Langages Formels

TD n ${ }^{\circ} 2$
Emilie Grienenberger
emilie.grienenberger@lsv.fr

3 février 2021

Exercise 1: Arden Lemma

Let A, B be two languages.

1. Prove that the language $L=A^{*} B$ is the smallest solution to the equation :

$$
X=(A \cdot X) \cup B
$$

First, we prove that it is a solution :

$$
\begin{aligned}
\left(A \cdot A^{*} B\right) \cup B & =A^{+} B \cup A^{0} B \\
& =A^{*} B
\end{aligned}
$$

Let S be a solution to this equation; a first observation is that $A^{0} B=$ $B \subseteq S$. By induction, for every $n \in \mathbb{N}, A^{n} B \subseteq S$. Indeed, if $A^{n} B \subseteq S$, then $A \cdot A^{n} B=A^{n+1} B \subseteq S$.
2. Prove that if $\varepsilon \notin A$, then it is the only solution.

By contradiction, let S be a solution of $X=(A \cdot X) \cup B$ such that $\varepsilon \notin A$ and $A^{*} B \subsetneq S$. Let w be the smallest word in S which is not in $A^{*} B$.
As a consequence, $w \in(A \cdot S) \cup B$. As $w \notin B$ by hypothesis, $w=w_{1} \cdot w_{2}$ where $w_{1} \in A$ and $w_{2} \in S$. By hypothesis, w_{2} cannot be in $A^{*} B$ so $w_{2} \in S \backslash A^{*} B$. However, $\varepsilon \notin A$ which leads to an absurdity as w_{2} is strictly shorter than w.

Exercise 2: Regular identities

We study identities on regular expressions r, s, t. Here, $r=s$ means $\mathcal{L}(r)=\mathcal{L}(s)$.

1. Prove the following identities:
(a) $(r+s) t=r t+s t$

$$
\begin{array}{ll}
& w \in \mathcal{L}((r+s) t) \\
\Leftrightarrow & w=w_{1} w_{2}, \text { s.t. } w_{1} \in \mathcal{L}(r+s), w_{2} \in \mathcal{L}(t) \\
\Leftrightarrow & w=w_{1} w_{2}, \text { s.t. } w_{1} \in \mathcal{L}(r) \text { or } w_{1} \in \mathcal{L}(s), w_{2} \in \mathcal{L}(t) \\
\Leftrightarrow & w=w_{1} w_{2} \text {, s.t. } w_{1} \in \mathcal{L}(r), w_{2} \in \mathcal{L}(t) \text { or } w_{1} \in \mathcal{L}(s), w_{2} \in \mathcal{L}(t) \\
\Leftrightarrow & w \in \mathcal{L}(r t+s t)
\end{array}
$$

(b) $\left(r^{*}\right)^{*}=r^{*}$

$$
\begin{aligned}
& w \in \mathcal{L}\left(\left(r^{*}\right)^{*}\right) \\
\Leftrightarrow & w=w_{1,1} \ldots w_{1, i_{1}} \ldots w_{n, 1} \ldots w_{n, i_{n}}, i_{1}, \ldots, i_{n}, n \in \mathbb{N}, w_{j, \ell} \in \mathcal{L}(r) \\
\Leftrightarrow & w=w_{1} \ldots w_{n}, n \in \mathbb{N}, w_{i} \in \mathcal{L}(r) \\
\Leftrightarrow & w \in \mathcal{L}\left(r^{*}\right)
\end{aligned}
$$

(c) $(r s+r)^{*} r=r(s r+r)^{*}$

By induction, we prove that $(r s+r)^{n} r=r(s r+r)^{n}$.

- Immediate if $n=0$, i.e. $r=r$.
$-(r s+r)^{n+1} r=(s r+r)(s r+r)^{n} r=(r s+r) r(s r+r)^{n}$. We observe that $w \in \mathcal{L}((r s+r) r)$ iff $w=w_{1} w_{2} w_{3}$ or $w=w_{1} w_{3}$ where $w_{1}, w_{3} \in \mathcal{L}(r)$ and $w_{2} \in \mathcal{L}(s)$ iff $w \in \mathcal{L}(r(s r+r))$.

2. Prove or disprove the following identities:
(a) $(r+s)^{*}=r^{*}+s^{*}$

Counter example : $r=a$ and $s=b, a b a$ is in only one of these languages.
(b) $\left(r^{*} s^{*}\right)^{*}=(r+s)^{*}$

Expanding or grouping the words $\mathcal{L}(r)$ and $\mathcal{L}(s)$ goes from one expression to the other.
(c) $s(r s+s)^{*} r=r r^{*} s\left(r r^{*} s\right)^{*}$

Counter example : $r=a$ and $s=b, b a$ is in only one of these languages.

