
Operational and Denotational Semantics

Please turn in by April 5, 2011 (-1 point penalty per day late)

Solution.

We consider an enriched, typed�-calculus with constants for arithmetic expressions and recur-
sion. Note that the essential question is question 9. This isthe one that takes the longest to answer,
and the one that will really tell me whether you understand (variants of) techniques we have seen
in the�-calculus.

The typesare�, � ::= Nat ∣ � → � . All the terms in the language come with explicit types.
In particular, we assume an infinite, countable set of variables of each type� , and writex� for a
variable of type� .

The termst of type� (in short,t : � ) are defined by induction on their size by :
– every variablex� is of type� ;
– if N : � , then�x� ⋅N is a term of type� → � ;
– if M : � → � andN : �, thenMN is a term of type� ;
– for eachn ∈ ℕ, there is a distinct constantn : Nat ;
– there are distinct constantspred : Nat → Nat (subtract one),succ : Nat (add one),ifz� :
Nat → � → � → � (test if first argument equals0), andY� : (� → �) → � (fixpoint,
recursion).

As in the�-calculus, the terms are understood up to�-renaming. This takes the special form
thatx� can be replaced by any fresh variabley� of thesametype� in �x� ⋅ t. We drop type indices
whenever they are irrelevant or can be reconstructed from context.

We define its semantics not through reduction, but by building a machine directly.
The contextsare defined by the grammarE := ∣ EN ∣ succE ∣ predE ∣ ifz E N P ,

whereN , P denote terms. . We see contexts as particular terms, with a unique occurrence of a
specific variable that does not occur in any term, called thehole. A contextE is of type� ⊢ �

whenE is of type� , assuming the holeof type�. E[M ] denotes the replacement of the hole by
M (of type�).

Our machine is a transition system whose configurations are pairsE ⋅M . Intuitively, in such a
configuration, the machine is in the process of evaluatingE[M ], and the focus is currently on the
subtermM .
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The machine rules come into two groups. The first form theredex discoveryrules. E.g., in
(DApp), the machine tries to evaluateMN , and proceeds by pushing the argumentN into the
context and focusing on the function partM .

(DApp) E ⋅MN → E[ N ] ⋅M (DIf) E[ MNP ] ⋅ ifz → E[ifz N P ] ⋅M
(DPred) E[ N ] ⋅ pred → E[pred ] ⋅N (DSucc) E[ N ] ⋅ succ → E[succ ] ⋅N

The second group of rulescomputes:

(�) E[ N ] ⋅ �x ⋅ P → E ⋅ P [x := N ] (Y ) E[ N ] ⋅ Y → E ⋅N(Y N)
(pred) E[pred ] ⋅ n+ 1 → E ⋅ n (succ) E[succ ] ⋅ n → E ⋅ n+ 1
(ifz0) E[ifz N P ] ⋅ 0 → E ⋅N (ifz1) E[ifz N P ] ⋅ n+ 1 → E ⋅ P

We donot take the closure of→ under contexts, whatever this may mean. The relation→ is entirely
specified by the rules above.

We also consider adenotational semanticsof the above terms. First, we define the cpoJ�K of
all valuesof type� :

– JNatK isℕ⊥, the set of all natural numbers plus an added, so-calledbottomelement⊥. These
are ordered bym ≤ n iff m = ⊥ or m = n. (Think as all element ofℕ being incomparable
and above⊥.)

– J� → �K is the dcpo[J�K → J�K] of all continuous maps fromJ�K to J�K. They are ordered
by f ≤ g iff f(x) ≤ g(x) in J�K for everyx ∈ J�K.

1. Show that every termt has exactly one type.

This is by induction on the size oft, using the fact that every term has at least one type
by definition, and conversely that the type is determined from a unique typing rule. E.g.,
if our term isMN , thenM has a unique type,N has a unique type, and sinceMN

has a type at all, it must be obtained by the rule “ifM : � → � andN : � thenMN

is a term of type� ”, which determines� uniquely. If our term is�x� ⋅ N , thenN has
a unique type� , and therefore the unique type of�x� ⋅ N is � → � . This is the only
interesting case, and justifies why we explicitly decorate the variablex� with its type.
Finally, the types of variables and constants are uniquely determined.

