Automates d’arbre

Homework - correction

Theorem. If \(L \subseteq T(\Sigma) \) is recognized by a NFHA then \(\text{fcns}(L) \) is recognized by a NFTA.

Let \(A = \langle \Sigma, Q, \Delta \rangle \) be a NFHA recognizing \(L \). We can assume that \(A \) is normalized i.e. for every \(a \in \Sigma \) and \(q \in Q \), there is exactly one transition of the form \(a(L_{a,q}) \rightarrow q \) in \(\Delta \). Let \(B = \langle P_{a,q}, Q, p_{a,q}, F_{a,q}, \Delta \rangle \) be a FWA (on the alphabet \(Q \)) recognizing \(L_{a,q} \). Note \(P = \bigcup_{a \in \Sigma, q \in Q} P_{a,q} \)

\[
F = \bigcup_{a \in \Sigma, q \in Q} F_{a,q}.
\]
Define the NFTA \(A' = \langle Q', \mathcal{F}_{\text{fcns}}', Q', \Delta' \rangle \) where :

- \(Q' = \{ q_f, q_\# \} \cup P \)
- \(Q'_f = \{ q_f \} \)
- \(\mathcal{F}_{\text{fcns}}' = \{ \{ a(2) \mid a \in \Sigma \} \cup \{ # (0) \} \} \)
- \(\Delta' \) contains :
 1. \(# \rightarrow p \) for all \(p \in F \)
 2. \(# \rightarrow q_\# \)
 3. \(b(p_1, p_2) \rightarrow p_3 \) if there are \(a \in \Sigma \) and \(q, q' \in Q \) such that \(p_1 = p_{b,q}^0 \) and \((p_3, q', p_2) \in \Delta_{a,q} \)
 4. \(a(p, q_\#) \rightarrow q_f \) if there is \(q \in Q_f \) such that \(p = p_{a,q}^0 \)

We will prove the following :

Invariant. For every edge \(t_1...t_n \ (n \geq 0) \) and every \(p \in P_{a,q} \) for some \(a \in \Sigma \) and \(q \in Q \), \(\text{fcns}(t_1...t_n) \rightarrow_{A'} p \) if and only if there are \(q_1, ..., q_n \in Q \) such that for all \(i \in \{ 1, ..., n \} \), \(t_i \rightarrow_{A} q_i \) and \(q_1...q_n \) has a run in \(B_{a,q} \) starting from \(p \) and ending in a final state.

From this invariant, let us prove that \(L(A') = \text{fcns}(L) \).

First, let \(t \in L(A') \). Notice that the last rule of an accepting run for \(t \) can only be one of the form 4) \(a(p_{a,q}^0, q_\#) \rightarrow q_f \) for some \(q \in Q_f \) and then \(t = a(t', #) \) for some \(t' \rightarrow_{A'} p_{a,q}^0 \). As \(\text{fcns} \) is a bijection, there is an edge \(t_1...t_n \) such that \(t' = \text{fcns}(t_1...t_n) \) and so \(t = \text{fcns}(a(t_1, ..., t_n)) \).

By the invariant, there are \(q_1, ..., q_n \in Q \) such that for all \(i \), \(t_i \rightarrow_{A} q_i \) and \(q_1...q_n \) has an accepting run in \(B_{a,q} \).

Conversely, let \(t = a(t_1, ..., t_n) \in L \). So necessarily, there is \(q \in Q_f \), \(q_1...q_n \in L_{a,q} \). By the invariant, \(f \text{cns}(t_1...t_n) \rightarrow_{A'} p_{a,q}^0 \) and by applying the rule 4) and the rule 2), \(f \text{cns}(t) = a(f \text{cns}(t_1...t_n), #) \rightarrow_{A'} a(p_{a,q}^0, #) \rightarrow_{A} a(p_{a,q}, q_\#) \rightarrow_{A'} q_f \) i.e. \(f \text{cns}(t) \in L(A') \).