Exercise 3: Antimirov's automaton

The goal of this exercise is to build an automaton from a regular expression. We will define a partial derivative operation $\partial_{a}(E)$ which corresponds to $a^{-1} \mathcal{L}(E)$ (via interpretation of expressions). Formally, for every expression E and letter
a, we define the set of expressions $\partial_{a}(E)$ as follows:

$$
\begin{aligned}
\partial_{a}(\underline{\emptyset}) & =\emptyset \\
\partial_{a}(\underline{b}) & = \begin{cases}\emptyset & \text { if } a \neq b \\
\left\{\underline{\emptyset}^{*}\right\} & \text { else }\end{cases} \\
\partial_{a}\left(E+E^{\prime}\right) & =\partial_{a}(E) \cup \partial_{a}\left(E^{\prime}\right) \\
\partial_{a}\left(E^{*}\right) & =\partial_{a}(E) \cdot\left\{E^{*}\right\} \\
\partial_{a}\left(E \cdot E^{\prime}\right) & = \begin{cases}\partial_{a}(E) \cdot\left\{E^{\prime}\right\} & \text { if } \varepsilon \notin E \\
\left(\partial_{a}(E) \cdot\left\{E^{\prime}\right\}\right) \cup \partial_{a}\left(E^{\prime}\right) & \text { else }\end{cases}
\end{aligned}
$$

where concatenation is naturally extended over sets of expressions.
We define $\partial_{w}(E)$ for a word w inductively with $\partial_{\varepsilon}(E)=\{E\}$ and $\partial_{w a}(E)=$ $\partial_{a}\left(\partial_{w}(E)\right)$, where $\partial_{w}(S)=\bigcup_{E \in S} \partial_{w}(E)$ when S is a set of expressions.
Given a set of regular expressions S, we denote by $\mathcal{L}(S)$ the set $\bigcup_{E \in S} \mathcal{L}(E)$.

1. Give the partial derivatives of $(a b+b)^{*} b a$ by a and b.

$$
\begin{aligned}
\partial_{a}\left((a b+b)^{*} b a\right) & =\left(\partial_{a}\left((a b+b)^{*}\right) \cdot\{b a\}\right) \cup \partial_{a}(b a) \\
& =\partial_{a}(a b+b) \cdot\left\{(a b+b)^{*}\right\} \cdot\{b a\} \cup \partial_{a}(b) \cdot\{a\} \\
& =\left\{\partial_{a}(a b), \partial_{a}(b)\right\} \cdot\left\{(a b+b)^{*} b a\right\} \cup(\emptyset \cdot\{a\}) \\
& =\left\{\partial_{a}(a) \cdot\{b\}, \emptyset\right\} \cdot\left\{(a b+b)^{*} b a\right\} \\
& =b(a b+b)^{*} b a \\
\partial_{b}\left((a b+b)^{*} b a\right) & =\left(\partial_{b}\left((a b+b)^{*}\right) \cdot\{b a\}\right) \cup \partial_{b}(b a) \\
& =\partial_{b}(a b+b) \cdot\left\{(a b+b)^{*}\right\} \cdot\{b a\} \cup \partial_{b}(b) \cdot\{a\} \\
& =\left\{\partial_{b}(a b), \partial_{b}(b)\right\} \cdot\left\{(a b+b)^{*} b a\right\} \cup\{a\} \\
& =\left\{\partial_{b}(a) \cdot\{b\}, \varepsilon\right\} \cdot\left\{(a b+b)^{*} b a\right\} \\
& =a+(a b+b)^{*} b a
\end{aligned}
$$

2. Prove that for every $L, L^{\prime} \subseteq \Sigma^{*}$ and $a \in \Sigma$,

$$
\begin{aligned}
a^{-1}\left(L \cup L^{\prime}\right) & =\left(a^{-1} L\right) \cup\left(a^{-1} L^{\prime}\right) \\
a^{-1} L^{*} & =\left(a^{-1} L\right) \cdot L^{*} \\
a^{-1}\left(L \cdot L^{\prime}\right) & = \begin{cases}a^{-1} L \cdot L^{\prime} & \text { si } \varepsilon \notin L \\
\left(a^{-1} L \cdot L^{\prime}\right) \cup\left(a^{-1} L^{\prime}\right) & \text { sinon }\end{cases}
\end{aligned}
$$

