
Operational and Denotational Semantics

Please turn in by April 5, 2011 (-1 point penalty per day late)

We consider an enriched, typed�-calculus with constants for arithmetic expressions and recur-
sion. Note that the essential question is question 9. This isthe one that takes the longest to answer,
and the one that will really tell me whether you understand (variants of) techniques we have seen
in the�-calculus.

The typesare�, � ::= Nat ∣ � → � . All the terms in the language come with explicit types.
In particular, we assume an infinite, countable set of variables of each type� , and writex� for a
variable of type� .

The termst of type� (in short,t : �) are defined by induction on their size by :
– every variablex� is of type� ;
– if N : � , then�x� ⋅N is a term of type� → � ;
– if M : � → � andN : �, thenMN is a term of type� ;
– for eachn ∈ ℕ, there is a distinct constantn : Nat ;
– there are distinct constantspred : Nat → Nat (subtract one),succ : Nat (add one),ifz� :
Nat → � → � → � (test if first argument equals0), andY� : (� → �) → � (fixpoint,
recursion).

As in the�-calculus, the terms are understood up to�-renaming. This takes the special form
thatx� can be replaced by any fresh variabley� of thesametype� in �x� ⋅ t. We drop type indices
whenever they are irrelevant or can be reconstructed from context.

We define its semantics not through reduction, but by building a machine directly.
The contextsare defined by the grammarE := ∣ EN ∣ succE ∣ predE ∣ ifz E N P ,

whereN , P denote terms. . We see contexts as particular terms, with a unique occurrence of a
specific variable that does not occur in any term, called thehole. A contextE is of type� ⊢ �

whenE is of type� , assuming the holeof type�. E[M] denotes the replacement of the hole by
M (of type�).

Our machine is a transition system whose configurations are pairsE ⋅M . Intuitively, in such a
configuration, the machine is in the process of evaluatingE[M], and the focus in currently on the
subtermM .

The machine rules come into two groups. The first form theredex discoveryrules. E.g., in
(DApp), the machine tries to evaluateMN , and proceeds by pushing the argumentN into the

1

context and focusing on the function partM .

(DApp) E ⋅MN → E[N] ⋅M (DIf) E[MNP] ⋅ ifz → E[ifz N P] ⋅M
(DPred) E[N] ⋅ pred → E[pred] ⋅N (DSucc) E[N] ⋅ succ → E[succ] ⋅N

The second group of rulescomputes:

(�) E[N] ⋅ �x ⋅ P → E ⋅ P [x := N] (Y) E[N] ⋅ Y → E ⋅N(Y N)
(pred) E[pred] ⋅ n+ 1 → E ⋅ n (succ) E[succ] ⋅ n → E ⋅ n+ 1
(ifz0) E[ifz N P] ⋅ 0 → E ⋅N (ifz1) E[ifz N P] ⋅ n+ 1 → E ⋅ P

We donot take the closure of→ under contexts, whatever this may mean. The relation→ is entirely
specified by the rules above.

We also consider adenotational semanticsof the above terms. First, we define the cpoJ�K of
all valuesof type� :

– JNatK isℕ⊥, the set of all natural numbers plus an added, so-calledbottomelement⊥. These
are ordered bym ≤ n iff m = ⊥ or m = n. (Think as all element ofℕ being incomparable
and above⊥.)

– J� → �K is the dcpo[J�K → J�K] of all continuous maps fromJ�K to J�K. They are ordered
by f ≤ g iff f(x) ≤ g(x) in J�K for everyx ∈ J�K.

1. Show that every termt has exactly one type.

2. Show thatJ�K has a least element⊥� , for every type� . By abuse of language, we shall write
⊥ instead of⊥� , and call it “bottom”. It is useful to think of⊥ as non-termination.

Then we define the semanticsJtK � of termst : � as values inJ�K in environments� mapping
each variablex� to an element ofJ�K, by :

– Jx�K � = �(x�) ;
– JMNK � = JMK �(JNK �) ;
– J�x� ⋅NK � is the function that maps eachv ∈ J�K to JNK (�[x� := v]) ;
– JnK � = n, for everyn ∈ ℕ ;
– JpredK � is the map that sendsn+ 1 to n ∈ ℕ, and0 and⊥ to ⊥ ;
– JsuccK � is the map that sendsn ∈ ℕ to n+ 1, and⊥ to ⊥ ;
– Jifz�K � is the map that sendsu, v, w to ⊥ if u = ⊥, to v if u = 0, and tow if u ∕= 0,⊥ ;
– JY� K � is the map that sendsf ∈ [J�K → J�K] to sup

n∈ℕ f
n(⊥�).