2. Show thatJ�K has a least element⊥� , for every type� . By abuse of language, we shall write
⊥ instead of⊥� , and call it “bottom”. It is useful to think of⊥ as non-termination.

By induction on� . ℕ⊥ has⊥ as its least element, and if⊥� is the least element ofJ�K,
then the constant map with value⊥� is the bottom element ofJ� → �K.

Then we define the semanticsJtK � of termst : � as values inJ�K in environments� mapping
each variablex� to an element ofJ�K, by :

– Jx�K � = �(x�) ;
– JMNK � = JMK �(JNK �) ;
– J�x� ⋅NK � is the function that maps eachv ∈ J�K to JNK (�[x� := v]) ;
– JnK � = n, for everyn ∈ ℕ ;
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– JpredK � is the map that sendsn+ 1 to n ∈ ℕ, and0 and⊥ to ⊥ ;
– JsuccK � is the map that sendsn ∈ ℕ to n+ 1, and⊥ to ⊥ ;
– Jifz�K � is the map that sendsu, v, w to ⊥ if u = ⊥, to v if u = 0, and tow if u ∕= 0,⊥ ;
– JY� K � is the map that sendsf ∈ [J�K → J�K] to sup

n∈ℕ f
n(⊥� ).

3. Given any continuous mapf ∈ [J�K → J�K], show thatlfp(f) = sup
n∈ℕ f

n(⊥� ) exists in
J�K, and is theleast fixpointof f . A fixpoint of f is an elementv such thatf(v) = v. It is
least iffv ≤ w for every other fixpointw. (This is meant to explain the definition ofJY�K �.)

We first check that(fn(⊥� ))n∈ℕ is a chain, i.e.,f0(⊥� ) ≤ f1(⊥� ) ≤ . . . ≤ fn(⊥� ) ≤
. . . It is enough to check thatfn(⊥� ) ≤ fn+1(⊥� ) for everyn ∈ ℕ, and this is done by
induction onn. If n = 0, this is becausef0(⊥� ) = ⊥� is least. Otherwise,fn(⊥� ) =
f(fn−1(⊥� )) ≤ f(fn(⊥� )) = fn+1(⊥� ) by induction hypothesis and the fact thatf is
monotonic.

Now lfp(f) is a fixpoint : f(lfp(f)) = f(sup
n∈ℕ f

n(⊥� ) = sup
n∈ℕ f

n+1(⊥� ),
becausef is continuous and(fn(⊥� ))n∈ℕ is a chain ; we conclude because
sup

n∈ℕ f
n(⊥� ) = sup(f0(⊥� ), supn∈ℕ f

n+1(⊥� )) = sup(⊥� , supn∈ℕ f
n+1(⊥� )) =

sup
n∈ℕ f

n+1(⊥� ).

We claim thatlfp(f) is the least one. Assumex is another fixpoint. By induction on
n, fn(⊥� ) ≤ x : this is clear if n = 0, since⊥� is least, otherwisefn+1(⊥� ) =
f(fn(⊥� )) ≤ f(x) (by induction hypothesis, and sincef is monotonic)= x (sincex is
a fixpoint). Taking sups on each side,lfp(f) ≤ x.

4. Establishsoundness: if E ⋅ M →∗ ⋅ n, thenJE[M ]K � = n, for everyn ∈ ℕ, and every
environment�.

We first show that : (1) ifE ⋅M → E ′ ⋅M ′, thenJE[M ]K � = JE ′[M ′]K �. By induction
on the number of→ steps, it will follow that ifE ⋅ M →∗ ⋅ n, thenJE[M ]K � =
J [n]K � = n.

Claim (1) is obvious in the cases of the rules(DApp), (DIf), (DPred) and(DSucc),
since in these casesE[M ] = E ′[M ′].

For the other rules, we note that for any configurationE ′′ ⋅ M ′′, JE ′′ ⋅M ′′K � =
JE ′′K (�[ 7→ JM ′′K �]). This is a form of the substitution lemma we have seen in the
lectures, and is proved by induction on the size ofE ′′.

It remains to show that :

(�) J(�x ⋅ P )NK � = JP [x := N ]K � : the left-hand side is(v 7→ JP K (�[x :=
v]))(JNK �) = JP K (�[x := JNK �]), which is equal to the right-hand side by the
substitution lemma.