Proof of the invariant :

Let us prove it by induction on the size of the hedge \(t_1...t_n \). Let \(a \in \Sigma, q \in Q \) and \(p \in P_{a,q} \).

case \(n = 0 \) : \(\# \rightarrow_{A'} p \) if \(p \in F_{a,q} \) iff \(\epsilon \) has a run from \(p \) to a final state in \(B_{a,q} \).

case \(n \geq 1 \) : in this case, \(t_1 = b(t'_1, ..., t'_m) \) and \(f \text{cns}(t_1...t_n) = b(f \text{cns}(t'_1...t'_m), f \text{cns}(t_2...t_n)) \).

Observing that the only possible last rule is one of the form 3), \(f \text{cns}(t_1...t_n) \rightarrow_{A'} p \) iff there are \(q' \in Q \) and \(p' \in P_{a,q} \) such that \(f \text{cns}(t'_1...t'_m) \rightarrow_{A'} p_{b,q}^0 \), \((p, q', p') \in \Delta_{a,q} \) and \(f \text{cns}(t_2...t_n) \rightarrow_{A'} p' \). By induction hypothesis, this holds iff there are \(q' \in Q \), \(p' \in P_{a,q} \) and \(q'_1, ..., q'_m \in Q \) such that for all \(i \), \(t'_i \rightarrow_{A} q'_i \) and \(q'_1...q'_m \) has an accepting run in \(B_{b,q'} \), \((p, q', p') \in \Delta_{a,q} \) and \(f \text{cns}(t_2...t_n) \rightarrow_{A'} p' \). By induction hypothesis again, this
holds iff there are \(q' \in Q, p' \in P_{a,q} \) and \(q_2, ..., q_n \in Q \) such that \(t_1 \rightarrow_A^* q', (p, q', p') \in \Delta_{a,q} \), for all \(i \geq 2 \) \(t_i \rightarrow_A^* q_i \) and \(q_2...q_n \) has a run from \(p' \) to a final state in \(B_{a,q} \) iff there are \(q_1, ..., q_n \in Q \) such that for all \(i \in \{1, ..., n\} \), \(t_i \rightarrow_A^* q_i \) and \(q_1...q_n \) has a run in \(B_{a,q} \) starting from \(p \) and to a final state in \(B_{a,q} \).

\[Q.E.D.\]

Theorem. If \(K \subseteq T(\mathcal{F}^\Sigma_{\text{fcns}}) \) is recognized by a NFTA then \(\text{fcns}^{-1}(K) \cap T(\Sigma) \) is recognized by a NFTA.

Let \(\mathcal{A} = (Q, F^\Sigma_{\text{fcns}}, Q_f, \Delta) \) be a NFTA recognizing \(K \). Define the NFHA \(\mathcal{A}' = (Q', \Sigma, Q'_{f}, \Delta') \) where:

- \(Q' = \Delta \cap Q^2 \times \Sigma \times Q = \{a(p, p') \rightarrow p'' \in \Delta\} \)
- \(Q'_{f} = \{a(p, p') \rightarrow p'' \mid p'' \in Q_f \land \# \rightarrow p' \in \Delta\} \)
- \(\Delta' \) contains the transitions \(a(L_r) \rightarrow r \) for \(r \in \Delta \) of the form \(a(p, p') \rightarrow p'' \) where \(L_r \) is recognized by the FWA \(B_r = (Q, Q', p, \bar{F}, \bar{\Delta}) \) on the alphabet \(Q' \) with:
 * \(\bar{F} = \{ q \mid \# \rightarrow q \in \Delta \} \)
 * \(\bar{\Delta} = \{ (q'', r, q') \in Q \times Q' \times Q \mid r \in \Delta \text{ of the form } b(q, q') \rightarrow q'' \} \)

We will prove the following:

Invariant. For every hedge \(t_1...t_n \) and every \(p \in Q \),

\[\text{fcns}(t_1...t_n) \rightarrow_A^* p \text{ if and only if there are } r_1, ..., r_n \in Q' \text{ such that for all } i \in \{1, ..., n\}, t_i \rightarrow_A^* r_i \text{ and } r_1...r_n \text{ has a run from } p \text{ to a state in } \bar{F} \text{ using transitions in } \bar{\Delta}. \]

From this invariant, let us prove that \(L(\mathcal{A}') = T(\Sigma) \cap \text{fcns}^{-1}(K) \).

