Logique Exo n°5

Emilie GRIENENBERGER emilie.grienenberger@lsv.fr

April 1, 2021

Hand over before the end of 1st April

Exercise 1: Total dense orders without borders

We work over the language \mathcal{L} containing the binary predicate symbols < and =.

The theory \mathcal{T}_O is defined with the axioms of equality and: $\begin{array}{ll}
(O_1) & \forall x \forall y. & \neg(x < y \land y < x) \\
(O_2) & \forall x \forall y \forall z. & x < y \land y < z \Rightarrow x < z \\
(O_3) & \forall x \forall y. & x < y \lor x = y \lor y < x \\
(O_4) & \forall x \forall y \exists z. & x < y \Rightarrow x < z \land z < y \\
(O_5) & \forall x \exists y. & x < y \\
(O_6) & \forall x \exists y. & y < x
\end{array}$

Models of \mathcal{T}_O are sets with a total, dense order without borders. As a reminder, \mathcal{T}_0 is complete and decidable.

- 1. Show that all models of \mathcal{T}_0 satisfy the same closed formulas.
- 2. Using the fact that \mathbb{R} , and \mathbb{R}^* are models of \mathcal{T}_0 , show that connectedness (connexité) cannot be expressed by a (first-order) formula over \mathcal{L} .
- Let T be the theory containing the axioms of equality, axioms O₁, O₂, O₃, O₄, O₆ and ¬O₅. Show that T is complete and decidable. This proof is very close to the proof of completeness of T₀: identify the step that needs to be changed and give the necessary modifications.