Langages formels Exercise 5

Emilie Grienenberger emilie.grienenberger@lsv.fr

 $3 \mathrm{\ mars\ } 2021$

Hand this exercise in before the end of the 11th March

Exercise 1: Transition monoid

1. Give the transition monoid of the following automaton \mathcal{A} :

2. Give a word representing each equivalence class of the syntactic congruence of the language recognized by \mathcal{A} .

Exercise 2: Iterating factors

Let Σ be an alphabet and $L \subseteq \Sigma^*$ a language. We define the *iterating factors* of L the set $\mathcal{I}(L) = \{ w \in \Sigma^* \mid \exists u, v \in \Sigma^*. uw^*v \subseteq L \}$. Prove that if L is regular, then $\mathcal{I}(L)$ is also regular.

Hint : use a monoid $M, P \subseteq M$ and morphism μ recognizing L.

Exercise 3: Syntactic congruence

Let P be the language of balanced strings of parentheses over alphabet $\Sigma = \{(,)\}, \text{ e.g. } (())() \in P \text{ but } ()) \notin P \text{ and }) (\notin P.$

- 1. What are the equivalence classes of the relation \equiv_P ?
- 2. Is P recognizable?