3. Given any continuous mapf ∈ [J�K → J�K], show thatlfp(f) = sup
n∈ℕ f

n(⊥�) exists in
J�K, and is theleast fixpointof f . A fixpoint of f is an elementv such thatf(v) = v. It is
least iffv ≤ w for every other fixpointw. (This is meant to explain the definition ofJY�K �.)

4. Establishsoundness: if E ⋅ M →∗ ⋅ n, thenJE[M]K � = n, for everyn ∈ ℕ, and every
environment�.

The rest of the questions aim at establishing the converse ofsoundness, a property known as
computational adequacy. This is harder : notice in particular that computational adequacy entails
that if JE[M]K � = n for everyn ∈ ℕ, and every environment�, thenE ⋅M must terminate (on
the configuration ⋅ n).

2

We first show that we can only hope to prove computational adequacy in a limited setting.
First, we only considerground configurations: call a termground iff it has no free variable, and
a configurationE ⋅M ground iff E[M] is ground. ThenJE[M]K � does not depend on�, and we
shall write itJE[M]K.

5. One might think of proving computational adequacy at every type � , i.e., that ifE ⋅ M is
ground, andJE[M]K is a valuev ∈ J�K (the same for every environment�), thenE ⋅M →∗

⋅ M ′ for some canonical ground termM ′ : � with JM ′K = v. By “canonical”, we mean
that there is a unique canonical termM ′ such thatJM ′K = v. Show that this is hopeless :
canonicality fails, at least for some type� other thanNat.

Define≾� on ground terms byM ≾� N iff for every contextE of type� ⊢ Nat, if E ⋅M →∗

⋅ n thenE ⋅N →∗ ⋅ n.
Extend≾� to non-ground terms byM ≾� N iff M� ≾� N� for every well-typed substitution

� of ground terms for all variables inM andN . A substitution� is well-typediff x�� is a term of
type� for every variablex� in its domain.

6. Show that :
– M [x� := N] ≾� (�x� ⋅M)N wheneverM : � , N : � ;
– M(YM) ≾� YM providedM : � → � ;
– if n ≾Nat M thenn+ 1 ≾Nat succM ;
– if n+ 1 ≾Nat M thenn ≾Nat predM ;
– if 0 ≾Nat M thenN ≾� ifz M N P (whereN : � , P : �),
– if n+ 1 ≾Nat M thenP ≾� ifz M N P (whereN : � , P : �).

The main tool in the proof of computational adequacy is the use of a so-calledlogical relation.
This is a notion similar to the reducibility setsRED� defined in the lectures, except there are now
binary relations, i.e., sets of pairs.

Here, a logical relation is a family of binary relationsR� , indexed by types� , between values
in J�K and ground termsM : � . These are defined by induction on types as follows. For short, we
say “for allN R� v” instead of “for every termN : �, every valuev ∈ J�K, if N R� v then”.

– M RNat u iff u = ⊥, oru is a natural numbern andn ≾Nat M .
– M R�→� f iff for all N R� v, MN R� f(v).

7. GivenM : � , letMR� be the set{u ∈ J�K ∣ M R� u}. Show thatMR� is Scott-closed, i.e.,
bothdownward closed(if u ≤ v andM R� v thenM R� u) and stable under directed sups (if
(ui)i∈I is a directed family inJ�K, andM R� ui for everyi ∈ I, thenM R� supi∈I ui). Show
also thatMR� is non-empty, i.e., contains⊥.

8. Show that ifM ≾� N andM R� u, thenN R� u. In other words, the setR�u = {M : � ∣
M R� u} is upward closedin ≾� .

9. Given a well-typed substitution�, and an environment�, write � R∗ � iff x�� R� �(x�) for
every variablex� in the domain of�.
Prove theBasic Lemma: if � R∗ �, andM is a term of type� , thenM� R� JMK �.

10. Conclude thatcomputational adequacyholds : given a ground configurationE ⋅M such that
E[M] : Nat, JE[M]K = n ∈ ℕ if and only ifE ⋅M →∗ ⋅ n.

3