(Y ) JY NK � = JN(Y N)K � : the left-hand side islfp(f), wheref = JNK �, while the
right-hand side isf(lfp(f)). These two are equal becauselfp(f) is a fixpoint of
f , as we have seen.

(pred) Jpredn+ 1K � = JnK � : both sides equaln.

(succ) JsuccnK � = Jn+ 1K � : both sides equalsn+ 1.
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(ifz0) Jifz 0 N P K � = JNK � : obvious.

(ifz1) Jifz n+ 1 N P K � = JP K � : obvious.

The rest of the questions aim at establishing the converse ofsoundness, a property known as
computational adequacy. This is harder : notice in particular that computational adequacy entails
that if JE[M ]K � = n for everyn ∈ ℕ, and every environment�, thenE ⋅M must terminate (on
the configuration ⋅ n).

We first show that we can only hope to prove computational adequacy in a limited setting.
First, we only considerground configurations: call a termground iff it has no free variable, and
a configurationE ⋅M ground iff E[M ] is ground. ThenJE[M ]K � does not depend on�, and we
shall write itJE[M ]K.

5. One might think of proving computational adequacy at every type � , i.e., that ifE ⋅ M is
ground, andJE[M ]K is a valuev ∈ J�K (the same for every environment�), thenE ⋅M →∗

⋅ M ′ for some canonical ground termM ′ : � with JM ′K = v. By “canonical”, we mean
that there is a unique canonical termM ′ such thatJM ′K = v. Show that this is hopeless :
canonicality fails, at least for some type� other thanNat.

TakeE = , M1 = �x� ⋅ succ 1 andM2 = �x� ⋅ 2. These two terms have the same
value, namely the constant2 function. Canonicality would imply that⋅M1 and ⋅M2

would rewrite to the same⋅M ′. But ⋅M1 and ⋅M2 do not rewrite at all.

Define≾� on ground terms byM ≾� N iff for every contextE of type� ⊢ Nat, if E ⋅M →∗

⋅ n thenE ⋅N →∗ ⋅ n.
Extend≾� to non-ground terms byM ≾� N iff M� ≾� N� for every well-typed substitution

� of ground terms for all variables inM andN . A substitution� is well-typediff x�� is a term of
type� for every variablex� in its domain.

6. Show that :
– M [x� := N ] ≾� (�x� ⋅M)N wheneverM : � , N : � ;
– M(YM) ≾� YM providedM : � → � ;
– if n ≾Nat M thenn+ 1 ≾Nat succM ;
– if n+ 1 ≾Nat M thenn ≾Nat predM ;
– if 0 ≾Nat M thenN ≾� ifz M N P (whereN : � , P : � ),
– if n+ 1 ≾Nat M thenP ≾� ifz M N P (whereN : � , P : � ).

We show the claims assuming each side of the inequalities ground. The general case
follows by applying some well-typed substitution� throughout.
– M [x� := N ] ≾� (�x� ⋅M)N : if E ⋅M [x� := N ] →∗ ⋅ n, thenE ⋅ (�x� ⋅M)N →
E[ N ] ⋅�x� ⋅M (by (DApp)) → E ⋅M [x� := N ] (by (�)) →∗ ⋅n (by assumption).

– M(YM) ≾� YM : similarly, E ⋅ YM → E[ M ]Y → E ⋅M(YM) by (DApp) and
(Y ).

– If n+ 1 ≾Nat M thenn ≾Nat predM . This is slightly different. Assume thatE ⋅n →∗

⋅ m for somem ∈ ℕ. SoE[pred ] ⋅ n+ 1 → E ⋅ n (by (pred)) →∗ ⋅ m. Since
n+ 1 ≾Nat M , and using the contextE[pred ], E[pred ] ⋅M →∗ ⋅m. But then
E ⋅predM → E[ M ] ⋅pred (by(DApp)) → E[pred ] ⋅M (by(DPred)) →∗ ⋅m.
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– If n+ 1 ≾Nat M thenn ≾Nat predM . Similar, using(succ) and(DSucc) instead.
– If 0 ≾Nat M thenN ≾� ifz M N P . AssumeE ⋅N →∗ ⋅m, and use the context
E[ifz N P ]. Since0 ≾Nat M andE[ifz N P ] ⋅0 → E ⋅N (by(ifz0)) →∗ ⋅m,
we must haveE[ifz N P ] ⋅M →∗ ⋅m, soE ⋅ifz M N P → E[ P ] ⋅ifzMN →
E[ NP ] ⋅ ifzM → E[ MNP ] ⋅ ifz → E[ifz N P ] ⋅ M → E ⋅ N →∗ ⋅ m,
using(DApp) three times, then(DIf).

