An Introduction to Capacities, Games, and Previsions

Jean Goubault-Larrecq

Supported by the ACI NIM Geocal, the INRIA ARC ProNoBis

GDR IM'07 — Feb 02, 2007

Stochastic Games

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Capacities, Games, Belief Functions

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Previsions

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Conclusion

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Outline

Stochastic Games

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Capacities, Games, Belief Functions

Unanimity Games

Belief Functions

The Choquet Integral

Ludic Transition Systems

Previsions

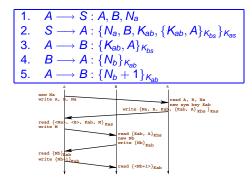
Representation Theorems

A Probabilistic Non-Deterministic Lambda-Calculus

Completeness

Conclusion

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities


▲ 国 ▶ ▲ 国 ▶

SECS

INRIA

Verifying cryptographic protocols. E.g.,

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

How To Verify A Protocol

The Dolev-Yao model: all agents (A, B, S) run in a context (= adversary) C.

- C can do plenty of things (encrypt, decrypt, forge, redirect, drop messages);
- C aims at reaching a so-called Bad state (e.g., where the secret K_{ab} is known to C).

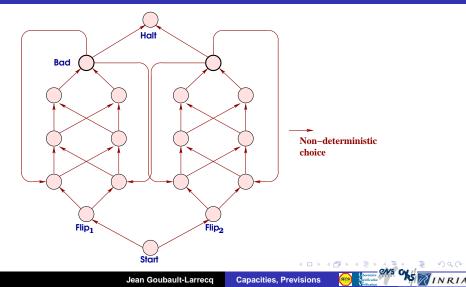
Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

How To Verify A Protocol

The Dolev-Yao model: all agents (A, B, S) run in a context (= adversary) C.

- C can do plenty of things (encrypt, decrypt, forge, redirect, drop messages);
- C aims at reaching a so-called Bad state (e.g., where the secret K_{ab} is known to C).

To verify:

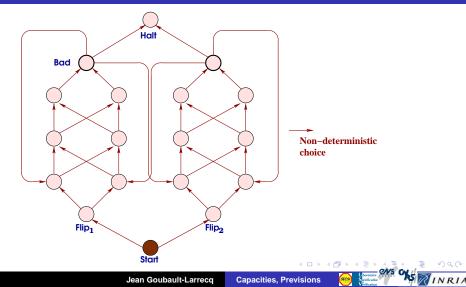

- Draw a (big) graph.
 - States q are (big) tuples describing the state of the world (where each agent is currently at, what the values of local variables are, what messages C has got hold of);
 - Transitions $q \xrightarrow{\ell} q'$ lists when the world can evolve from q to q' (doing action ℓ).

Check whether Bad is reachable from one of the initial status

states.

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

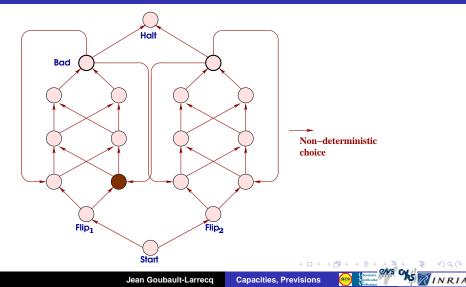
Non-Deterministic Choice Only: Automata

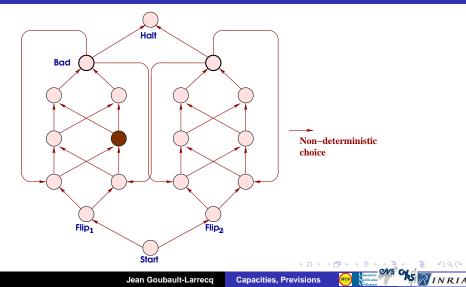

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

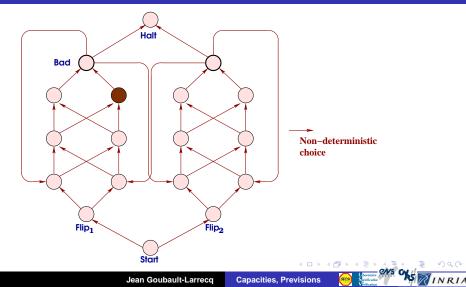
Non-Deterministic Choice: Semantics

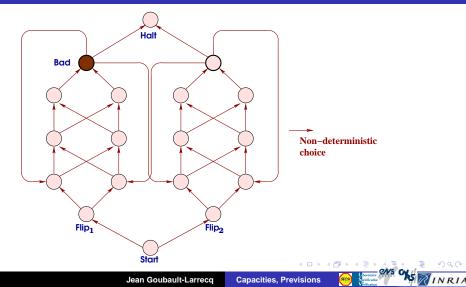

C plays as follows:

- Start at... Start;
- Pick some next state;
- Repeat...
- ... So as to reach some set of goal states (fat circles here).


Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities


Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities


Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities


Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

- Model is relatively simple (in particular, no probabilities);
- But infinite-state: there are infinitely many states in general.

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

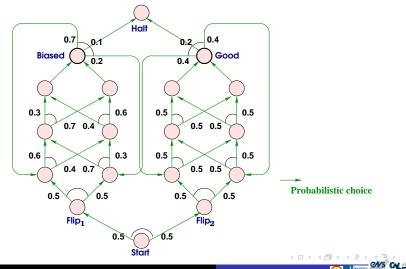
Case In Point: Probabilistic Choice

Some protocols require honest agents to draw their next move at random.

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Case In Point: Probabilistic Choice

Some protocols require honest agents to draw their next move at random.

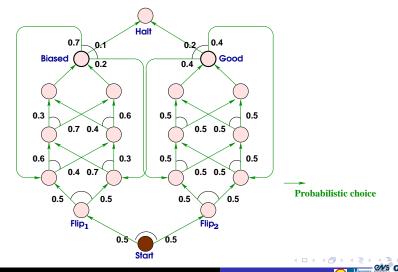

E.g., Hermann's protocol for the dining philosophers.

CSMA/CD (Ethernet).

Various self-stabilization protocols.

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

A (Finite) Markov Chain

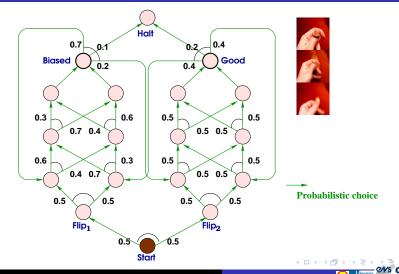

Jean Goubault-Larrecq

Capacities, **Previsions**

NRIA

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Start

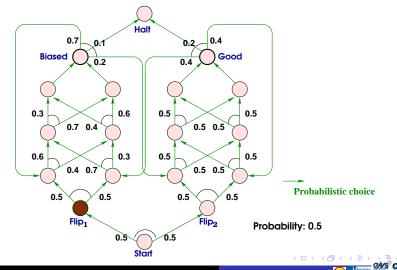

Jean Goubault-Larrecq

Capacities, **Previsions**

SECS

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

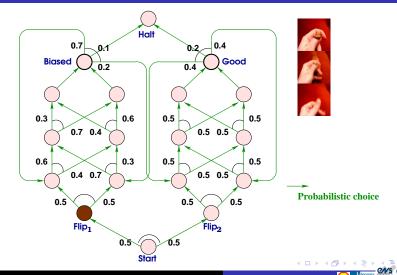
Flip a Coin



Jean Goubault-Larrecq

Capacities, **Previsions**

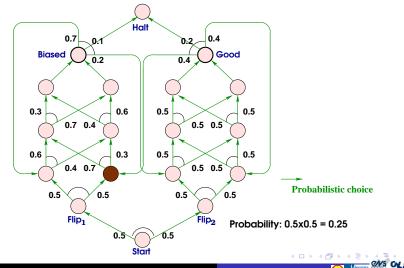
Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities


