
Faster Algorithms for Mean-Payoff Games⋆

L. Brim1, J. Chaloupka1 , L. Doyen2,4, R. Gentilini2,3, and J. F. Raskin2

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
2 Computer Science Department Université Libre de Bruxelles (U.L.B.), Belgium

3 Department of Mathematics and Informatics, University of Perugia, Perugia, Italy
4 LSV, ENS Cachan & CNRS, France

{xchalou1,brim}@fi.muni.cz, raffaella.gentilini@dipmat.unipg.it,{ldoyen,jraskin}@ulb.ac.be

May 10, 2011

Abstract. In this paper, we study algorithmic problems for quantitative models that are motivated by the
applications in modeling embedded systems. We consider two-player games played on a weighted graph
with mean-payoff objective and with energy constraints. Wepresent a new pseudopolynomial algorithm for
solving such games, improving the best known worst-case complexity for pseudopolynomial mean-payoff
algorithms. Our algorithm can also be combined with [3] to obtain a randomized procedure with currently
the best expected time complexity. The proposed solution relies on a simple fixpoint iteration to solve the
log-space equivalent problem of deciding the winner of energy games. Our results imply also that energy
games and mean-payoff games can be reduced to safety games inpseudopolynomial time.

⋆ This work is an extended and revised version of [6], appearedin the5-th Doctoral Workshop on Mathematics and Engi-
neering Methods in Computer Science (MEMICS’09), and [9], appeared in the3-rd Workshop of the ESF Networking
Programme on Games for Design and Verification (GAMES’09).



1 Introduction

Quantitative models Recently, several research efforts have been put in studying quantitative ex-
tensions of formalisms like automata and games for modelingquantitative aspects of systems like
embedded systems. Quantities may represent, for example, the power usage of an embedded compo-
nent, or the buffer size of a networking element [5].

In this context, Henzinger et al. have studied resource interfaces [5], and more recently, Bouyer
et al. have studied weighted (timed) automata and games [4].In the two papers, the authors consider
models where accumulated weight along runs are subject to constraints. For one important variant of
those models, the so-calledenergy games(with lower bound constraints), they have proved log-space
equivalence to classical mean-payoff games. This log-space equivalence allows to reuse the existing
algorithms for solving mean-payoff games.

In this paper, we propose a direct algorithm for solving energy games. Furthermore, using the
log-space reduction from mean-payoff games to energy games, we show how our new algorithm
for energy games can be used to improve on the existing algorithmic solutions to solve mean-payoff
games. In addition to improving the worst-case complexity for solving energy games and mean-payoff
games, we believe that our algorithmic solution, which is a fixed point computation, has the potential
to be efficiently implemented. We believe that our algorithmis an important step into making the tool
support for those quantitative models available and efficient.

Mean-payoff games and energy gamesTwo-player mean-payoff games are played on weighted
graphs (in which every edge has an integer weight) with two types of vertices: in player-0 vertices,
player0 chooses the successor vertex from the set of outgoing edges;in player-1 vertices, player1
chooses the successor vertex from the set of outgoing edges.The game results in an infinite path
through the graph. The long-run average of the edge-weightsalong this path, called thevalueof the
play, is won by player0 and lost by player1.

The decision problemfor mean-payoff games asks, given a vertexv and an integerν ∈ Z, if
player0 has a strategy to win a value at leastν when the game starts inv. The associatedstrategy
synthesis problemis to construct a strategy for player0 that ensures a value at leastν, if there exists
one. Thethree-way partitionproblem asks, given a thresholdν ∈ Z, to partition the set of vertices
of the game into the sets〈V<ν , V=ν , V>ν〉, whereV<ν is the subset of vertices from which player0
can only achieve a value less thanν, V=ν is the subset of vertices where player0 can achieveν but
not more, andV>ν is the subset where player0 can achieve more thanν. Thevalue problemconsists
in computing the maximal (rational) value that player0 can achieve from each vertexv of the game.
Finally the(optimal) strategy synthesis problemis to construct a strategy for player0 that secures the
maximal value.

Mean-payoff games have been first studied by Ehrenfeucht andMycielski in [1] where it is shown
that memoryless (or positional) strategies suffice to achieve the optimal value. This result entails that
the decision problem for these games lies in NP∩ coNP [2, 19], and it was later shown to belong to1

UP∩ coUP [13]. Despite many efforts [20, 19, 16, 7, 8, 22, 12], no polynomial-time algorithm for the
mean-payoff game problems is known so far. Beside such a theoretically engaging complexity status,
mean-payoff games have plenty of applications, especiallyin the synthesis, analysis and verification of
reactive (non-terminating) systems. Many natural models of such systems include quantitative infor-
mation, and the corresponding question requires the solution of quantitative games, like mean-payoff
games. Concrete examples of applications include various kinds of scheduling, finite-window online
string matching, or more generally, analysis of online problems and algorithms, as well as selection
with limited storage [19]. Mean-payoff games can even be used for solving the max-plus algebra

1 The complexity class UP is the class of problems recognizable by unambiguous polynomial time nondeterministic Turing
machines [17]. Obviously P⊆ UP∩ coUP⊆ NP∩ coNP.

1



Ax = Bx problem, which in turn has further applications [8]. Besidetheir applicability to the mod-
eling of quantitative problems, mean-payoff games have tight connections with important problems
in game theory and logic. For instance, parity games [11] andthe model-checking problem for the
modal mu-calculus [15] are poly-time reducible to mean-payoff games [10], and it is a long-standing
open question to know whether these problems are in P.

