike the SAA format discussed
last lecture, the clinching auction in [1] is immune to demand reduction. See also Problem
Set #3.

We discuss the variation of the clinching auction, due to Dobzinski et al. [3], that ac-
commodates budget constraints. There are m identical goods, and each bidder might want
many of them (like clicks in a keyword auction). Each bidder i has a private valuation vi for
each good that it gets — so if it gets k goods, its valuation for them is k · vi. Each bidder
has a budget Bi that we assume is public, meaning it is known to the seller in advance.2

The clinching auction described in this section is not DSIC when budgets are private (see
the exercises).

1We argued that budgets are often superfluous in a single-item auction, but the point we’re making here
is general.

2We’d love to assume that budgets are private and thus also subject to misreport, but private budgets
make the problem tougher, even impossible in some senses [3]. The version of the problem with public
budgets is hard enough already — as shown above, surplus maximization ex post is impossible — and it
guides us to some elegant and potentially useful auction formats, which of course is the whole point of the
exercise.

2



2.1 First Cut: Using the Market-Clearing Price

We first describe an auction that is more naive than the clinching auction. One can view
the clinching auction as a revised, more sophisticated version of this naive auction. We give
a direct-revelation description; it will be clear that there is an ascending implementation of
it.

The first auction is based on selling goods at the “market-clearing price”, where supply
equals demand. It’s clear what the supply is (m, the number of goods). The demand of a
bidder depends on the current price, with higher prices meaning less demand. Formally we
define the demand of bidder i at price p as:

Di(p) =

{

min
{

⌊Bi

p
⌋, m

}

if p < vi

0 if p > vi.

To explain, recall that bidder i has value vi for every good that it gets. If the price is above
vi it doesn’t want any (i.e., Di(p) = 0), while if the price is below vi it wants as many as
it can afford (i.e., Di(p) = ⌊Bi

p
⌋). When vi = p the bidder does not care how many goods

it gets, as long as its budget is respected, and in the auction and its analysis we can take
Di(vi) to be a convenient integer in {0, 1, 2, . . . , ⌊Bi

p
⌋} of our choosing.

As the price p rises, demand Di(p) goes down, from Di(0) = m to Di(∞) = 0. A demand
drop can have two different forms: from an arbitrary positive integer to 0 (when p hits vi),
or by a single unit (when ⌊Bi/p⌋ becomes one smaller).

Let p∗ be the smallest price with
∑

i Di(p
∗) = m. Or, more generally, the smallest value

such that limp↑p∗
∑

i Di(p) ≥ m ≥ limp↓p∗
∑

i Di(p). Then, the auction gives Di(p
∗) goods to

each bidder i, each at the price p∗ (defining Di(p
∗)’s for bidders i with vi = p∗ so that all m

goods are allocated).
The good news is that, by the definition of the demand Di(p), this auction respects

bidders’ budgets. The bad news is that it is not DSIC; it is vulnerable to demand reduction,
similar to the simultaneous ascending auction format discussed last lecture.

Example 2.1 (Market-Clearing Price Is Not DSIC) Suppose there are two goods and
two bidders, with B1 = +∞, v1 = 6, and B2 = v2 = 5. First suppose that both bidders bid
truthfully. The total demand

∑

i Di(p) is at least 3 until the price hits 5, at which point
D1(5) = 2 and D2(5) = 0. The auction thus allocates both goods to bidder 1 at a price of 5
each, for a utility of 2. If bidder 1 falsely bids 3, however, it does better. The reason is that
bidder 2’s demand drops to 1 at the price 5

2
(it can no longer afford both), and the auction

will terminate at the price 3, at which point D1(3) will be defined as 1. Bidder 1 only gets
one good, but the price is only 3, so its utility is 3, more than with truthful bidding.

