Operational and Denotational Semantics

Please turn in by April 5, 2011 (-1 point penalty per day late)

We consider an enriched, typeecalculus with constants for arithmetic expressions acdre
sion. Note that the essential question is question 9. Thieisne that takes the longest to answer,
and the one that will really tell me whether you understaratié@nts of) techniques we have seen
in the A-calculus.

Thetypesareo, T ::= Nat | o — 7. All the terms in the language come with explicit types.
In particular, we assume an infinite, countable set of végmbf each type, and writex,. for a
variable of typer.

The termg of type (in short,t : 7) are defined by induction on their size by :

— every variabler, is of typer;

— if N : 7,then)\z, - N is aterm of typer — 7;

—ifM:0— 7andN : g, thenM N is a term of typer ;

— for eachn € N, there is a distinct constant: Nat ;

— there are distinct constanised : Nat — Nat (subtract one)succ : Nat (add one)ifz, :
Nat — 7 — 7 — 7 (test if first argument equal®), andY, : (- — 7) — 7 (fixpoint,
recursion).

As in the A-calculus, the terms are understood upvtoenaming. This takes the special form

thatx, can be replaced by any fresh variapleof thesametypeo in Az, - t. We drop type indices
whenever they are irrelevant or can be reconstructed framest.

We define its semantics not through reduction, but by bug@dmachine directly.

The contextsare defined by the grammds# := _ | EN | succE | pred F | ifz E N P,
where N, P denote terms. . We see contexts as particular terms, withquerccurrence of a
specific variable that does not occur in any term, called thgle A contextFE is of typeo - 7
when £ is of typer, assuming the holeof types. E[M] denotes the replacement of the hole by
M (of typeo).

Our machine is a transition system whose configurationsairs p - M. Intuitively, in such a
configuration, the machine is in the process of evaluafifity], and the focus in currently on the
subterm/.

The machine rules come into two groups. The first form ébgex discoveryules. E.g., in
(DApp), the machine tries to evaluafed NV, and proceeds by pushing the argumahinto the
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context and focusing on the function patt.

(D App) E-MN = E[N]-M (DIf) E[LMNP]-ifz — Elifz N P]-M
(DPred) E[.-N]-pred — FElpred_|-N (DSucc) E[_N]-succ — F[succ_|- N

The second group of ruleomputes

(8) ELN]-Mt-P—=E-Plz:=N] (Y)  E[LN]-Y = E-N(YN)
(pred) Elpred |-n+1—E-n (succ) Esucc ] -n—FE-n+1
(1£z0) Elifz _NP]-0— E-N (ifzl) E[ifz _NP]-n+1—FE-P

We donottake the closure of> under contexts, whatever this may mean. The relatiois entirely
specified by the rules above.

We also consider denotational semantiasf the above terms. First, we define the dpd of

all valuesof typer :

— [Nat] isN,, the set of all natural numbers plus an added, so-caligtmelementL. These
are ordered byn < n iff m = L orm = n. (Think as all element N being incomparable
and abovel .)

— [o — 7] is the dcpd[e] — [7]] of all continuous maps frorfv] to [7]. They are ordered
by f < giff f(z) < g(x)in [r] foreveryz € [o].

1. Show that every termhas exactly one type.

2. Show thaf/7] has a least element,, for every typer. By abuse of language, we shall write
1 instead ofL ., and call it “bottom”. It is useful to think of. as non-termination.

Then we define the semantifg p of termst : 7 as values irffr] in environmentg mapping
each variabler, to an element ofo], by :

- [[1‘,7]] p= p(xa) ’
— [MN] p = [M]p([N]p);

— [Az, - NJ pis the function that maps eache [o] to [N] (plz, := v]);

— [n] p = n, foreveryn € N;

— [pred] p is the map that sends+ 1 ton € N, and0 and_L to L ;

— [succ] pis the map that sendse Nton + 1, and_L to L ;

— [ifz,] pis the map that sendsv,wto L if u = L, tovif u =0, and tow if u # 0, L ;
— [Y7] pis the map that sendse [[7] — [7]] tosup,,en f™(L+).