Advance

Jean Goubault-Larrecq

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Flip a Coin

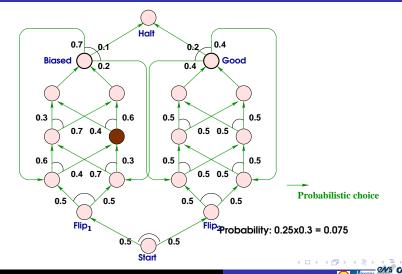


Jean Goubault-Larrecq

Capacities, **Previsions**

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Advance



Jean Goubault-Larrecq

Capacities, **Previsions**

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

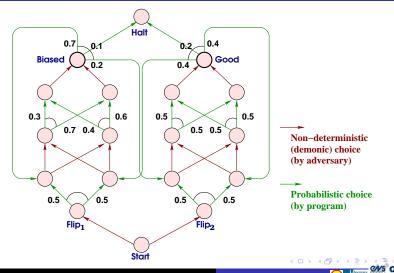
Advance

Jean Goubault-Larrecq

Capacities, **Previsions**

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Stochastic turn-based 2-player games

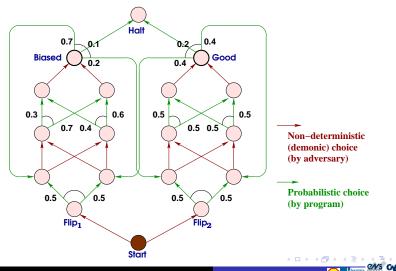

In some cryptographic protocols,

- Honest agents (P) play at random (or deterministically);
- Adversaries (C) play in a demonic way (one form of non-determinism);

Also present in Arthur-Merlin games (complexity theory) and interactive proofs.

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

A Stochastic Game

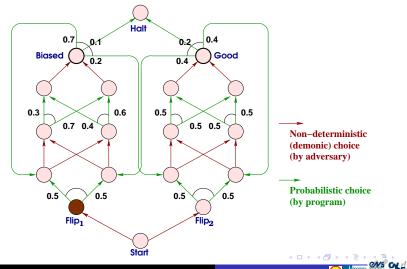

Jean Goubault-Larrecq

Capacities, **Previsions**

NRIA

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Start

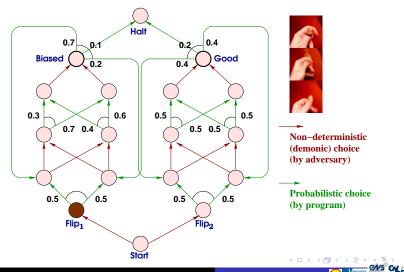


Jean Goubault-Larrecq

Capacities, **Previsions**

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

C's Turn: Malevolently Chooses Biased Side

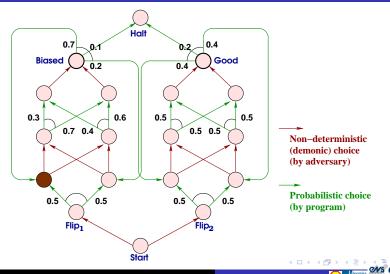

Jean Goubault-Larrecq

Capacities, **Previsions**

NRIA

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

P's Turn: Flipping a Coin

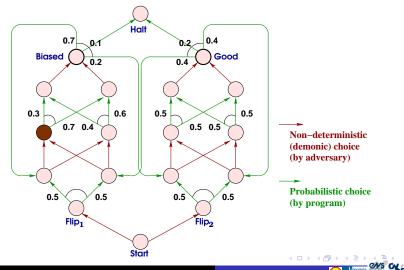


Jean Goubault-Larrecq

Capacities, **Previsions**

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

P's Turn: Advancing

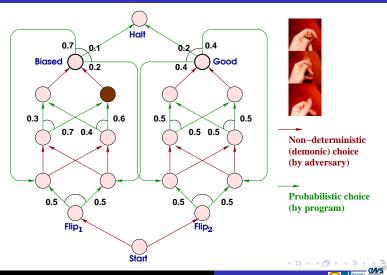


Jean Goubault-Larrecq

Capacities, **Previsions**

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

C's Turn: Picking Most Biased Side



Jean Goubault-Larrecq

Capacities, Previsions

Capacities, Games, Belief Functions Previsions Conclusion Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

P's Turn

Jean Goubault-Larrecq

Capacities, **Previsions**

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Our Challenge

- ► How do you model this when state space is infinite? (E.g., a topological space, ℝⁿ, a cpo.)
- How do you do model-checking? For what modal logic?
- How do you evaluate least average payoffs?
- How do you characterize contextual equivalence? bisimulation?

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Outline

Stochastic Games

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Capacities, Games, Belief Functions

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Previsions

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Conclusion

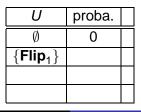
NRIA

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

"Preprobabilities"

An idea by F. Laviolette and J. Desharnais: simulate non-deterministic choice by some form of non-additive probabilistic choice: "Preprobabilities".

Preprobability that, from Start, we jump into some set U:


Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

"Preprobabilities"

An idea by F. Laviolette and J. Desharnais: simulate non-deterministic choice by some form of non-additive probabilistic choice: "Preprobabilities".

Preprobability that, from Start, we jump into some set U:

Jean Goubault-Larrecq

Capacities, Previsions

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

"Preprobabilities"

An idea by F. Laviolette and J. Desharnais: simulate non-deterministic choice by some form of non-additive probabilistic choice: "Preprobabilities".

Preprobability that, from Start, we jump into some set U:

U	proba.	
Ø	0	
$\{Flip_1\}$	0	C can always pick Flip ₂

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

"Preprobabilities"

An idea by F. Laviolette and J. Desharnais: simulate non-deterministic choice by some form of non-additive probabilistic choice: "Preprobabilities".

Preprobability that, from Start, we jump into some set U:

U	proba.	
Ø	0	
$\{Flip_1\}$	0	C can always pick Flip ₂
$\{Flip_2\}$	0	C can always pick Flip ₁

Jean Goubault-Larrecq

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

"Preprobabilities"

An idea by F. Laviolette and J. Desharnais: simulate non-deterministic choice by some form of non-additive probabilistic choice: "Preprobabilities".

Preprobability that, from Start, we jump into some set U:

U	proba.	
Ø	0	
$\{Flip_1\}$	0	C can always pick Flip ₂
$\{Flip_2\}$	0	C can always pick Flip ₁
$\{\operatorname{Flip}_1,\operatorname{Flip}_2\}$		

Jean Goubault-Larrecq

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

"Preprobabilities"

An idea by F. Laviolette and J. Desharnais: simulate non-deterministic choice by some form of non-additive probabilistic choice: "Preprobabilities".

Preprobability that, from Start, we jump into some set U:

U	proba.	
Ø	0	
$\{Flip_1\}$	0	C can always pick Flip ₂
$\{Flip_2\}$	0	C can always pick Flip ₁
$\{\operatorname{Flip}_1,\operatorname{Flip}_2\}$	1	C cannot escape it!

