Langages Formels

TD n°2

Emilie Grienenberger emilie.grienenberger@lsv.fr

3 février 2021

Exercise 1: Arden Lemma

Let A, B be two languages.

1. Prove that the language $L = A^*B$ is the smallest solution to the equation :

$$X = (A \cdot X) \cup B$$

First, we prove that it is a solution:

$$(A \cdot A^*B) \cup B = A^+B \cup A^0B$$
$$= A^*B$$

Let S be a solution to this equation; a first observation is that $A^0B = B \subseteq S$. By induction, for every $n \in \mathbb{N}$, $A^nB \subseteq S$. Indeed, if $A^nB \subseteq S$, then $A \cdot A^nB = A^{n+1}B \subseteq S$.

2. Prove that if $\varepsilon \notin A$, then it is the only solution.

By contradiction, let S be a solution of $X = (A \cdot X) \cup B$ such that $\varepsilon \notin A$ and $A^*B \subsetneq S$. Let w be the smallest word in S which is not in A^*B . As a consequence, $w \in (A \cdot S) \cup B$. As $w \notin B$ by hypothesis, $w = w_1 \cdot w_2$ where $w_1 \in A$ and $w_2 \in S$. By hypothesis, w_2 cannot be in A^*B so $w_2 \in S \setminus A^*B$. However, $\varepsilon \notin A$ which leads to an absurdity as w_2 is strictly shorter than w.

Exercise 2: Regular identities

We study identities on regular expressions r, s, t. Here, r = s means $\mathcal{L}(r) = \mathcal{L}(s)$.

1. Prove the following identities:

(a)
$$(r+s)t = rt + st$$

$$w \in \mathcal{L}((r+s)t)$$

$$\Leftrightarrow w = w_1w_2, \text{ s.t. } w_1 \in \mathcal{L}(r+s), w_2 \in \mathcal{L}(t)$$

$$\Leftrightarrow w = w_1w_2, \text{ s.t. } w_1 \in \mathcal{L}(r) \text{ or } w_1 \in \mathcal{L}(s), w_2 \in \mathcal{L}(t)$$

$$\Leftrightarrow w = w_1w_2, \text{ s.t. } w_1 \in \mathcal{L}(r), w_2 \in \mathcal{L}(t) \text{ or } w_1 \in \mathcal{L}(s), w_2 \in \mathcal{L}(t)$$

$$\Leftrightarrow w \in \mathcal{L}(rt+st)$$

(b) $(r^*)^* = r^*$

$$w \in \mathcal{L}((r^*)^*)$$

$$\Leftrightarrow w = w_{1,1} \dots w_{1,i_1} \dots w_{n,i_n}, i_1, \dots, i_n, n \in \mathbb{N}, w_{j,\ell} \in \mathcal{L}(r)$$

$$\Leftrightarrow w = w_1 \dots w_n, n \in \mathbb{N}, w_i \in \mathcal{L}(r)$$

$$\Leftrightarrow w \in \mathcal{L}(r^*)$$

(c) $(rs+r)^*r = r(sr+r)^*$

By induction, we prove that $(rs+r)^n r = r(sr+r)^n$.

- Immediate if n = 0, i.e. r = r.
- $(rs+r)^{n+1}r = (sr+r)(sr+r)^n r = (rs+r)r(sr+r)^n$. We observe that $w \in \mathcal{L}((rs+r)r)$ iff $w = w_1w_2w_3$ or $w = w_1w_3$ where $w_1, w_3 \in \mathcal{L}(r)$ and $w_2 \in \mathcal{L}(s)$ iff $w \in \mathcal{L}(r(sr+r))$.
- 2. Prove or disprove the following identities :
 - (a) $(r+s)^* = r^* + s^*$

Counter example : r=a and $s=b,\ aba$ is in only one of these languages.

(b) $(r^*s^*)^* = (r+s)^*$

Expanding or grouping the words $\mathcal{L}(r)$ and $\mathcal{L}(s)$ goes from one expression to the other.