3. Given any continuous map € [[7] — [7]], show that fp(f) = sup,,cy f™"(L,) exists in
[7], and is thdeast fixpointof f. A fixpoint of f is an element such thatf(v) = v. Itis
least iff v < w for every other fixpointw. (This is meant to explain the definition pf.] p.)

4. Establishsoundnessif £ - M —* _- n, then[E[M]] p = n, for everyn € N, and every
environment.

The rest of the questions aim at establishing the conversewidness, a property known as
computational adequacy his is harder : notice in particular that computationad@uaacy entails
that if [E[M]] p = n for everyn € N, and every environment, thenE - M must terminate (on
the configuration - n).



We first show that we can only hope to prove computational aaeyin a limited setting.
First, we only consideground configurations call a termgroundiff it has no free variable, and
a configuration®' - M groundiff E[M] is ground. Ther]{ E[M]] p does not depend om and we
shall write it [E[M]].

5. One might think of proving computational adequacy at evepe 7, i.e., that if £ - M is

ground, and E[M]] is a valuev € [7] (the same for every environmep), thenE - M —*

_+ M’ for some canonical ground terdd’ : 7 with [M'] = v. By “canonical”’, we mean
that there is a unique canonical teff such thatffM'] = v. Show that this is hopeless :
canonicality fails, at least for some typeother thariiat.

Define 2, on ground terms bw/ =<, N iff for every contextF of typeo F Nat, if £ - M —*
_-nthenE - N —* _-n.

Extend=, to non-ground terms by/ =<, N iff M6 =, N6 for every well-typed substitution
0 of ground terms for all variables in/ and V. A substitutiond is well-typediff x.6 is a term of
typeo for every variabler, in its domain.

6. Show that :
— M|z, := N| Z; (Ax, - M)N wheneverM : 7, N : o ;
- M(YM) =, YM providedM : 7 — 7;
— ifn Zyae M thenn + 1 Zyae sucec M
— ifn+1 Zyae M thenn Zyae pred M ;
— if 0 Syay M thenN =, ifz M N P (whereN : 7, P : 1),
—ifn+1 Sy M thenP =2, ifz M N P (whereN : 7, P : 7).

The main tool in the proof of computational adequacy is theeafsa so-callediogical relation
This is a notion similar to the reducibility sei&? D.. defined in the lectures, except there are now

binary relations, i.e., sets of pairs.

Here, a logical relation is a family of binary relatiohs, indexed by types, between values
in [7] and ground termd/ : 7. These are defined by induction on types as follows. For shert
say “for all N R, v” instead of “for every termV : o, every valuev € [o], if N R, v then”.

— M Rya. u iff w = 1, oruis a natural numbet andn =Sy.. M.

- MR, fiffforall N R, v, MN R, f(v).

7. GivenM : 7,let MR, be the se{u € [7] | M R, u}. Show thatV R, is Scott-closedli.e.,
bothdownward closedif « < v andM R, v thenM R.u) and stable under directed sups (if
(us);c; is adirected family iff7], andM R, u; for everyi € I, thenM R, sup,c; u;). Show
also thatM R, is non-empty, i.e., contains.

8. Show that ifM =, N andM R, u, thenN R, u. In other words, the se®,u = {M : 7 |
M R. u}isupward closedn 3.

9. Given a well-typed substitutiofy and an environment, write 0 R, p iff z,0 R, p(x,) for
every variabler, in the domain of.

Prove theBasic Lemmaif § R, p, andM is a term of typer, thenM 6 R [M] p.

10. Conclude thatomputational adequadyolds : given a ground configuratign- M such that
E[M] : Nat, [E[M]] =n e Nifandonly if E - M —* _- n.