First, let \(t \in L(\mathcal{A}') \), \(t = a(t_1, ..., t_n) \). It is clear that \(t \in T(\Sigma) \). Then, there are \(r \in Q' \) of the form \(a(p, p') \rightarrow p'' \) and \(r_1, ..., r_n \in Q \) such that for all \(i \in \{1, ..., n\} \), \(t_i \rightarrow_A^* r_i \) and \(r_1...r_n \in L_r \) i.e. \(p'' \in Q_f, \# \rightarrow p' \in \Delta \) and \(r_1...r_n \) has a run from \(p \) to a state in \(\bar{F} \). So, by the invariant, \(\text{fcns}(t_1...t_n) \rightarrow_A^* p \). Then, \(\text{fcns}(a(t_1, ..., t_n)) = \text{fcns}(t_1...t_n, \#) \rightarrow_A^* \text{fcns}(a(p, \#) \rightarrow_A a(p, p') \rightarrow_A p'' \in Q_f \) i.e. \(\text{fcns}(t) \in K \).

Conversely, let \(t \in T(\Sigma) \cap \text{fcns}^{-1}(K) \), \(t = a(t_1, ..., t_n) \). Then, \(\text{fcns}(t) = a(\text{fcns}(t_1...t_n), \#) \in K \).

That means there are \(q \in Q_f, q', q'' \in Q \) such that \(\text{fcns}(t_1...t_n) \rightarrow_A q', \# \rightarrow q'' \in \Delta \) and \(r = a(q, q') \rightarrow q'' \in \Delta \). In particular, \(r \in Q' \) by the invariant, there are \(r_1, ..., r_n \in Q' \) such that for all \(i \in \{1, ..., n\} \), \(t_i \rightarrow_A^* r_i \) and \(r_1...r_n \in L_r \). So, \(a(t_1, ..., t_n) \rightarrow_A^* a(r_1, ..., r_n) \rightarrow_A^* r \in Q_f \) i.e. \(t \in L(\mathcal{A}') \).

Proof of the invariant :

Let us prove it by induction on the size of the hedge \(t_1...t_n \). Let \(p \in Q \).

- **Case** \(n = 0 \): \(\# \rightarrow_A^* p \) if \(p \in \bar{F} \) iff \(\epsilon \) has a run from \(p \) to a state in \(\bar{F} \) using transitions in \(\bar{\Delta} \).
- **Case** \(n \geq 1 \): in this case, \(t_1 = b(t'_1, ..., t'_{m}) \) and \(\text{fcns}(t_1...t_n) = b(\text{fcns}(t_1...t_{m}), \text{fcns}(t_2...t_{n})) \).

\(\text{fcns}(t_1...t_n) \rightarrow_A^* p \) iff there are \(p', p'' \in Q \) such that \(\text{fcns}(t'_1...t'_{m}) \rightarrow_A^* p', \text{fcns}(t_2...t_n) \rightarrow_A^* p'' \) and \(r_1 = b(p', p'') \rightarrow p \in \Delta \).

By the induction hypothesis, this holds iff there are \(p', p'' \in Q \) and \(r'_1, ..., r'_{m} \in Q' \) such that for all \(i \in \{1, ..., m\} \), \(t'_i \rightarrow_A^* r'_i \) and \(r'_1...r'_m \) has an accepting run in \(B_{a,q} \), \(\text{fcns}(t_2...t_{n}) \rightarrow_A^* p'' \) if there are \(p', p'' \in Q \) such that \(t_1 \rightarrow_A^* r_1 \) and \((p, r_1, p'') \in \Delta \). Again by the induction hypothesis, this holds iff there are \(p', p'' \in Q \) and \(r_2, ..., r_n \in Q' \) such that \(t_1 \rightarrow_A^* r_1, (p, r_1, p'') \in \Delta \), for all \(i \in \{2, ..., n\} \), \(t_i \rightarrow_A^* r_i \) and \(r_2...r_n \) has a run from \(p'' \) to a state in \(\bar{F} \) iff there are \(r_1, ..., r_n \in Q' \) such that for all \(i \in \{1, ..., n\} \), \(t_i \rightarrow_A^* r_i \) and \(r_1...r_n \) has a run from \(p \) to a state in \(\bar{F} \) using transitions in \(\bar{\Delta} \).

\[Q.E.D.\]