Jean Goubault-Larrecq

Capacities, **Previsions**

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Unanimity Games

Definition

The unanimity game u_Q is the set function such that:

$$\mathfrak{u}_{\mathsf{Q}}(U) = \begin{cases} 1 & \text{if } \mathsf{Q} \subseteq U \\ 0 & \text{otherwise} \end{cases}$$

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Unanimity Games

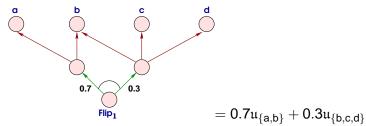
Definition

The unanimity game u_Q is the set function such that:

$$\mathfrak{u}_{\mathsf{Q}}(U) = \begin{cases} 1 & \text{if } \mathsf{Q} \subseteq U \\ 0 & \text{otherwise} \end{cases}$$

Non-deterministic (demonic) choice between Flip₁ and Flip₂:

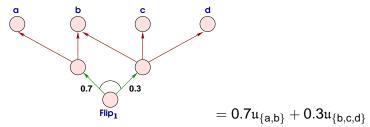
$$\mathfrak{u}_{\{\mathsf{Flip}_1,\mathsf{Flip}_2\}}$$


(This notion is a special case of a "cooperative game with transferable utility function" in economics.)

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Simple Belief Functions

Mix (demonic) non-deterministic and probabilistic choice:

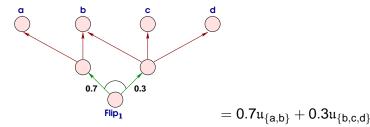


NRIA

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Simple Belief Functions

Mix (demonic) non-deterministic and probabilistic choice:


Definition A simple belief function is any $\sum_{i=1}^{n} a_i u_{Q_i}$, $a_i \in \mathbb{R}^+$, Q_i compact saturated.

NRIA

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Simple Belief Functions

Mix (demonic) non-deterministic and probabilistic choice:

Definition

A simple belief function is any $\sum_{i=1}^{n} a_i \mathfrak{u}_{Q_i}$, $a_i \in \mathbb{R}^+$, Q_i compact saturated.

(Looks like strictly alternating probabilistic automata [SegalaLynch95], or as in [MisloveOuaknineWorrell03], except we flip first *then* choose non-deterministically.)

Jean Goubault-Larrecq

Capacities, **Previsions**

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Axiomatization: Capacities, (Cooperative) Games

Let X be a topological space, $\Omega(X)$ its lattice of opens. Note: we measure *opens*.

Definition

A capacity ν is a function $\Omega(X) \to \mathbb{R}^+$, with $\nu(\emptyset) = 0$.

• A game is a monotonic capacity: $U \subseteq V \Rightarrow \nu(U) \leq \nu(V)$;

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Axiomatization: Capacities, (Cooperative) Games

Let X be a topological space, $\Omega(X)$ its lattice of opens. Note: we measure *opens*.

Definition

A capacity ν is a function $\Omega(X) \to \mathbb{R}^+$, with $\nu(\emptyset) = 0$.

- A game is a monotonic capacity: $U \subseteq V \Rightarrow \nu(U) \leq \nu(V)$;
- A game is convex iff v(U ∪ V) ≥ v(U) + v(V) − v(U ∩ V); (= for valuations [~ measures])

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Axiomatization: Capacities, (Cooperative) Games

Let X be a topological space, $\Omega(X)$ its lattice of opens. Note: we measure *opens*.

Definition

- A capacity ν is a function $\Omega(X) \to \mathbb{R}^+$, with $\nu(\emptyset) = 0$.
 - A game is a *monotonic* capacity: $U \subseteq V \Rightarrow \nu(U) \leq \nu(V)$;
 - A game is totally convex (i.e., a belief function) iff:

$$\nu\left(\bigcup_{i=1}^{n} U_{i}\right) \geq \sum_{I \subseteq \{1,\dots,n\}, I \neq \emptyset} (-1)^{|I|+1} \nu\left(\bigcap_{i \in I} U_{i}\right)$$

(would be = for valuations: the *inclusion-exclusion principle*.)

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Axiomatization: Capacities, (Cooperative) Games

Definition

A capacity ν is a function $\Omega(X) \to \mathbb{R}^+$, with $\nu(\emptyset) = 0$.

- A game is a monotonic capacity: $U \subseteq V \Rightarrow \nu(U) \leq \nu(V)$;
- A game is totally convex (i.e., a belief function) iff:

$$\nu\left(\bigcup_{i=1}^{n} U_{i}\right) \geq \sum_{I \subseteq \{1,\dots,n\}, I \neq \emptyset} (-1)^{|I|+1} \nu\left(\bigcap_{i \in I} U_{i}\right)$$

• A game is continuous iff $\nu\left(\bigcup_{i\in I}^{\uparrow} U_i\right) = \sup_{i\in I} \nu(U_i)$.

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Axiomatization: Capacities, (Cooperative) Games

Definition

Lemma

A capacity ν is a function $\Omega(X) \to \mathbb{R}^+$, with $\nu(\emptyset) = 0$.

- A game is a monotonic capacity: $U \subseteq V \Rightarrow \nu(U) \leq \nu(V)$;
- A game is totally convex (i.e., a belief function) iff:

$$\nu\left(\bigcup_{i=1}^{n} U_{i}\right) \geq \sum_{I \subseteq \{1,\dots,n\}, I \neq \emptyset} (-1)^{|I|+1} \nu\left(\bigcap_{i \in I} U_{i}\right)$$

• A game is continuous iff $\nu\left(\bigcup_{i\in I}^{\uparrow} U_i\right) = \sup_{i\in I} \nu(U_i)$.

Every simple belief function is a continuous belief function.

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Definition The Smyth powerdomain Q(X) of X is the set of all non-empty compact saturated subsets Q of X, ordered by \supseteq . Its Scott topology is generated by $\Box U = \{Q \in Q(X) | Q \subseteq U\}, U \in \Omega(X).$

 \Rightarrow A standard axiomatization of *demonic non-determinism*.

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Conversely (1/2)

Definition

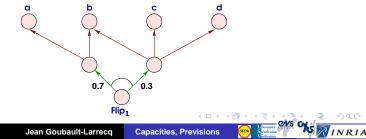
The Smyth powerdomain $\Omega(X)$ of X is the set of all non-empty compact saturated subsets Q of X, ordered by \supseteq . Its Scott topology is generated by $\Box U = \{Q \in \Omega(X) | Q \subseteq U\}, U \in \Omega(X).$

Let X be a nice enough topological space (sober, locally compact; e.g., any finite space, \mathbb{R}^n , any continuous cpo,).

Theorem

For every continuous belief function ν on X, there is a unique continuous valuation ν^* (~ measure) on $\Omega(X)$ such that $\nu(U) = \nu^*(\Box U)$ for all opens U.

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems



Let V(X) be the space of all continuous valuations, Cd(X) that of all continuous belief functions.

Corollary

 $\mathbf{Cd}(X) \cong \mathbf{V}(\mathfrak{Q}(X)).$

I.e., continuous belief functions \cong probabilistic choice (possibly non-discrete) then demonic (possibly infinitely branching) non-deterministic choice.