We haven’t studied any non-DSIC auctions since Myerson’s Lemma (Lecture 3), which
in some sense gives a complete solution to DSIC auction design in single-parameter settings
like the present one. The allocation rule in the market-clearing price auction is monotone,
as you are invited to check, so Example 2.1 shows that we got the payment rule wrong. We
could apply Myerson’s Lemma to this allocation rule to derive the appropriate payments to
recover DSIC, but we’ll want a slightly more sophisticated allocation rule, as well.
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2.2 The Clinching Auction for Bidders with Budgets

We’ll again give a direct-revelation description, but keep in mind that the auction admits
a natural ascending implementation, and that this was the original point of the clinching
auction.

Rather than sell all the goods in one shot, we will sell them piecemeal, at different prices.
In addition to the current price p, the auction keeps track of the current supply s (initially
m) and the residual budget B̂i (initially Bi) of each bidder i. The demand D̂i(p) of bidder i

at price p is defined with respect to the residual budget and supply, as min{⌊ B̂i

p
⌋, s} if p < vi

and as 0 if p > vi.

Clinching Auction for Budgeted Bidders

• Initialize p = 0, s = m.

• While s > 0:

– Increase p until there is a bidder i such that s −
∑

j 6=i

D̂j(p)

︸ ︷︷ ︸

:=k

> 0.

– Give k goods to bidder i at price p (theses good are “clinched”).

– Decrease s by k.

– Decrease B̂i by p · k.

Observe that different goods are sold at different prices, with selling prices increasing over the
course of the auction. Observe also that budgets are respected — equivalently, the number
of goods k clinched by a bidder i is at most its current demand D̂i(p).3

Example 2.2 Let’s return to the setting of Example 2.1 — two goods and two bidders, with
B1 = +∞, v1 = 6, and B2 = v2 = 5. Suppose both bidders bid truthfully. In Example 2.1,
bidder 1 was awarded both goods at a price of 5. Here, because the demand D2(p) of the
second bidder drops to 1 once p = 5

2
, bidder 1 clinches one good at a price of 5

2
. The second

good is sold to bidder 1 at price 5, as before. Thus bidder 1 has utility 9

2
when it bids

truthfully in the clinching auction. As we’ll see, no false bid could be better.

Theorem 2.3 The clinching auction for bidders with public budgets is DSIC.

Proof: We could proceed by verifying that the allocation rule is monotone and the payments
conform to Myerson’s payment formula, but it’s easier to just verify the DSIC condition
directly. So, fix a bidder i and bids b−i by the others. Since bidder i’s budget is public, it
cannot affect the term ⌊B̂i/p⌋ of its demand function D̂i(p). It can only affect the time at
which it is kicked out of the auction (meaning D̂i(p) = 0 forevermore), which is precisely

3If not, then
∑

j D̂j(p) < s. But the auction maintains the invariant that the sum of the current demands
is at least the current supply.
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when the price p reaches its bid bi. Note that every good clinched by bidder i when p <
vi contributes positively to the bidder’s utility, while every good clinched when p > vi

contributes negatively.
First compare the utility earned by bid bi < vi to that earned by a truthful bid. Imagine

running the clinching auction twice in parallel, once when i bids bi and once when i bids
vi. By induction on the number of iterations, the execution of the clinching auction will
be identical in the two scenarios as the price ascends from 0 to bi. Thus, by bidding bi,
the bidder can only lose out on goods that it otherwise would have cliched (for nonnegative
utility) in the price interval [bi, vi].

Similarly, if i bids bi > vi, all that changes is that the bidder might acquire some additional
goods for nonpositive utility in the price interval [vi, bi]. Thus, no false bid nets i more utility
than a truthful one. �

If budgets are private and the clinching auction is run with reported budgets instead,
then it is no longer DSIC (see the exercises).