(c) $s(rs+s)^*r = rr^*s(rr^*s)^*$

Counter example : r = a and s = b, ba is in only one of these languages.

Exercise 3: Antimirov's automaton

The goal of this exercise is to build an automaton from a regular expression. We will define a partial derivative operation $\partial_a(E)$ which corresponds to $a^{-1}\mathcal{L}(E)$ (via interpretation of expressions). Formally, for every expression E and letter

a, we define the set of expressions $\partial_a(E)$ as follows:

$$\partial_{a}(\underline{\emptyset}) = \emptyset
\partial_{a}(\underline{b}) = \begin{cases} \emptyset & \text{if } a \neq b \\ \{\underline{\emptyset}^{*}\} & \text{else} \end{cases}
\partial_{a}(E + E') = \partial_{a}(E) \cup \partial_{a}(E')
\partial_{a}(E^{*}) = \partial_{a}(E) \cdot \{E^{*}\}
\partial_{a}(E \cdot E') = \begin{cases} \partial_{a}(E) \cdot \{E'\} & \text{if } \varepsilon \notin E \\ (\partial_{a}(E) \cdot \{E'\}) \cup \partial_{a}(E') & \text{else} \end{cases}$$

where concatenation is naturally extended over sets of expressions.

We define $\partial_w(E)$ for a word w inductively with $\partial_{\varepsilon}(E) = \{E\}$ and $\partial_{wa}(E) = \partial_a(\partial_w(E))$, where $\partial_w(S) = \bigcup_{E \in S} \partial_w(E)$ when S is a set of expressions. Given a set of regular expressions S, we denote by $\mathcal{L}(S)$ the set $\bigcup_{E \in S} \mathcal{L}(E)$.

1. Give the partial derivatives of $(ab + b)^*ba$ by a and b.

$$\partial_{a}((ab+b)^{*}ba) = (\partial_{a}((ab+b)^{*}) \cdot \{ba\}) \cup \partial_{a}(ba)
= \partial_{a}(ab+b) \cdot \{(ab+b)^{*}\} \cdot \{ba\} \cup \partial_{a}(b) \cdot \{a\}
= \{\partial_{a}(ab), \partial_{a}(b)\} \cdot \{(ab+b)^{*}ba\} \cup (\emptyset \cdot \{a\})
= \{\partial_{a}(a) \cdot \{b\}, \emptyset\} \cdot \{(ab+b)^{*}ba\}
= b(ab+b)^{*}ba$$

$$\partial_{b}((ab+b)^{*}ba) = (\partial_{b}((ab+b)^{*}) \cdot \{ba\}) \cup \partial_{b}(ba)
= \partial_{b}(ab+b) \cdot \{(ab+b)^{*}\} \cdot \{ba\} \cup \partial_{b}(b) \cdot \{a\}
= \{\partial_{b}(ab), \partial_{b}(b)\} \cdot \{(ab+b)^{*}ba\} \cup \{a\}
= \{\partial_{b}(a) \cdot \{b\}, \varepsilon\} \cdot \{(ab+b)^{*}ba\}
= a + (ab+b)^{*}ba$$

2. Prove that for every $L, L' \subseteq \Sigma^*$ and $a \in \Sigma$,

$$a^{-1}(L \cup L') = (a^{-1}L) \cup (a^{-1}L')$$

$$a^{-1}L^* = (a^{-1}L) \cdot L^*$$

$$a^{-1}(L \cdot L') = \begin{cases} a^{-1}L \cdot L' & \text{si } \varepsilon \notin L \\ (a^{-1}L \cdot L') \cup (a^{-1}L') & \text{sinon} \end{cases}$$

3. Show that $\mathcal{L}(\partial_w(E)) = w^{-1}\mathcal{L}(E)$.

By induction on w, the definition of partial derivatives and the previous result.

