Definition 1 Recall that $\text{AM}[f]$ for a proper function f denotes the class of languages L such that for any $\ell \geq 0$, there exists a game of Arthur and Merlin (M, A, D) such that for any x of size n, letting $\text{prot} = (\text{AM})^f(n)$:

1. Completeness: if $x \in L$ then $\text{prot}[A, M]_D = \top$ with probability at least $1 - 1/2^{n^\ell}$
2. Soundness: if $x \notin L$ then for any Merlin’s function M', $\text{prot}[A, M']_D = \bot$ with probability at least $1 - 1/2^{n^\ell}$

Exercise 1: AM with perfect soundness

Define AM_{ps} (resp. ABPP_{ps}) as AM (resp. ABPP) with perfect soundness, that is replace $1 - 1/2^{n^\ell}$ with 1 in the soundness condition of definiton 1. Show that:

1. $\text{AM}_{ps} \subseteq C \subseteq \text{AM}$, where C is a known complexity class.
2. $\text{ABPP}_{ps} = C$.

Hint: remember that one can assume perfect completeness

Exercise 2. Polynomial identity

An n-variable algebraic circuit is a directed acyclic graph having exactly one node with out-degree zero, and exactly n nodes with in-degree zero. The latter are called sources, and are labelled by variables x_1, \ldots, x_n; the former is called the output of the circuit. Moreover each non-source node is labelled by an operator in the set $\{+,-,\times\}$, and has in-degree two.

An algebraic circuit defines a function from \mathbb{Z}^n to \mathbb{Z}, associating to each integer assignment of the sources the value of the output node, computed through the circuit. It is easy to show that this function can be described by a polynomial in the variables x_1, \ldots, x_n. Algebraic circuits are indeed a form of implicit representation of multivariate polynomials. Nevertheless algebraic circuits are more compact than polynomials.

An algebraic circuit C is said to be identically zero if it evaluates to zero for all possible integer assignments of the sources.

The Polynomial identity problem is as follows:

- INPUT: An algebraic circuit C
- QUESTION: is C identically zero?

Show that Polynomial identity is in coRP (note that it is not known whether Polynomial identity is in $\overline{\text{P}}$).

Hint: you may need the following statements
• **Schwartz-Zippel lemma** If \(p(x_1, \ldots, x_n) \) is a nonzero polynomial with coefficients in \(\mathbb{Z} \) and total degree at most \(d \), and \(S \subseteq \mathbb{Z} \), then the number of roots of \(p \) belonging to \(S^n \) is at most \(d \cdot |S|^{n-1} \).

• **Prime number theorem** There exists a known integer \(X_0 \geq 0 \) such that, for all integers \(X \geq X_0 \), the number of prime numbers in the set \([1..2^X]\) is at least \(\frac{2^X}{X} \).

Definition 2 *(Multi-prover interactive protocols)* Let \(P_1, \ldots, P_k \) be infinitely powerful machines whose output is polynomially bounded. Let \(V \) be a probabilistic polynomial-time machine. \(V \) is called the verifier, and \(P_1, \ldots, P_k \) are called the provers.

A round of a multi-prover interactive protocol on input \(x \) consists of an exchange of messages (i.e., words over a given alphabet) between the verifier and the provers, and works as follows:

- The verifier \(V \) is executed on an input consisting of \(x \), the history of all previous messages exchanged with all provers (both sent and received messages), and a random tape content of size polynomial in \(|x| \). The output of the verifier is computed in time polynomial in \(|x| \), and consists of messages to some or all of the provers.

- Each message \(q_i \) sent from the verifier to prover \(P_i \) is followed by an answer \(a_i \), of size polynomial in \(|x| \), sent from the prover \(P_i \) to the verifier. The answer \(a_i \) is computed by \(P_i \) on input consisting of \(x \) and the history of all messages previously exchanged between the verifier and the prover \(P_i \) (and only \(P_i \)).

- Alternatively the verifier may decide not to produce messages, and terminates the protocol by either accepting or rejecting, based on the input \(x \) and the history of all previous messages exchanged with all provers.

You can view the protocol as executed by the verifier sharing communication tapes with each \(P_i \), where different provers \(P_i \) and \(P_j \) have no tapes they can both access, besides the input tape. In a round the verifier stores each message \(q_i \) to prover \(P_i \) on the \(i \)-th communication tape, shared between the prover and \(P_i \). The answer of \(P_i \) is put on tape \(i \) as well. The verifier has access to the input and all communication tapes, while each prover \(P_i \) has access only to the input and tape \(i \).

\(P_1, \ldots, P_k \) and \(V \) form a multi-prover interactive protocol for a language \(L \) if the execution of the protocol between \(V \) and \(P_1, \ldots, P_k \) terminates after a polynomial number of rounds (in the size of the input \(x \)) and:

- if \(x \in L \), then \(\Pr[(V, P_1, \ldots, P_k) \text{ accepts } x] > 1 - 2^{-q(n)} \);

- if \(x \notin L \), then for all provers \(P'_1, \ldots, P'_k \), \(\Pr[(V, P'_1, \ldots, P'_k) \text{ accepts } x] < 2^{-q(n)} \);

where \(q \) is a polynomial and the probability is computed over all possible random choices of \(V \).

In this case, we denote \(L \in \text{MIP}_k \). The number of provers \(k \) need not be fixed and may be a polynomial in the size of the input \(x \). We say that \(L \in \text{MIP} \) if \(L \in \text{MIP}_{p(n)} \) for some polynomial \(p \). Clearly \(\text{MIP}_1 = \text{IP} \), but allowing more provers makes the interactive protocol model potentially more powerful.
Exercice 1. Characterization of MIP. Prove the following characterizations of the class MIP.

1. Let M be a probabilistic polynomial-time Turing machine with access to a function oracle. A language L is accepted by M iff:
 - if $x \in L$, then there exists an oracle O s.t. M^O accepts x with probability greater than $1 - 2^{-q(n)}$;
 - if $x \notin L$, then for any oracle O', $M^{O'}$ accepts x with probability smaller than $2^{-q(n)}$.

Show that $L \in \text{MIP}$ if and only if L is accepted by a probabilistic polynomial time oracle machine.

2. Show that $\text{MIP} = \text{MIP}_2$.

3. Show that $\text{MIP} \subseteq \text{NEXP}$.