Taken alone, Theorem 2.3 is not compelling. There are other simple budget-respecting
DSIC auctions, such as giving away all the goods to random bidders for free. We would
like to additionally say that the clinching auction computes a “good” allocation, such as one
with surplus close to the maximum possible (subject to budget constraints). The original
clinching auction [1], without budgets, implements the VCG outcome and hence is surplus-
maximizing. As we’ve seen, no budget-respecting mechanism can have surplus close to that
of the VCG mechanism (which need not respect budgets).

Researchers have explored at least three approaches to justifying the clinching auction
with budgets on surplus grounds. None are fully satisfying. While there is strong belief that
the clinching auction is “the right solution,” researchers are struggling to formulate a model
to make this intuition precise.

The key challenge is to identify a good benchmark to compare to the performance of
the clinching auction. Dobzinski et al. [3] study Pareto optimality rather than an objective
function. An allocation is Pareto optimal if and only if there’s no way to reassign goods and
payments to make some agent (a bidder or the seller) better off without making another
worse off, where the seller’s utility is its revenue. The good news is that Pareto optimality
strongly advocates for the clinching auction — it is the unique deterministic DSIC auction
that always computes a Pareto optimal allocation. The bad news is that Pareto optimality
is not always necessary or sufficient for an auction to be desirable. For example, Bayesian-
optimal mechanisms, discussed below, need not be Pareto optimal.

The second approach is to posit a distribution over bidders’ valuations and solve for the
DSIC mechanism that maximizes expected surplus subject to the given budget constraints
(cf., Lecture 5). With this average-case approach, there is an unambiguous notion of “op-
timal” auctions — those with the highest expected surplus. It is also interesting to prove
“simple near-optimal” and “prior-independent” approximations in this setting, along the
lines of the results in Lecture 6. Progress in these directions have been slow but steady [6].
Common budgets are currently better understood than general budgets, and in this special
case the clinching auction is provably near-optimal [2].
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Figure 1: An iteration of the Top Trading Cycle Algorithm (TTCA) with two directed cycles.

A third approach is to modify the surplus objective function to take budgets into account.
The most common proposal is to replace

∑

i vixi by
∑

i min{Bi, vixi}. The good news is
that the clinching auction is provably near-optimal with respect to this objective function [4].
The bad news is that this modified objective does not make much sense in some settings;
see the exercises and [5, §3.10].

3 Mechanism Design without Money

There are a number of important applications where there are significant incentive issues
but where money is infeasible or illegal. This is equivalent to all agents having a budget of
zero. Mechanism design without money is relevant for designing and understanding methods
for voting, organ donation, school choice, and labor markets. The designer’s hands are tied
without money — even tighter than with budget constraints. There is certainly no Vickrey
auction, for example. Despite this, and strong impossibility results in general settings, some
of mechanism design’s greatest hits are motivated by applications without money.

Shapley and Scarf [7] defined the following house allocation problem. There are n agents,
and each initially owns one house. Each agent has a total ordering over the n houses, and
need not prefer their own over the others. The question is: how to sensibly reallocate the
houses to make the agents better off? Consider the following Top Trading Cycle Algorithm
(TTCA), credited to Gale in [7].

• While agents remain:

– Each remaining agent points to its favorite remaining house. This induces a
directed graph G on the remaining agents in which every vertex has out-degree 1
(Figure 1).

– The graph G has at least one directed cycle.4 Self-loops count as directed cycles.

– Reallocate as suggested by the directed cycles, with each agent on a directed cycle
C giving its house to the agent that points to it, that is, to its predecessor on C.

– Delete the agents and the houses that were reallocated in the previous step.

Observe that the TTCA terminates with each agent possessing exactly one house. As a
sanity check for its reasonableness, observe that every agent is only made better off by the
algorithm. To see why, note that the algorithm maintains the invariant that the remaining
agents still own their original houses. Thus, every iteration, an agent points either to its

4Keep following outgoing arcs; eventually, a vertex will be repeated, exposing a directed cycle.
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own house or to a house that it likes better. Finally, when an agent is deleted, it receives
the house that it had been pointing to.