4. We define the set of non empty suffixes of a word:

$$Suf(w) = \{ v \in \Sigma^+ : \exists u, w = uv \}$$

Show that for every $w \in \Sigma^+$:

$$\partial_w(E + E') = \partial_w(E) \cup \partial_w(E')$$

$$\partial_w(E \cdot E') \subseteq (\partial_w(E) \cdot E') \cup \bigcup_{v \in \text{Suf}(w)} \partial_v(E')$$

$$\partial_w(E^*) \subseteq \bigcup_{v \in \text{Suf}(w)} \partial_v(E) \cdot E^*$$

By induction on w.

5. Let ||E|| be the number of occurrences of letters of Σ in E. Show that the set of partial derivatives different to E has at most ||E|| + 1 elements.

By induction on E.

For more precision, see https://core.ac.uk/download/pdf/81113752. pdf from the end of page 305.

6. Conclude, and apply the construction to the expression (ab + b)*ba.

Exercise 4: Closure by morphism

1. Let h be the morphism h(a) = 01 and h(b) = 0. Give $h(a(a+b)^*)$.

 $01(01+0)^*$

- 2. Apply the construction of closure by morphism to this example.
- 3. Let h' be the morphism h(0) = ab, $h(1) = \varepsilon$. Give $h^{-1}(\{abab, baba\})$.

1*01*01*

- 4. Apply the construction of closure by inverse morphism to this example.
- 5. Let $L = (00 \cup 1)^*$, h(a) = 01 and h(b) = 10. What is $h^{-1}(1001)$? $h^{-1}(010110)$? $h^{-1}(L)$? What is $h(h^{-1}(L))$, and is it related to L? Apply the construction by inverse morphism to this example.

$$\{ba\}, \{aab\}, (ba)^*, (1001)^* \subseteq L.$$

Exercise 5: Characterizing recognizability

We want to show a converse to the pumping lemma. We say that a language L satisfies P_h if for all $uv_1 \ldots v_h w$ avec $|v_i| \geq 1$, there exists $0 \leq j < k \leq h$ such that

$$uv_1 \dots v_h w \in L \Leftrightarrow uv_1 \dots v_i v_{k+1} \dots v_h w \in L.$$

The theorem of Ehrenfeucht, Parikh & Rozenberg states that L is rational iff there exists h such that L satisfies P_h .

- 1. Show that if L satisfies P_h , then $w^{-1}L$ also does for every word $w \in \Sigma^*$.
- 2. Let $h \in \mathbb{N}$. We want to show that the number of languages satisfying P_h is finite. We use the following statement of Ramsey's theorem:

For every k there is N such that, for every set E of cardinal greater than N and every bipartition \mathcal{P} of $\mathfrak{P}_2(E) = \{ \{e, e'\} : e, e' \in E, e \neq e' \}$, there exists a subset $F \subseteq E$ of cardinal k such that $\mathfrak{P}_2(F)$ is contained in one of the classes of \mathcal{P} .

Let N be the natural number given by Ramsey's theorem for k = h + 1. Let L and L' be two languages satisfying P_h and coinciding on words of size smaller than N. Prove that they coincide on words or size $M \geq N$, by induction on M. You may consider, for a word $f = a_1 \dots a_N t$ of size M (with $a_i \in \Sigma$), the following partition of $\mathfrak{P}_2([0; N])$:

$$X_f = \{ (j, k) : 0 \le j < k \le N, \ a_1 \dots a_j a_{k+1} \dots a_N t \in L \}$$

$$Y_f = \mathfrak{P}_2([0; N]) \setminus X_f$$

Conclude.

3. Conclude that if a language L satisfies P_h for some h, then L is regular.

https://www.irif.fr/~carton/Enseignement/Complexite/ENS/Cours/pumping.html

Exercise 6: A rational slice? (open exercise)

Let L be a rational language over a finite alphabet Σ . Is $\mathsf{FH}(L) = \{ f \in \Sigma^* : \exists h \in \Sigma^* . |h| = |f|, fh \in L \}$ rational?