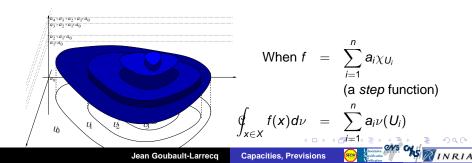
Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

The Choquet Integral [1953-54]

You can always integrate any (Scott-)continuous function $f: X \to \mathbb{R}^+$ along any game ν :

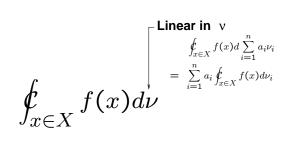
$$\oint_{x \in X} f(x) d\nu = \int_0^{+\infty} \nu(f^{-1}]t, +\infty[) dt$$

(An ordinary Riemann integral)


Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

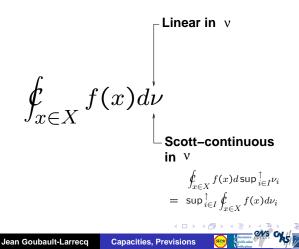
The Choquet Integral [1953-54]

You can always integrate any (Scott-)continuous function $f: X \to \mathbb{R}^+$ along any game ν :


$$\oint_{x \in X} f(x) d\nu = \int_0^{+\infty} \nu(f^{-1}]t, +\infty[) dt$$
(An ordinary Riemann integer

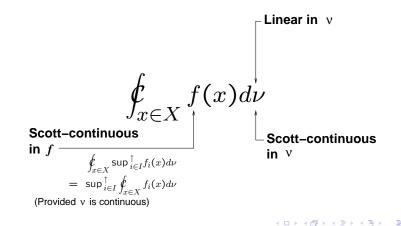
(An ordinary Riemann integral)

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems


Properties of the Choquet Integral

Jean Goubault-Larrecq Capacities, Previsions

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems


Properties of the Choquet Integral

INRIA

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Properties of the Choquet Integral

SECSI

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Properties of the Choquet Integral

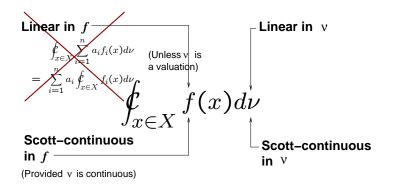
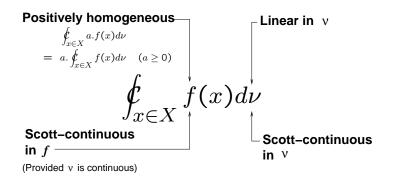



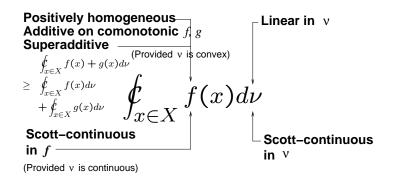
Image: Image:

NRIA

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems


Properties of the Choquet Integral

A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A


Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Properties of the Choquet Integral

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Properties of the Choquet Integral

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Integrating Along a Belief Function

Lemma () Let $\nu = \sum_{i=1}^{n} a_i \mathfrak{u}_{Q_i}$ a simple belief function. Then:

$$\oint_{x\in X} f(x)d\nu = \sum_{i=1}^n a_i \min_{x\in Q_i} f(x)$$

In other words:

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Integrating Along a Belief Function

Lemma () Let $\nu = \sum_{i=1}^{n} a_i \mathfrak{u}_{Q_i}$ a simple belief function. Then:

$$\oint_{x\in X} f(x)d\nu = \sum_{i=1}^n a_i \min_{x\in Q_i} f(x)$$

In other words:

P draws i at random, with probability a_i;

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Integrating Along a Belief Function

Lemma () Let $\nu = \sum_{i=1}^{n} a_i u_{Q_i}$ a simple belief function. Then:

$$\oint_{x\in X} f(x)d\nu = \sum_{i=1}^n a_i \min_{x\in Q_i} f(x)$$

In other words:

- P draws i at random, with probability a_i;
- C then picks x from Q_i so as to minimize payoff f(x).

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Integrating Along a Belief Function

Theorem (

Let X be sober, locally compact, $\nu \in Cd(X)$.

$$\oint_{x \in X} f(x) d\nu = \oint_{Q \in Q(X)} \min_{x \in Q} f(x) d\nu^*$$

In other words:

- ▶ P draws $Q \in Q(X)$ at random, with probability ν^* ;
- **C** then picks x from Q so as to minimize payoff f(x).

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Further Developments

 One can also deal with angelic non-determinism, where C now helps (maximizes payoff);

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Further Developments

- One can also deal with angelic non-determinism, where C now helps (maximizes payoff);
- ▶ ⇒ plausibilities: $\mathbf{Pb}(X) \cong \mathbf{V}(\mathcal{H}_u(X))$, where $\mathcal{H}_u(X)$ is the Hoare (angelic) powerdomain;

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Further Developments

- One can also deal with angelic non-determinism, where C now helps (maximizes payoff);
- ▶ ⇒ plausibilities: $\mathbf{Pb}(X) \cong \mathbf{V}(\mathcal{H}_u(X))$, where $\mathcal{H}_u(X)$ is the Hoare (angelic) powerdomain;
- Also with chaotic non-determinism: estimates and (Heckmann's version of) the Plotkin powerdomain.

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Ludic Transition Systems

Definition

A ludic transition system σ is a family of continuous maps $\sigma_{\ell} : X \to \mathbf{J}_{\leq 1 \ wk}(X), \ \ell \in L.$

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Ludic Transition Systems

Definition

A ludic transition system σ is a family of continuous maps $\sigma_{\ell}: X \to \mathbf{J}_{<1 \text{ wk}}(X), \ell \in L.$

L is a set of actions that P has control over;

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Ludic Transition Systems

Definition

A ludic transition system σ is a family of continuous maps $\sigma_{\ell} : X \to \mathbf{J}_{\leq 1 \ wk}(X), \ \ell \in L.$

- L is a set of actions that P has control over;
- σ_ℓ(x)(U) is the preprobability that, from state x, by playing
 ℓ ∈ L, P will move to y ∈ U;

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Ludic Transition Systems

Definition

A ludic transition system σ is a family of continuous maps $\sigma_{\ell} : X \to \mathbf{J}_{\leq 1 \ wk}(X), \ \ell \in L.$

- L is a set of actions that P has control over;
- σ_ℓ(x)(U) is the preprobability that, from state x, by playing
 ℓ ∈ L, P will move to y ∈ U;
- J_{≤1}(X) is the space of continuous games (not just belief functions) over X, with v(X) ≤ 1 (~ subprobabilities);

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Ludic Transition Systems

Definition

A ludic transition system σ is a family of continuous maps $\sigma_{\ell} : X \to \mathbf{J}_{\leq 1 \ wk}(X), \ \ell \in L.$

- L is a set of actions that P has control over;
- σ_ℓ(x)(U) is the preprobability that, from state x, by playing
 ℓ ∈ L, P will move to y ∈ U;
- J_{≤1}(X) is the space of continuous games (not just belief functions) over X, with v(X) ≤ 1 (~ subprobabilities);
- J_{≤1 wk}(X) is the same, except with the weak topology (nicer theoretically, and more general).