When agents’ preferences are privately known, we can apply the TTCA to agents’ re-
ported preferences in a direct-revelation mechanism. There is no incentive for agents to
misreport their preferences.

Theorem 3.1 The TTCA induces a DSIC mechanism.

Proof: Let Nj denote the agents allocated in the jth iteration of the TTCA when all agents
report truthfully. Each agent of N1 gets its first choice and hence has no incentive to
misreport. An agent i of N2 is not pointed to by any agent of N1 in the first iteration
— otherwise, i would belong to N1 rather than N2. Thus, no misreport by i nets a house
originally owned by an agent in N1. Since i gets its first choice outside of the houses owned
by N1, it has no incentive to misreport. In general, an agent i of Nj is never pointed to in
the first j − 1 iterations of the TTCA by any agents in N1 ∪ · · · ∪ Nj−1. Thus, whatever it
reports, i will not receive a house owned by an agent in N1 ∪ · · · ∪ Nj−1. Since the TTCA
gives i its favorite house outside this set, it has no incentive to misreport. �

As with the clinching auction, Theorem 3.1 by itself is not impressive — the mechanism
in which every agent keeps its initial house is also DSIC. To argue that the TTCA is in some
sense optimal, we introduce the notion of a core allocation — an allocation such that no
coalition of agents can make all of its members better off via internal reallocations.

Theorem 3.2 For every house allocation problem, the allocation computed by the TTCA is
the unique core allocation.

Proof: To prove the computed allocation is a core allocation, consider an arbitrary subset
S of agents. Define Nj as in the proof of Theorem 3.1. Let ℓ be the first iteration in which
Nℓ ∩ S 6= ∅, with agent i ∈ S receiving its house in the ℓth iteration of TTCA. TTCA
gives agent i its favorite house outside of those owned by N1, . . . , Nℓ−1. Since no agents of
S belong to N1, . . . , Nℓ−1, no reallocation of houses among agents of S can make i strictly
better off.

We now prove uniqueness. In the TTCA allocation, all agents of N1 receive their first
choice. This must equally be true in any core allocation — in an allocation without this
property, the agents of N1 that didn’t get their first choice form a coalition for which internal
reallocation can make everyone strictly better off. Similarly, in the TTCA allocation, all
agents of N2 receive their first choice outside of N1. Given that every core allocation agrees
with the TTCA allocation for the agents of N1, such allocations must also agree for the
agents of N2 — otherwise, the agents of N2 that fail to get their first choice outside N1 can
all improve via an internal reallocation. Continuing inductively, we find that the TTCA
allocation is the unique core allocation. �

7



References

[1] L. M. Ausubel. An efficient ascending-bid auction for multiple objects. American Eco-
nomic Review, 94(5):1452–1475, 2004.

[2] N. R. Devanur, B. Q. Ha, and J. D. Hartline. Prior-free auctions for budgeted agents. In
Proceedings of the 14th ACM Conference on Electronic Commerce (EC), pages 287–304,
2013.

[3] S. Dobzinski, R. Lavi, and N. Nisan. Multi-unit auctions with budget limits. Games and
Economic Behavior, 74(2):486–503, 2012.

[4] S. Dobzinski and R. Paes Leme. Efficiency guarantees in auctions with budgets. In Ninth
Ad Auctions Workshop, 2013.

[5] N. Nisan, J. Bayer, D. Chandra, T. Franji, R. Gardner, Y. Matias, N. Rhodes, M. Seltzer,
D. Tom, H. R. Varian, and D. Zigmond. Google’s auction for TV ads. In 36th Inter-
natilonal Colloquium on Automata, Languages and Programming (ICALP), pages 309–
327, 2009.

[6] M. M. Pai and R. Vohra. Optimal auctions with financially constrained buyers. To
appear in Journal of Economic Theory, 2013.

[7] L. Shapley and H. Scarf. On cores and indivisibility. Journal of Mathematical Economics,
1(1):23–37, 1974.

8


