Time and Probability based Information Flow Analysis

Angelo Troina

Dipartimento di Informatica, Università di Pisa, Italy

Joint work with: Ruggero Lanotte (University of Insubria at Como) Andrea Maggiolo Schettini (University of Pisa) Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Outline

Multilevel Security

▶ Non-Interference [Goguen and Meseguer,1982]

The Model

- Probabilistic Timed Automata
- Weak Bisimulation for Probabilistic Timed Automata

Information Flow Analysis

Probabilistic and/or Timed Security Properties

Time and Probability based Information Flow Analysis

A. Troina

Introduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Security in Multilevel Systems

- General setting: a multilevel system, i.e. a system of interacting agents where every agent is confined in a bounded security level.
- Access rules: can be imposed to control direct unwanted transmissions from higher levels to lower levels.
- Covert channels: information could be transmitted from higher levels to lower levels by using system side effects.
- Aim: to control the whole flow of information
- Non-interference: low level agents are not able to deduce anything about the activity of high level agents.

Time and Probability based Information Flow Analysis

A. Troina

Introduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Non-deterministic systems

- J. A. Goguen, J. Meseguer: Security Policy and Security Models. Proc. of Symp. on Research in Security and Privacy, IEEE CS Press, 11–20, 1982.
- D. McCullough: Noninterference and the Composability of Security Properties. Proc. of Symp. on Research in Security and Privacy, IEEE CS Press, 177–186, 1988.
- R. Focardi, R. Gorrieri: A Classification of Security Properties. Journal of Computer Security 3, 5–33, 1995.

Time and Probability based Information Flow Analysis

A. Troina

Introduction

The Model of PTA

Von-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Timed systems

- R. Focardi, R. Gorrieri, F. Martinelli: Information Flow Analysis in a Discrete-Time Process Algebra. Proc. of 13th CSFW, IEEE CS Press, 170–184, 2000.
- N. Evans, S. Schneider: Analysing Time Dependent Security Properties in CSP Using PVS. Proc. of Symp. on Research in Computer Security, Springer LNCS 1895, 222–237, 2000.
- R. Barbuti, L. Tesei: A Decidable Notion of Timed Non-interference. Fundamenta Informaticae 54, 137–150, 2003.

A. Troina

Introduction

The Model of PTA

Von-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Probabilistic systems

- J. W. Gray III. Toward a Mathematical Foundation for Information Flow Security. Journal of Computer Security 1, 255–294, 1992.
- A. Aldini, M. Bravetti, R. Gorrieri: A Process-algebraic Approach for the Analysis of Probabilistic Non-interference. Journal of Computer Security 12, 191–245, 2004.
- A. Di Pierro, C. Hankin, H. Wiklicky: *Approximate Non-Interference*. Journal of Computer Security 12, 37-82, 2004.

Time and Probability based Information Flow Analysis

A. Troina

Introduction

The Model of PTA

Von-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

The Model of PTA

A Probabilistic Timed Automaton (PTA) is $A = (\Sigma, X, Q, q_0, \delta, \pi).$

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Non Deducibility on Composition A Finer Classification

A configuration of a PTA is a pair s = (q, v), where $q \in Q$ is a state, and v is a valuation over X.

Weak Bisimulation of Probabilistic Timed Automata

A *weak bisimulation* is a bisimulation which does not take care of internal moves.

For a PTA $A = (\Sigma, X, Q, q_0, \delta, \pi)$ a weak bisimulation is an equivalence relation \mathcal{R} such that, for all $(s, s') \in \mathcal{R}$ and equivalence classes \mathcal{C} of \mathcal{R} :

 $Prob(s, \tau^* \alpha, \mathcal{C}) = Prob(s', \tau^* \alpha, \mathcal{C}) \qquad \forall \alpha \in \Sigma \cup \{\tau\} \cup \mathbb{R}^{>0}$

Two configurations s, s' are weak bisimilar ($s \approx s'$) iff $(s, s') \in \mathcal{R}$ for some weak bisimulation \mathcal{R} .

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Weak Bisimulation of Probabilistic Timed Automata (2)

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Non Deducibility on Composition A Finer Classification

Figure: $A_1 \approx A_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□◆

Auxiliary operators for Probabilistic Timed Automata

Given two PTA A_1 and A_2 , $L \subseteq \Sigma$ set of synchronization actions and $p \in]0,1[$ advancing speed parameter, $A_1||_L^p A_2$ denotes the *parallel composition*. The composition is a PTA obtained by normalizing probabilities and hiding with the τ label the synchronized actions.

The *restriction* of a PTA A with respect to the set of actions L is $A \setminus L$, obtained from A by removing transitions and normalization of probabilities.

The *hiding* of a PTA A with respect to the set of actions L is A/L where each transition label $a \in L$ is replaced by label τ .

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Non-interference

A system S satisfies the *Non-interference* property ($S \in NI$) if high level agents do not interfere with the observable behavior of the system from the low level point of view:

$$S \in NI \quad \Leftrightarrow \quad S/\Sigma_H \approx S \setminus \Sigma_H$$

where Σ_H is the set of high level actions.

(The observable behavior of the isolated system is bisimilar to the behavior of the system which communicates with high level agents in an invisible manner for the low agent point of view).

Proposition. It is decidable to check whether a system *S* satisfies the NI property.

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Non-deterministic Non-interference

An example of non-deterministic covert channel.

The high level action h interferes with the observation of the action I. In $A \setminus \Sigma_H$ the low level agent observes only the execution of I, whereas, in A/Σ_H also action I' may be observed. A low level agent, observing the event I knows that action h has occurred.

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems

Timed Systems Probabilistic Systems Classifying Properties

Timed Non-interference

An example of timing covert channel.