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Evaluating Average-Min Payoffs

As in Markov Decision Processes ($1\frac{1}{2}$ -player games), let:

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Evaluating Average-Min Payoffs

As in Markov Decision Processes ($1\frac{1}{2}$ -player games), let:

P plays according to a finite-state program Π; internal states q, transitions q^{-ℓ}→q';

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Evaluating Average-Min Payoffs

As in Markov Decision Processes ($1\frac{1}{2}$ -player games), let:

- P plays according to a finite-state program Π; internal states q, transitions q^{-ℓ}→q';
- ▶ Reward functions $r_{q \xrightarrow{\ell} q'} : X \to \mathbb{R}$ (bounded, continuous);

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Evaluating Average-Min Payoffs

As in Markov Decision Processes ($1\frac{1}{2}$ -player games), let:

- P plays according to a finite-state program Π; internal states q, transitions q^{-ℓ}→q';
- Reward functions $r_{q \xrightarrow{\ell} q'} : X \to \mathbb{R}$ (bounded, continuous);

► Discounts
$$\gamma_{q \stackrel{\ell}{\longrightarrow} q'} \in]0, 1];$$

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Evaluating Average-Min Payoffs

As in Markov Decision Processes ($1\frac{1}{2}$ -player games), let:

- P plays according to a finite-state program Π; internal states q, transitions q^{-ℓ}→q';
- ▶ Reward functions $r_{q \stackrel{\ell}{\longrightarrow} q'}$: $X \rightarrow \mathbb{R}$ (bounded, continuous);

► Discounts
$$\gamma_{q \stackrel{\ell}{\longrightarrow} q'} \in]0, 1];$$

The average payoff at state x when in internal state q:

$$V_{q}(x) = \sup_{\ell,q'/q \stackrel{\ell}{\longrightarrow} q'} \left[r_{q \stackrel{\ell}{\longrightarrow} q'}(x) + \gamma_{q \stackrel{\ell}{\longrightarrow} q'} \oint_{y \in X} V_{q'}(y) d\sigma_{\ell}(x) \right]$$

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Evaluating Average Payoffs—2¹/₂-Player Games

$$V_q(x) = \sup_{\ell,q'/q \stackrel{\ell}{\longrightarrow} q'} \left[r_{q \stackrel{\ell}{\longrightarrow} q'}(x) + \gamma_{q \stackrel{\ell}{\longrightarrow} q'} \oint_{y \in X} V_{q'}(y) d\sigma_{\ell}(x) \right]$$

E.g., when $\sigma_{\ell}(x)$ is a simple belief function $\sum_{i=1}^{n_{\ell}} a_{i\ell x} \mathfrak{u}_{Q_{i\ell x}}$, then:

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Evaluating Average Payoffs—2¹/₂-Player Games

$$V_q(x) = \sup_{\ell,q'/q \stackrel{\ell}{\longrightarrow} q'} \left[r_{q \stackrel{\ell}{\longrightarrow} q'}(x) + \gamma_{q \stackrel{\ell}{\longrightarrow} q'} \oint_{y \in X} V_{q'}(y) d\sigma_{\ell}(x) \right]$$

E.g., when $\sigma_{\ell}(x)$ is a simple belief function $\sum_{i=1}^{n_{\ell}} a_{i\ell x} \mathfrak{u}_{Q_{i\ell x}}$, then:

P maximizes its average payoff $V_q(x) = \sup_{\ell,q'/q} \int_{q'}^r q_{-}^{\ell} q'(x) + \gamma_{q} \int_{e}^{n_{\ell}} a_{i\ell x} \min_{y \in Q_{i\ell x}} V_{q'}(y) \int_{e}^{n_{\ell}} dx + q_{q} \int_{e}^{n_{\ell}} a_{i\ell x} \min_{y \in Q_{i\ell x}} V_{q'}(y) \int_{e}^{n_{\ell}} dx + q_{q} \int_{e}^{n_{\ell}} a_{i\ell x} \min_{y \in Q_{i\ell x}} V_{q'}(y) \int_{e}^{n_{\ell}} dx + q_{q} \int_{e}^{n_{\ell}} a_{i\ell x} \min_{y \in Q_{i\ell x}} V_{q'}(y) \int_{e}^{n_{\ell}} dx + q_{q} \int_{e}^{n_{\ell}} a_{i\ell x} \min_{y \in Q_{i\ell x}} V_{q'}(y) \int_{e}^{n_{\ell}} dx + q_{q} \int_{e}^{n_{\ell}} a_{i\ell x} \lim_{y \in Q_{i\ell x}} V_{q'}(y) \int_{e}^{n_{\ell}} dx + q_{q} \int_{e}^{n$

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Evaluating Average Payoffs—2¹/₂-Player Games

$$V_q(x) = \sup_{\ell,q'/q \stackrel{\ell}{\longrightarrow} q'} \left[r_{q \stackrel{\ell}{\longrightarrow} q'}(x) + \gamma_{q \stackrel{\ell}{\longrightarrow} q'} \oint_{y \in X} V_{q'}(y) d\sigma_{\ell}(x) \right]$$

Theorem

The equation above has a unique solution when:

- ► [Finite Horizon] Π terminates, or;
- [Discounted Case] γ_{q−ℓ→q'} ≤ γ for some γ < 1 + mild assumptions (e.g., σ_ℓ(x)(X) = 1)

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Modal Logic

Logic $\mathcal{L}_{open}^{\top \land \lor}$:

F	::=	Т	true	$\llbracket \top \rrbracket_{\sigma}$	=	Х
		$F \wedge F$	conjunction	$\llbracket F_1 \wedge F_2 \rrbracket_{\sigma}$	=	$\llbracket F_1 rbracket_{\sigma} \cap \llbracket F_2 rbracket_{\sigma}$
		$F \lor F$	disjunction	$\llbracket F_1 \vee F_2 \rrbracket_{\sigma}$	=	$\llbracket F_1 \rrbracket_{\sigma}^{\cdot} \cup \llbracket F_2 \rrbracket_{\sigma}^{\cdot}$
		$[\ell]_{>r}F$	modality	$\llbracket [\ell]_{>r} F \rrbracket_{\sigma}$	=	$\{\mathbf{x} \in \mathbf{X} \delta_{\ell}(\mathbf{x})(\llbracket \mathbf{F} \rrbracket_{\sigma}) > r\}$

Theorem (à la Desharnais-Edalat-Panangaden) $\mathcal{L}_{open}^{\top \land \lor}$ characterizes simulation.

4 E 5

NRIA

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Modal Logic

Logic $\mathcal{L}_{open}^{\top \land \lor}$:

F	::=	Т	true	$\llbracket \top \rrbracket_{\sigma}$	=	Х
		$F \wedge F$	conjunction	$\llbracket F_1 \wedge F_2 \rrbracket_{\sigma}$	=	$\llbracket F_1 rbracket_{\sigma} \cap \llbracket F_2 rbracket_{\sigma}$
		$F \lor F$	disjunction	$\llbracket F_1 \vee F_2 \rrbracket_{\sigma}$	=	$\llbracket F_1 \rrbracket_{\sigma}^{\cdot} \cup \llbracket F_2 \rrbracket_{\sigma}^{\cdot}$
		$[\ell]_{>r}F$	modality	$\llbracket [\ell]_{>r} F \rrbracket_{\sigma}$	=	$\{\mathbf{x} \in \mathbf{X} \delta_{\ell}(\mathbf{x})(\llbracket \mathbf{F} \rrbracket_{\sigma}) > r\}$

Theorem (à la Desharnais-Edalat-Panangaden)

 $\mathcal{L}_{open}^{\top \land \lor}$ characterizes simulation.

Or rather... simulation *topologies*: $0 \subseteq \Omega(X)$ such that δ_{ℓ} is continuous from X : 0 to $\mathbf{J}_{\leq 1 \ wk}(X : 0)$.