– If n+ 1 ≾Nat M thenP ≾� ifz M N P . Similar, using(ifz1) instead.

The main tool in the proof of computational adequacy is the use of a so-calledlogical relation.
This is a notion similar to the reducibility setsRED� defined in the lectures, except there are now
binary relations, i.e., sets of pairs.

Here, a logical relation is a family of binary relationsR� , indexed by types� , between values
in J�K and ground termsM : � . These are defined by induction on types as follows. For short, we
say “for allN R� v” instead of “for every termN : �, every valuev ∈ J�K, if N R� v then”.

– M RNat u iff u = ⊥, oru is a natural numbern andn ≾Nat M .
– M R�→� f iff for all N R� v, MN R� f(v).

7. GivenM : � , letMR� be the set{u ∈ J�K ∣ M R� u}. Show thatMR� is Scott-closed, i.e.,
bothdownward closed(if u ≤ v andM R� v thenM R� u) and stable under directed sups (if
(ui)i∈I is a directed family inJ�K, andM R� ui for everyi ∈ I, thenM R� supi∈I ui). Show
also thatMR� is non-empty, i.e., contains⊥.

By induction on types.MRNat is {⊥} ∪ {n ∈ ℕ ∣ n ≾Nat M , so it contains⊥ and is
downward closed (the only elements belown ∈ ℕ aren and⊥). It is also closed under
directed sups because every non-empty subsetA of ℕ⊥ is : eitherA = {⊥} and this is
clear, orA contains somen ∈ ℕ, then everym ∈ A is below some element above both
n andm by directedness, which impliesm ≤ n sincen is maximal inℕ⊥.

MR�→� contains⊥�→� , since for allN R� v, MN R� ⊥�→� (v) = ⊥� , by induction
hypothesis on� .

If f ∈ MR�→� and g ≤ f , then for allN R� v, MN R� f(v) by definition hence
MN R� g(v) sinceMNR� is downward closed by induction hypothesis on� . Sog ∈
MR�→� .

If (fi)i∈I is a directed family inMR� , then for allNR� v, MNR� fi(v). SinceMNR�

is closed under directed sups by induction hypothesis on� , MN R� supi∈I(fi(v)) =
(sup

i∈I fi)(v). SoM R�→� supi∈I fi.

8. Show that ifM ≾� N andM R� u, thenN R� u. In other words, the setR�u = {M : � ∣
M R� u} is upward closedin ≾� .

By induction on types again. IfM ≾Nat N andM RNat u, then eitheru = ⊥ and
N RNat u is by definition, oru = n ∈ ℕ, n ≾Nat M . Now,≾Nat is transitive. Precisely,
for everyE of the right type, and every well-typed substitution� of ground terms for
variables, for everym ∈ ℕ, the latter states that ifE ⋅n →∗ ⋅m thenE ⋅M →∗ ⋅m,
andM ≾Nat N then implies thatE ⋅N →∗ ⋅m. Son ≾Nat N . Sinceu = n, N RNat u.
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On function types� → � , the key argument is that wheneverM ≾�→� N , then for
everyP : �, MP ≾� NP , i.e., that for everyE of the right type, and every well-typed
substitution� of ground terms for variables, for everym ∈ ℕ, if E ⋅MP →∗ ⋅m then
E ⋅NP →∗ ⋅m. The only reductionE ⋅MP →∗ ⋅m must use(DApp) as the first
rule, hence be of the formE ⋅MP → E[ P ] ⋅M →∗ ⋅m. SinceM ≾�→� N one must
haveE[ P ] ⋅N →∗ ⋅m, henceE ⋅NP →∗ ⋅m, using(DApp).

So assume thatM ≾�→� N andM R�→� f . For all P R� v, MP R� f(v). We have
seen thatMP ≾� NP , so by induction hypothesis on� , NP R� f(v). SoN R�→� f .