3. Show that $\mathcal{L}\left(\partial_{w}(E)\right)=w^{-1} \mathcal{L}(E)$.

By induction on w, the definition of partial derivatives and the previous result.
4. We define the set of non empty suffixes of a word :

$$
\operatorname{Suf}(w)=\left\{v \in \Sigma^{+}: \exists u, w=u v\right\}
$$

Show that for every $w \in \Sigma^{+}$:

$$
\begin{aligned}
\partial_{w}\left(E+E^{\prime}\right) & =\partial_{w}(E) \cup \partial_{w}\left(E^{\prime}\right) \\
\partial_{w}\left(E \cdot E^{\prime}\right) & \subseteq\left(\partial_{w}(E) \cdot E^{\prime}\right) \cup \bigcup_{v \in \operatorname{Suf}(w)} \partial_{v}\left(E^{\prime}\right) \\
\partial_{w}\left(E^{*}\right) & \subseteq \bigcup_{v \in \operatorname{Suf}(w)} \partial_{v}(E) \cdot E^{*}
\end{aligned}
$$

By induction on w.
5. Let $\|E\|$ be the number of occurences of letters of Σ in E. Show that the set of partial derivatives different to E has at most $\|E\|+1$ elements.

By induction on E.
For more precision, see https://core.ac.uk/download/pdf/81113752. pdf from the end of page 305.
6. Conclude, and apply the construction to the expression $(a b+b)^{*} b a$.

Exercise 4: Closure by morphism

1. Let h be the morphism $h(a)=01$ and $h(b)=0$. Give $h\left(a(a+b)^{*}\right)$.
$01(01+0)^{*}$
2. Apply the construction of closure by morphism to this example.
3. Let h^{\prime} be the morphism $h(0)=a b, h(1)=\varepsilon$. Give $h^{-1}(\{a b a b, b a b a\})$.
$1^{*} 01^{*} 01^{*}$
4. Apply the construction of closure by inverse morphism to this example.
5. Let $L=(00 \cup 1)^{*}, h(a)=01$ and $h(b)=10$. What is $h^{-1}(1001) ? h^{-1}(010110)$? $h^{-1}(L)$? What is $h\left(h^{-1}(L)\right)$, and is it related to L ? Apply the construction by inverse morphism to this example.

$$
\{b a\},\{a a b\},(b a)^{*},(1001)^{*} \subsetneq L .
$$

Exercise 5: Characterizing recognizability

We want to show a converse to the pumping lemma. We say that a language L satisfies P_{h} if for all $u v_{1} \ldots v_{h} w$ avec $\left|v_{i}\right| \geq 1$, there exists $0 \leq j<k \leq h$ such that

$$
u v_{1} \ldots v_{h} w \in L \Leftrightarrow u v_{1} \ldots v_{j} v_{k+1} \ldots v_{h} w \in L
$$

The theorem of Ehrenfeucht, Parikh \& Rozenberg states that L is rational iff there exists h such that L satisfies P_{h}.

1. Show that if L satisfies P_{h}, then $w^{-1} L$ also does for every word $w \in \Sigma^{*}$.
2. Let $h \in \mathbb{N}$. We want to show that the number of languages satisfying P_{h} is finite. We use the following statement of Ramsey's theorem :

For every k there is N such that, for every set E of cardinal greater than N and every bipartition \mathcal{P} of $\mathfrak{P}_{2}(E)=\left\{\left\{e, e^{\prime}\right\}: \quad e, e^{\prime} \in\right.$ $\left.E, e \neq e^{\prime}\right\}$, there exists a subset $F \subseteq E$ of cardinal k such that $\mathfrak{P}_{2}(F)$ is contained in one of the classes of \mathcal{P}.

Let N be the natural number given by Ramsey's theorem for $k=h+1$. Let L and L^{\prime} be two languages satisfying P_{h} and coinciding on words of size smaller than N. Prove that they coincide on words or size $M \geq N$, by induction on M. You may consider, for a word $f=a_{1} \ldots a_{N} t$ of size M (with $a_{i} \in \Sigma$), the following partition of $\mathfrak{P}_{2}([0 ; N])$:

$$
\begin{gathered}
X_{f}=\left\{(j, k): 0 \leq j<k \leq N, a_{1} \ldots a_{j} a_{k+1} \ldots a_{N} t \in L\right\} \\
Y_{f}=\mathfrak{P}_{2}([0 ; N]) \backslash X_{f}
\end{gathered}
$$

Conclude.
3. Conclude that if a language L satisfies P_{h} for some h, then L is regular.

```
https://www.irif.fr/~ carton/Enseignement/Complexite/ENS/Cours/pumping.
html
```


Exercise 6: A rational slice? (open exercise)

Let L be a rational language over a finite alphabet Σ. Is $\operatorname{FH}(L)=\left\{f \in \Sigma^{*}\right.$: $\left.\exists h \in \Sigma^{*} .|h|=|f|, f h \in L\right\}$ rational ?