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Modal Logic

Logic $\mathcal{L}_{open}^{\top \land \lor}$:

F	::=	Т	true	$\llbracket \top \rrbracket_{\sigma}$	=	Х
		$F \wedge F$	conjunction	$\llbracket F_1 \wedge F_2 \rrbracket_{\sigma}$	=	$\llbracket F_1 \rrbracket_{\sigma} \cap \llbracket F_2 \rrbracket_{\sigma}$
		$F \lor F$	disjunction	$\llbracket F_1 \vee F_2 \rrbracket_{\sigma}$	=	$\llbracket F_1 \rrbracket_{\sigma}^{\cdot} \cup \llbracket F_2 \rrbracket_{\sigma}^{\cdot}$
		$[\ell]_{>r}F$	modality	$\llbracket [\ell]_{>r} F \rrbracket_{\sigma}$	=	$\{\mathbf{x}\in\mathbf{X} \delta_{\ell}(\mathbf{x})(\llbracket\mathbf{F}\rrbracket_{\sigma})>r\}$

Theorem (à la Desharnais-Edalat-Panangaden)

 $\mathcal{L}_{open}^{\top \wedge \vee}$ characterizes simulation.

Or rather... simulation *topologies*: $0 \subseteq \Omega(X)$ such that δ_{ℓ} is continuous from X : 0 to $\mathbf{J}_{\leq 1 \ wk}(X : 0)$.

Let \leq_{0} (*simulation*) the specialization quasi-ordering of $0, \equiv_{0}$ its associated equivalence. One can then *lump* together equivalent states.

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Outline

Stochastic Games

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Capacities, Games, Belief Functions

Unanimity Games Belief Functions The Choquet Integral Ludic Transition Systems

Previsions

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Conclusion

INRIA

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Find a semantics for higher-order functional languages with both:

- probabilistic choice;
- non-deterministic choice.

NRIA

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Find a semantics for higher-order functional languages with both:

- probabilistic choice;
- non-deterministic choice.

Several proposals already exist: [Varacca02], [Mislove00], [TixKeimelPlotkin05].

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Find a semantics for higher-order functional languages with both:

- probabilistic choice;
- non-deterministic choice.

Several proposals already exist: [Varacca02], [Mislove00], [TixKeimelPlotkin05].

We present a simple one based on continuous previsions [Walley91].

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Representation Theorems

Well-known in measure theory:

Theorem (Riesz)

Let X be compact Hausdorff. Then:

$$\nu$$
 measure $\mapsto \lambda f: X \to \mathbb{R} \cdot \int_{x \in X} f(x) d\nu$

is a bijection from the space of (bounded) measures on X to the space of bounded, linear and positive functionals from $\langle X \to \mathbb{R} \rangle$ to \mathbb{R} .

Conclusion

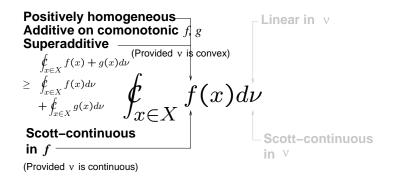
Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Representation Theorem for Valuations

Theorem (Tix)

Let X be a topological space. Let $\langle X \to \mathbb{R}^+ \rangle$ be the space of all bounded, (Scott-)continuous functions from X to \mathbb{R}^+ . Then:

$$u \in \mathbf{V}(\mathbf{X}) \quad \mapsto \quad \lambda f \in \langle \mathbf{X} \to \mathbb{R}^+ \rangle \cdot \oint_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) d
u$$


is an isomorphism between V(X) (continuous valuations) and the space of functionals F from $\langle X \to \mathbb{R} \rangle$ to \mathbb{R} such that:

- F is positively homogeneous: F(af) = aF(f) ($a \ge 0$);
- F is monotonic: if $f \leq g$ then $F(f) \leq F(g)$;
- ► *F* is (Scott-)continuous: $F(\sup_{i \in I}^{\uparrow} f_i) = \sup_{i \in I}^{\uparrow} F(f_i)$;
- *F* is additive: F(f + g) = F(f) + F(g).

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Properties of the Choquet Integral (Remember?)

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

4 E 5

Previsions

Definition

- A *prevision* F is a functional from $\langle X \to \mathbb{R}^+ \rangle$ to \mathbb{R}^+ such that:
 - ► *F* is positively homogeneous: F(af) = aF(f) ($a \ge 0$);
 - *F* is monotonic: if $f \leq g$ then $F(f) \leq F(g)$;

I.e., we drop additivity: F(f + g) = F(f) + F(g).

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Previsions

Definition

A *colinear prevision* F is a functional from $\langle X \to \mathbb{R}^+ \rangle$ to \mathbb{R}^+ such that:

- ► *F* is positively homogeneous: F(af) = aF(f) ($a \ge 0$);
- *F* is monotonic: if $f \leq g$ then $F(f) \leq F(g)$;
- ▶ *F* is colinear: if $f \bigcirc g$ then F(f + g) = F(f) + F(g);
- I.e., we drop additivity: F(f + g) = F(f) + F(g).

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Previsions

Definition

A *continuous colinear prevision* F is a functional from $\langle X \to \mathbb{R}^+ \rangle$ to \mathbb{R}^+ such that:

- ► *F* is positively homogeneous: F(af) = aF(f) ($a \ge 0$);
- *F* is monotonic: if $f \leq g$ then $F(f) \leq F(g)$;
- ► *F* is colinear: if $f \bigcirc g$ then F(f + g) = F(f) + F(g);
- ► *F* is (Scott-)continuous: $F(\sup_{i \in I}^{\uparrow} f_i) = \sup_{i \in I}^{\uparrow} F(f_i)$;
- I.e., we relax additivity: F(f + g) = F(f) + F(g).

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Previsions

Definition

A continuous linear prevision *F* is a functional from $\langle X \to \mathbb{R}^+ \rangle$ to \mathbb{R}^+ such that:

- F is positively homogeneous: F(af) = aF(f) ($a \ge 0$);
- *F* is monotonic: if $f \leq g$ then $F(f) \leq F(g)$;
- ► *F* is colinear: if $f \bigcirc g$ then F(f + g) = F(f) + F(g);
- ► *F* is (Scott-)continuous: $F(\sup_{i \in I}^{\uparrow} f_i) = \sup_{i \in I}^{\uparrow} F(f_i)$;
- *F* is linear: F(f + g) = F(f) + F(g);

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Previsions

Definition

A continuous lower prevision *F* is a functional from $\langle X \to \mathbb{R}^+ \rangle$ to \mathbb{R}^+ such that:

- F is positively homogeneous: F(af) = aF(f) ($a \ge 0$);
- *F* is monotonic: if $f \leq g$ then $F(f) \leq F(g)$;
- ► *F* is colinear: if $f \bigcirc g$ then F(f + g) = F(f) + F(g);
- ► *F* is (Scott-)continuous: $F(\sup_{i \in I}^{\uparrow} f_i) = \sup_{i \in I}^{\uparrow} F(f_i)$;
- F is lower: $F(f+g) \ge F(f) + F(g)$.