9. Given a well-typed substitution�, and an environment�, write � R∗ � iff x�� R� �(x�) for
every variablex� in the domain of�.
Prove theBasic Lemma: if � R∗ �, andM is a term of type� , thenM� R� JMK �.

By induction on the size ofM this time.
– If M is a variablex�, then this is the induction hypothesis.
– If M is an applicationNP , withP : �, then by induction hypothesisN�R�→� JNK �

andP� R� JP K �, soM� = (N�)(P�) R� JNK �(JP K �) = JMK � by definition of
R�→� .

– If M is an abstraction�x� ⋅ N , and� = � → �′, then we must show that for all
P R� v ((�x� ⋅N)�)P R�′ JNK (�[x� := v]).
Using �-renaming, we may assumex� fresh, and therefore� ∪ [x� := P ] to be
a meaningful well-typed substitution�′ such thatN�′ = N�[x� := P ]. Note that
for every variabley in the domain of�′, y�′ is in logical relation to�′(y), where
�′ = �[x� := v]. This is by assumption ify is in the domain of�, and follows from
P R� v if y = x�.
So by induction hypothesisN�′ R�′ JNK �′. We conclude sinceN�′ = N�[x� :=
P ] ≾�′ ((�x� ⋅N)�)P (Question 6, first item) and using Question 8.

– If M is a constantn, n ∈ ℕ, then we must show thatn ≾Nat n. This is obvious.
– If M is the constantpred, then we must show that for allP RNat v, predP RNat

JpredK �(v).
If v = ⊥ or if v = 0, then JpredK �(v) = ⊥, so this results from the fact that
predPRNat contains⊥ (Question 7, last item).
Otherwise,v = n+ 1 for somen ∈ ℕ, and we must show thatpredP RNat n under
the assumption thatP RNat n+1. Equivalently, we must shown ≾Nat predP under
the assumptionn+ 1 ≾Nat P . This is Question 6, item 4.

– The caseM = succ similarly follows from Question 6, item 3.
– The caseM = ifz similarly follows from Question 6, item 5 (ifv = 0) or item 6 (if
v = n+ 1 for somen ∈ ℕ).

– Finally, we deal with the caseM = Y� . We must show that for allP R�→� f , Y P R�

sup
n∈ℕ f

n(⊥). SinceY PR� is Scott-closed (Question 7), it is enough to show that
Y P R� f

n(⊥) for everyn ∈ ℕ. We show this by induction onn ∈ ℕ. If n = 0, this
is obvious sinceY PR� contains⊥ (Question 7, last item). Otherwise, by induction
hypothesisY P R� fn−1(⊥). SinceP R�→� f , by definition ofR�→� , P (Y P ) R�
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fn(⊥). ButP (Y P ) ≾� Y P by Question 6, item 2. SinceR�f
n(⊥) is upward-closed

(Question 8),Y P R� f
n(⊥), and we conclude.

10. Conclude thatcomputational adequacyholds : given a ground configurationE ⋅M such that
E[M ] : Nat, JE[M ]K = n ∈ ℕ if and only ifE ⋅M →∗ ⋅ n.

One direction is Question 4. Conversely, ifJE[M ]K = n ∈ ℕ, thenE[M ] RNat n

by Question 9, using the identity substitution (sinceE ⋅ M is ground). By definition,
n ≾Nat E[M ]. Using an empty context,⋅ E[M ] →∗ ⋅ n. Now the first machine rules
in the latter reduction must be redex discovery rules, untilwe reach the configuration
E ⋅M .

Formally, we show that ifE ′ ⋅ E[M ] →∗ ⋅ n, thenE ′[E] ⋅M →∗ ⋅ n, by induction
on the size ofE. If E = , this is clear. IfE = E1N , then the only applicable rule is
(DApp), yieldingE ′ ⋅E[M ] → E ′[ N ] ⋅E1[M ] →∗ ⋅n. If E = succE1, then the first
two rules must be(DApp) and(DPred), yieldingE ′ ⋅E[M ] → E ′[ E1[M ]] ⋅ succ →
E ′[succ ] ⋅E1[M ] →∗ ⋅ n ; if E = predE1, then these are(DApp) and(DSucc) ; if
E = ifz E1 N P , then these are(DApp) (three times) and(DIf).
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