The high level action h interferes with the time of observing the action I. In $A \setminus \Sigma_H$ the low level agent observes Iexecuted immediately, whereas, in $A/\Sigma_H I$ could either be observed immediately or when the clock x reaches value 5. A low level agent, observing the event I when clock x has value 5 knows that action h has occurred. Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference Non-deterministic Systems

Timed Systems Probabilistic Systems Classifying Properties

Probabilistic Non-interference

Time and Probability based Information Flow Analysis

A. Troina

Introduction

The Model of PTA

Non-interference Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Non Deducibility on Composition A Finer Classification

 $A \setminus \Sigma_{H}$: *I* is observed with probability $\mathbf{p} + \mathbf{r}$, *II'* with probability \mathbf{q} .

 A/Σ_H : *I* is observed with probability **p**, *II'* with probability **r** + **q**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

A Classification of Quantitative Security Properties

Given NNI, TNI, PNI and PTNI be non-interference properties defined for the models of non-deterministic automata, timed automata, probabilistic automata and probabilistic timed automata, respectively, the following implications hold:

- $A \in PNI \Rightarrow unprob(A) \in NNI$
- $A \in TNI \Rightarrow untime(A) \in NNI$
- ► $A \in PTNI \Rightarrow unprob(A) \in TNI \land untime(A) \in PNI$.

A. Troina

ntroduction

The Model of PTA

Von-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

A Classification of Quantitative Security Properties (2)

 $\exists A : A \notin PTNI \land unprob(A) \in TNI \land untime(A) \in PNI$

 $A \setminus \Sigma_H$: *I* when x = 3 or when x = 4 with probability $\frac{1}{2}$. A/Σ_H : *I* when x = 3 with probability $\frac{19}{30}$, *I* when x = 4 with probability $\frac{11}{30}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

A Classification of Quantitative Security Properties (3)

The following diagram summarizes our results.

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference Non-deterministic Systems

Timed Systems Probabilistic Systems Classifying Properties

Non Deducibility on Composition A Finer Classification

Figure: Relations among Non-Interference security properties.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = ����

Non Deducibility on Composition

A system S satisfies the Non Deducibility on Composition (NDC) if the system in isolation has not to be altered when considering all the potential interactions with the high level agents of the external environment, formally:

 $\begin{array}{ll} S \in \textit{NDC} \ \Leftrightarrow \ \forall \Pi \in \Gamma_H, \forall p \in]0, 1[, \ \forall L \subseteq \Sigma_H \\ S / \Sigma_H \approx (S ||_L^p \Pi) \setminus \Sigma_H \end{array}$

where Γ_H is the set of high level agents.

(The observable behavior of the isolated system is bisimilar to the behavior of the system communicating with the high level agent Π in an invisible manner for the low agent point of view).

Note. Decidability of *NDC* depends on the possibility of reducing all the high level automata in Γ_H to a finite case for the particular automaton *S* considered.

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Non Deducibility on Composition

A Finer Classification

Non Deducibility on Composition (2)

Theorem. $S \in mNDC \Rightarrow S \in mNI$.

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Non Deducibility on Composition

A Finer Classification

A is *PTNI* secure, since $A/\Sigma_H \approx A \setminus \Sigma_H$. But A is not *PTNDC* secure as $(A||_L^p\Pi) \setminus \Sigma_H$ reaches with probability $\frac{3}{4}$ a state where it cannot perform any visible action.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A Classification of Quantitative Security Properties(4)

Given NNDC, TNDC, PNDC and PTNDC be non-deducibility on composition properties defined for the models of non-deterministic automata, timed automata, probabilistic automata and probabilistic timed automata, respectively, the following implication holds:

 $A \in PTNDC (PNDC, TNDC, NNDC) \Rightarrow A \in PTNI (PNI, TNI, NNI).$

Moreover, as for the NI properties, we have that:

- $A \in PNDC \Rightarrow unprob(A) \in NNDC;$
- $A \in TNDC \Rightarrow untime(A) \in NNDC;$
- ► $A \in PTNDC \Rightarrow unprob(A) \in TNDC \land untime(A) \in PNDC.$

and that $\exists A : A \notin PTNDC \land unprob(A) \in TNDC$ $\land untime(A) \in PNDC.$ Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Non Deducibility on Composition

A Finer Classification

A Classification of Quantitative Security Properties (5)

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Non Deducibility on Composition

A Finer Classification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Observations and Future Work

- Introduce an approximated notion of weak bisimulation for PTA.
- We can formulate other well known information flow security properties within our framework.
- Extend the model with cryptographic primitives in order to analyze security protocols.
- Develop an automatic technique to "adjust" unsecure systems.

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Von-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Non Deducibility on Composition

A Finer Classification

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□◆

Bibliography

 R. Lanotte, A. Maggiolo-Schettini, A. Troina A Classification of Time and/or Probability Dependent Security Properties Proc. QAPL'05, Elsevier ENTCS, to appear. [2] R. Lanotte, A. Maggiolo-Schettini, A. Troina Information Flow Analysis for Probabilistic Timed Automata Proc. FAST'04, Springer IFIP series 173, pp. 13-27, 2004. [3] R. Lanotte, A. Maggiolo-Schettini, A. Troina Weak Bisimulation for Probabilistic Timed Automata and Applications to Security Proc. SEFM'03, IEEE Computer Society Press, pp. 34–43, 2003

Time and Probability based Information Flow Analysis

A. Troina

ntroduction

The Model of PTA

Non-interference

Non-deterministic Systems Timed Systems Probabilistic Systems Classifying Properties

Non Deducibility on Composition

A Finer Classification