Previsions

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Dictionary of Representation Theorems

Continuous	Continuous
Games	Previsions
Valuations	Linear previsions [Tix99]

- E - 5

NRIA

Previsions

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Dictionary of Representation Theorems

Continuous	Continuous
Games	Previsions
Valuations	Linear previsions [Tix99]
Games	Colinear previsions

- E 1

Previsions

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

4 E 1

NRIA

A Dictionary of Representation Theorems

Continuous	Continuous		
Games	Previsions		
Valuations	Linear previsions [Tix99]		
Games	Colinear previsions		
Convex games	Colinear lower previsions [\sim Schmeidler92]		

Previsions

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

- E 1

NRIA

SECS

A Dictionary of Representation Theorems

Continuous	Continuous		
Games	Previsions		
Valuations	Linear previsions [Tix99]		
Games	Colinear previsions		
Convex games	Colinear lower previsions [\sim Schmeidler92]		
Concave games	Colinear upper previsions		

Previsions

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

- E - 5

NRIA

SECS

A Dictionary of Representation Theorems

Continuous	Continuous		
Games	Previsions		
Valuations	Linear previsions [Tix99]		
Games	Colinear previsions		
Convex games	Colinear lower previsions [\sim Schmeidler92]		
Concave games	Colinear upper previsions		
Belief functions	Colinear pessimistic previsions		
Plausibilities	Colinear optimistic previsions		

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Probabilistic Non-Deterministic Lambda-Calculus

- Take Moggi's monadic λ-calculus [Mog91];
- Requires a strong monad (T, η, μ, t) ;

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Probabilistic Non-Deterministic Lambda-Calculus

- Take Moggi's monadic λ-calculus [Mog91];
- Requires a strong monad (T, η, μ, t) ;
- Take TX = V(X) [Jones90]: models probabilistic choice, no non-determinism;

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Probabilistic Non-Deterministic Lambda-Calculus

- Take Moggi's monadic λ-calculus [Mog91];
- Requires a strong monad (T, η, μ, t) ;
- Take TX = Q(X): models (demonic) non-determinism, no probabilities;

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Probabilistic Non-Deterministic Lambda-Calculus

- Take Moggi's monadic λ-calculus [Mog91];
- Requires a strong monad (T, η, μ, t) ;
- Take TX = Cd(X): models both...

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Probabilistic Non-Deterministic Lambda-Calculus

- Take Moggi's monadic λ-calculus [Mog91];
- Requires a strong monad (T, η, μ, t) ;
- ► Take *TX* = Cd(*X*): models both... but not a monad (cannot define µ).

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Probabilistic Non-Deterministic Lambda-Calculus

- Take Moggi's monadic λ-calculus [Mog91];
- Requires a strong monad (T, η, μ, t) ;
- Take TX = {continuous convex games}: models both...

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:

- Take Moggi's monadic λ-calculus [Mog91];
- Requires a strong monad (T, η, μ, t) ;
- Take TX = {continuous convex games}: models both...

but not a monad (cannot define μ).

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:

- Take Moggi's monadic λ-calculus [Mog91];
- Requires a strong monad (T, η, μ, t) ;
- Take TX = {continuous colinear lower previsions}: models both...

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:

- Take Moggi's monadic λ-calculus [Mog91];
- Requires a strong monad (T, η, μ, t) ;
- Take TX = {continuous colinear lower previsions}: models both...

but not a monad (cannot define μ).

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Probabilistic Non-Deterministic Lambda-Calculus

In a nutshell:

- Take Moggi's monadic λ-calculus [Mog91];
- Requires a strong monad (T, η, μ, t) ;
- Take TX = {continuous colinear lower previsions}: models both... and works!

Previsions

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

-

NRIA

SECS

A Probabilistic Non-Deterministic Lambda-Calculus

<i>M</i> , <i>N</i> ::= <i>x</i> flip amb	variable constants		
MN	application	$\tau ::= bool int$	base types
$ \lambda \mathbf{x} \cdot \mathbf{M}$	abstraction	u	type of ()
()	empty tuple	$\tau \times \tau$	product
(<i>M</i> , <i>N</i>)	pair	$ \tau \to \tau$	function types
fst M	first proj.	$ T \tau$	computation
snd M	second proj.		types
val <i>M</i>	trivial comp.		
let val $x = M$ in N	sequence		

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

A Continuation Semantics

In an environment ρ , with continuation $h : \llbracket \tau \rrbracket \to \mathbb{R}^+$,

$$\begin{bmatrix} \operatorname{val} M \end{bmatrix} \rho(h) &= h(\llbracket M \rrbracket \rho) \\ \begin{bmatrix} \operatorname{let} \operatorname{val} x &= M \text{ in } N \end{bmatrix} \rho(h) &= \llbracket M \rrbracket \rho(\lambda v \cdot \llbracket N \rrbracket (\rho[x := v])(h)) \\ \\ \begin{bmatrix} \operatorname{case} \rrbracket \rho(b, v_0, v_1) &= \begin{cases} v_0 & \text{if } b = \text{false} \\ v_1 & \text{if } b = \text{true} \end{cases}$$

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

NRIA

A Continuation Semantics

In an environment ρ , with continuation $h : \llbracket \tau \rrbracket \to \mathbb{R}^+$,

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

NRIA

A Continuation Semantics

In an environment ρ , with continuation $h : \llbracket \tau \rrbracket \to \mathbb{R}^+$,

$$\begin{bmatrix} \operatorname{val} M \end{bmatrix} \rho(h) &= h(\llbracket M \rrbracket \rho) \\ \begin{bmatrix} \operatorname{let} \operatorname{val} x = M \operatorname{in} N \rrbracket \rho(h) &= \llbracket M \rrbracket \rho(\lambda v \cdot \llbracket N \rrbracket (\rho[x := v])(h)) \\ \begin{bmatrix} \operatorname{case} \rrbracket \rho(b, v_0, v_1) &= \begin{cases} v_0 & \text{if } b = \text{false} \\ v_1 & \text{if } b = \text{true} \end{cases} \\ \begin{bmatrix} \operatorname{flip} : \operatorname{Tbool} \rrbracket \rho(h) &= 1/2(h(\operatorname{false}) + h(\operatorname{true})) \\ & (\operatorname{take mean payoff}) \end{cases} \\ \begin{bmatrix} \operatorname{amb} : \operatorname{Tbool} \rrbracket \rho(h) &= \min(h(\operatorname{false}), h(\operatorname{true})) \\ & (\operatorname{take min payoff}) \end{cases}$$

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Angelic, Chaotic Non-Determinism

Can also deal with angelic non-determinism (Hoare): take
 TX = {continuous upper previsions};

 $[[amb:Tbool]] \rho(h) = max(h(false), h(true))$ (take max payoff)

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Angelic, Chaotic Non-Determinism

Can also deal with angelic non-determinism (Hoare): take
 TX = {continuous upper previsions};

 $[[amb:Tbool]] \rho(h) = max(h(false), h(true))$ (take max payoff)

- Can also deal with chaotic non-determinism (Plotkin): take $TX = \{\text{continuous forks}\}, \text{ where a fork is any pair } F = (F^-, F^+) \text{ with:}$
 - ► F⁻ a lower prevision;
 - F⁺ an upper prevision;
 - ► $F^{-}(h+h') \leq F^{-}(h) + F^{+}(h') \leq F^{+}(h+h').$

 $[[amb]] \rho = (\lambda h \cdot \min(h(0), h(1)), \lambda h \cdot \max(h(0), h(1)))$ (take both min and max payoff)

INRIA

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Completeness

Prevision models are sound: any mixture of (demonic, angelic, chaotic) non-determinism with probabilistic choice is accounted for.

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Completeness

- Prevision models are sound: any mixture of (demonic, angelic, chaotic) non-determinism with probabilistic choice is accounted for.
- We show completeness: there is no junk—prevision models are no more than mixtures of non-determinism with probabilistic choice.

