Exercise 1: Closure under morphisms
Given a finite alphabet Σ, a function $f : \Sigma^* \rightarrow \Sigma^*$ is a morphism if $f(\Sigma) \subseteq \Sigma$ and for all $a = a_1 \cdots a_n \in \Sigma^*$, $f(a) = f(a_1) \cdots f(a_n)$ (f is uniquely determined by the value it takes on Σ).

1. Show that NP is closed under morphisms, that is: for any language $L \in \text{NP}$, and any morphism f on the alphabet of L, $f(L) \in \text{NP}$.

2. Show that if P is closed under morphisms, then $\text{P} = \text{NP}$.

Exercise 2: Unary Languages
Prove that if a unary language is NP-complete, then $\text{P} = \text{NP}$.

Hint: consider a reduction from SAT to this unary language and exhibit a polynomial time recursive algorithm for SAT

Exercise 3: Complete problems for levels of PH
Prove that the following problem Σ_k^{QBF} is Σ_k^P-complete (under polynomial time reductions).

- INPUT: A quantified boolean formula $\exists X_1 \forall X_2 \exists \ldots Q_k X_k \phi$, where $X_1, \ldots X_k$ are k disjoint sets of variables, Q_k is the quantifier \forall if k is even, and the quantifier \exists if k is odd, ϕ is a boolean formula over variables $\bigcup_{i=1..k} X_i$;

- QUESTION: is the input formula true?

Define a similar problem Π_k^{QBF} such that Π_k^{QBF} is Π_k^P-complete.

Exercise 4: Collapse of PH

1. Show that if $\Sigma_k^P = \Pi_k^P$ for some k then $\text{PH} = \Sigma_k^P$.

2. Show that if $\text{P} = \text{NP}$ then $\text{P} = \text{PH}$.

3. Prove that if $\Sigma_k^P = \Sigma_k^P + 1$ for some $k \geq 0$ then $\text{PH} = \Sigma_k^P$.

4. Show that if $\text{PH} = \text{PSPACE}$ then PH collapses.

5. Do you think there is a polynomial time procedure to convert any QBF formula into a QBF formula with at most 10 variables?
Exercise 5: Oracle machines

Let \(O \) be a language. A Turing machine with oracle \(O \) is a Turing machine with a special additional read/write tape, called the oracle tape, and three special states: \(q_{\text{query}}, q_{\text{yes}}, q_{\text{no}} \). Whenever the machine enters the state \(q_{\text{query}} \), with some word \(w \) written on the oracle tape, it moves in one step to the state \(q_{\text{yes}} \) or \(q_{\text{no}} \) depending on whether \(w \in O \).

We denote by \(P^O \) (resp. \(NP^O \)) the class of languages decided in polynomial time by a deterministic (resp. non-deterministic) Turing machine with Oracle \(O \). Given a complexity class \(C \), we define \(P^C = \bigcup_{O \in C} P^O \) (and similarly for \(NP \)).

1. Prove that for any \(C \)-complete language \(L \) (for polynomial time reductions), \(P^C = P^L \) and \(NP^C = NP^L \).
2. Show that for any language \(L \), \(P^L = P^\emptyset \) and \(NP^L = NP^\emptyset \).
3. Prove that if \(NP = p^{SAT} \) then \(NP = \text{coNP} \).
4. Prove that \(\Sigma_{k+1}^P = NP^{\Sigma_k^P} \). Give an oracle characterization of \(\Pi_k^P \).
5. Deduce a simpler proof that if \(\Sigma_k^P = \Sigma_{k+1}^P \) for some \(k \), then \(PH \) collapses.

This third view of the polynomial hierarchy gives access to the class of languages \(\Delta_{k+1}^P = P^{\Sigma_k^P} \), with \(\Delta_0^P = P \).

Exercise 6: Relativization

Show that there is an oracle \(O \) such that \(P^O = NP^O \).

Exercise 7: Sort your problems

Give upper complexity bounds for the following problems:

1. **MIN-FORMULA**
 - **INPUT:** a propositional formula \(\phi \)
 - **QUESTION:** is \(\phi \) minimal, in the sense that there exists no smaller formula equivalent to \(\phi \) ?

2. **MAX-CLIQUE**
 - **INPUT:** a graph \(G \) and a natural number \(k \)
 - **QUESTION:** \(k \) is the exact size of a maximal clique in \(G \)

3. **USAT**
 - **INPUT:** a boolean formula \(\phi \)
 - **QUESTION:** is \(\phi \) satisfiable by only one assignment

Exercise 8: Which one is lying ?

Suppose that a Turing machine has access to two oracles \(A \) and \(B \), one of which is an oracle for \(QBF \), but you don’t know which. Show that \(QBF \) can still be decided in polynomial time by such a machine.
Exercise 9: Bounded number of queries to the oracle

A \(k \)-query oracle Turing machine is an oracle Turing machine that can access the \(q_{\text{query}} \) state at most \(k \) times. Given an oracle \(O \), define \(P^{O,k} \) the class of languages that can be decided in deterministic-polynomial time by a \(k \)-query Turing machine with oracle \(O \).

1. Show that \(\text{NP} \cup \text{coNP} \subseteq P^{SAT,1} \).
2. Assuming \(\text{NP} \neq \text{coNP} \), prove that the first inclusion above is strict.

Exercise 10: The Difference Hierarchy

Let \(\text{DP} \) be the class of languages of the form \(L_1 \cap L_2 \), where \(L_1 \in \text{NP} \) and \(L_2 \in \text{coNP} \). (In other words a language in \(\text{DP} \) is the difference of two \(\text{NP} \) languages.)

We consider the problem **EXACT-INDSET**:

- **INPUT:** a graph \(G \) and an integer \(k \)
- **OUTPUT:** does the maximum size of an independent set of \(G \) is \(k \)? That is whether \(G \) has an independent set of size \(k \), and all other independent sets of \(G \) have size at most \(k \). Recall that an independent set of a graph is a set \(I \) of vertices such that no two vertices of \(I \) are connected by an edge.

1. Show that \(P^{SAT,1} \subseteq \text{DP} \subseteq P^{SAT,2} \).
2. Prove that **EXACT-INDSET**:
 (a) is in \(\Sigma_2^P \cap \Pi_2^P \);
 (b) is in \(\text{DP} \);
 (c) is \(\text{DP} \)-complete (under polynomial time reductions).