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Shapley's [1965] and Rosenmuller's [1971] Theorems

Fundamental theorems in economy (for finite X, colinear F).

Definition

The core of a game ν is the set of measures p such that:

•
$$\nu(U) \leq p(U)$$
 for any U;

$$\blacktriangleright \nu(X) = p(X).$$

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Shapley's [1965] and Rosenmuller's [1971] Theorems

Fundamental theorems in economy (for finite X, colinear F).

Definition

The core of a game ν is the set of measures p such that:

- $\nu(U) \leq p(U)$ for any U;
- ► $\nu(X) = \rho(X)$.

Theorem (Shapley)

Every convex game has a non-empty core.

Entails existence of economic equilibria.

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Shapley's [1965] and Rosenmuller's [1971] Theorems

Fundamental theorems in economy (for finite X, colinear F).

Definition

The core of a game ν is the set of measures p such that:

•
$$\nu(U) \leq \rho(U)$$
 for any U;

 $\blacktriangleright \nu(X) = p(X).$

Theorem (Rosenmuller)

A game is convex iff:

- it has a non-empty core;
- ▶ and for every $f : X \to \mathbb{R}^+$.

$$\oint_{x \in X} f(x) d\nu = \min_{p \text{ in the core of } \nu} \oint_{x \in X} f(x) dp$$
Jean Goubault-Larrecg Capacities, Previsions

INK

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

The Heart of a Continuous Prevision

Use normalized previsions (\sim non-additive probabilities).

Definition (Heart)

The heart $CCoeur_1(F)$ of $F : \langle X \to \mathbb{R}^+ \rangle \to \mathbb{R}^+$ is the set of continuous linear normalized previsions G such that $F \leq G$.

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

The Heart of a Continuous Prevision

Use normalized previsions (\sim non-additive probabilities).

Definition (Heart)

The heart $CCoeur_1(F)$ of $F : \langle X \to \mathbb{R}^+ \rangle \to \mathbb{R}^+$ is the set of continuous linear normalized previsions G such that $F \leq G$.

Theorem (à la Rosenmuller, topological; no colinearity needed)

Let X be nice enough (stably locally compact), F a continuous normalized prevision on X.

Then F is lower iff:

- CCoeur₁(F) $\neq \emptyset$;
- ▶ and for every $f \in \langle X \to \mathbb{R}^+ \rangle$, $F(f) = \inf_{G \in CCoeur_1(F)} G(f)$.

The the inf is attained: $F(f) = \min_{G \in CCoeur_1(F)} G(f)$.

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Completeness

Define the weak topology on the space $\mathbf{P}(X)$ ($\nabla \mathbf{P}(X)$, $\Delta \mathbf{P}(X)$) of all continuous (lower, upper) previsions on X, as the coarsest that makes $F \mapsto F(f)$ continuous, for each $f \in \langle X \to \mathbb{R}^+ \rangle$.

Theorem

Let X be nice enough (stably compact), F a normalized continuous lower prevision.

Then $CCoeur_1(F)$ is a non-empty saturated compact convex subset of $\mathbf{P}_{1\ wk}^{\triangle}(X)$.

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Completeness

Define the weak topology on the space $\mathbf{P}(X)$ ($\nabla \mathbf{P}(X)$, $\Delta \mathbf{P}(X)$) of all continuous (lower, upper) previsions on *X*, as the coarsest that makes $F \mapsto F(f)$ continuous, for each $f \in \langle X \to \mathbb{R}^+ \rangle$.

Theorem

Let X be nice enough (stably compact), F a normalized continuous lower prevision.

Then $CCoeur_1(F)$ is a non-empty saturated compact convex subset of $\mathbf{P}_{1\ wk}^{\triangle}(X)$.

Corollary

CCoeur₁ $\dashv \square$ is a continuous Galois injection ("almost an isomorphism") of $\nabla \mathbf{P}_1(X)$ into $\mathfrak{Q}(\mathbf{P}_{1\ wk}^{\triangle}(X))$.

I.e., $\nabla \mathbf{P}_1(X)$ contains no junk:

ヘロト ヘヨト ヘヨト

→

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Completeness

Theorem

Let X be nice enough (stably compact), F a normalized continuous lower prevision.

Then $CCoeur_1(F)$ is a non-empty saturated compact convex subset of $\mathbf{P}_{1\ wk}^{\triangle}(X)$.

Corollary

CCoeur₁ $\dashv \square$ is a continuous Galois injection ("almost an isomorphism") of $\nabla \mathbf{P}_1(X)$ into $\mathbb{Q}(\mathbf{P}_{1\ wk}^{\triangle}(X))$.

I.e., $\nabla \mathbf{P}_1(X)$ contains no junk:

Every normalized continuous lower prevision is essentially one non-deterministic choice *then* one probabilistic choice (à la [SegalaLynch95, Mislove00, MisloveOuaknineWorrell03, TixKeimelPlotkin05]; the converse of belief functions).

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Completeness (cont'd)

In the angelic case, ∐ ⊢ CPeau₁ is a continuous Galois surjection of ℋ(P[△]_{1 wk}(X)) onto ∇ P₁(X).

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Completeness (cont'd)

- In the angelic case, ∐ ⊢ CPeau₁ is a continuous Galois surjection of H(P[△]_{1 wk}(X)) onto ∇ P₁(X).
- In the chaotic case, for any fork F = (F⁻, F⁺), CCoeur₁(F⁻) ∩ CPeau₁(F⁺) is a lens, i.e., an element of the Plotkin powerdomain of P[∆]_{1 wk}(X).

Conclusion

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Completeness (cont'd)

- In the angelic case, ∐ ⊢ CPeau₁ is a continuous Galois surjection of ℋ(P[△]_{1 wk}(X)) onto ∇ P₁(X).
- In the chaotic case, for any fork F = (F⁻, F⁺), CCoeur₁(F⁻) ∩ CPeau₁(F⁺) is a lens, i.e., an element of the Plotkin powerdomain of P[∆]_{1 wk}(X).
- Our prevision models are "almost isomorphic" to models of compact convex subsets (resp. closed convex subsets, convex lenses) of probability valuations [Mislove00, TixKeimelPlotkin05].

Stochastic Games

Non-Deterministic Choice Probabilistic Choice: Markov Chains Mixing Non-Determinism and Probabilities

Capacities, Games, Belief Functions

Unanimity Games

Belief Functions

The Choquet Integral

Ludic Transition Systems

Previsions

Representation Theorems A Probabilistic Non-Deterministic Lambda-Calculus Completeness

Conclusion

INRIA

 I love realizing new problems have old solutions: here I use and extend theories of capacities [Choquet53-54], cooperative games [Shapley65], belief functions [Dempster67], previsions [Walley91].

- I love realizing new problems have old solutions: here I use and extend theories of capacities [Choquet53-54], cooperative games [Shapley65], belief functions [Dempster67], previsions [Walley91].
- Ludic transition systems: a smart formulation of 2¹/₂-player games that smells of 1¹/₂-player games (Markov decision processes).

- I love realizing new problems have old solutions: here I use and extend theories of capacities [Choquet53-54], cooperative games [Shapley65], belief functions [Dempster67], previsions [Walley91].
- Ludic transition systems: a smart formulation of 2¹/₂-player games that smells of 1¹/₂-player games (Markov decision processes).
- Previsions: an elegant and simple semantics for probabilistic and non-deterministic higher-order functional languages.