In this paper, we present new algorithmic solutions to the mean-payoff game problems listed
above, improving the known upper bounds in terms of worst-case complexity. Our algorithms rely
on a reduction to so-calledenergy games[5, 4] that are log-space equivalent to mean-payoff games.
In an energy game, given an initial creditc∗, the objective of player0 is to maintain the sum of the
weights (the energy level) positive. Thedecision problemfor energy games asks, given a weighted
game graph and vertexv, if there exists an initial credit for which player0 wins fromv. It is known
that memoryless strategies are sufficient for energy games,and that player0 essentially needs to ensure
that all cycles that can be formed by player1 have nonnegative weight. We show that energy games
can be solved elegantly and efficiently using a notion ofprogress measure. Progress measures for
weighted graphs are functions that impose local conditionsto ensure global properties of the graph.
A notion of parity progress measure [21] was exploited in [14] for the algorithmic analysis of parity
games. In this paper, we introduce so calledenergyprogress measures to witness that all cycles in a
graph are nonnegative. We show how to transfer this notion from graphs to games, and we provide an
efficient fixpoint algorithm to synthesize a progress measure when it exists. Since energy games are
log-space equivalent to mean-payoff games, this also defines a new mean-payoff algorithm which is
more elegant and conceptually simpler than the previously known algorithmic solutions.

As we will see below, our procedure to solve the mean-payoff games decision problem achieves a
better worst-case complexity than the corresponding best known deterministic pseudopolynomial al-
gorithm due to Zwick and Paterson [19]. Moreover, (optimal)strategies can be synthetized as a (free)
byproduct of our algorithm, while [19] requires further computation. Our solution of the mean-payoff
value problem is also better than [19] when the maximum weight W in the graph is subexponential,
which is the relevant case for comparing pseudopolynomial procedures. Finally, we can combine our
deterministic mean-payoff value algorithm with the randomized procedure proposed in [3] to obtain
an algorithm with currently the best expected complexity (for all W ). We note that in typical appli-
cations, where the edge-weights represent, for example, the energy consumption of a physical device,
W is usually small in comparison with|V |, in which case our deterministic algorithm significatively
outperforms—by a linear factor—the previous state-of-the-art solutions, without any use of random-
ization.

Related works and main results All previous deterministicalgorithms for mean-payoff games are
either pseudopolynomial (i.e., polynomial in the number ofvertices|V |, the number of edges|E|, and
the maximal absolute weightW , rather than in the binary representation ofW ) or exponential [20,
19, 16, 22, 18].

In the late eighties, Gurvich, Karzanov, Khachiyan and Lebedev [20, 2] provided the first (ex-
ponential) algorithms for mean-payoff games. Their method, based on the notion of rational price
function, was later extended by Pisaruk [16], who considered games with mean-payoff objectives in
a slightly more general setting than the one originally proposed by Eherenfeucht and Mycielski [1],
and provides a pseudopolynomial upper bound.

The best pseudopolynomial deterministic algorithm for mean-payoff games known so far was
designed in 1996 by Zwick and Paterson [19]. They provide a value-iteration algorithm with time
complexityΘ(|E|·|V |3 ·W ) for the value problem, andΘ(|E|·|V |2 ·W ) for the decision problem and
the three-way partition problem. They also consider the optimal strategy synthesis problem, defining
a correspondingΘ(|E| · |V |4 · W · log |E|

|V |) pseudopolynomial algorithm.

2



Problems

Algorithms Decision Problem Strategy Synthesis Note
3-Way Partition Problem

This paper O(|E | · |V | ·W ) O(|E | · |V | ·W ) Deterministic

[19] Θ(|E | · |V |2 ·W ) Θ(|E | · |V |3 ·W · log |E |
|V |

) Deterministic

[22] O(|E | · |V | · 2 |V |) — Deterministic

[12] min(O(|E | · |V |2 ·W ), min(O(|E | · |V |2 ·W )), Randomized

2O(
√

|V |·log|V |)) 2O(
√

|V |·log|V |))

Table 1.Complexity of the main algorithms to solve the mean-payoff game problems1–3 considered in Section 2.

The best deterministic exponential algorithm for solving mean-payoff games is due to Lifshits and
Pavlov [22], who provide a graph decomposition procedure with complexityO(|E| · |V | ·2|V |) for the
decision problem, andO(|E| · |V | · 2|V | · log W ) for the value problem.

In 2007, Björklund and Vorobyov [12] define a randomized algorithm which is both subexpo-
nential and pseudopolynomial. Their algorithm solves the decision problem, the three-way partition

problem, and the winning strategy synthesis in expected timemin(O(|E| · |V |2 ·W ), 2O(
√

|V |·log|V |)).
For the value problem and the optimal strategy synthesis, the time complexity of their solution is

bounded bymin(O(|E| · |V |3 · W · (log|V | + log W )), 2O(
√

|V |·log|V |) · log W ). In particular, the
pseudopolynomial terms in the upper bounds given by [12] do not require randomization and im-
prove on [19] for the (optimal) strategy synthesis problem,since winning strategies are obtained as
a byproduct of the overall computation. In [3], Andersson and Vorobyov proposed a subexponen-
tial randomized solution for discounted payoff games, withapplication to mean-payoff objectives.
In particular, [3] solves the value problem for mean-payoffgames in expected timeO(|V |2 · |E| ·
e2·

q

|V |·ln(|E|/
√

|V |)+O(
√

|V |+ln|E|)), which improves [12] for largeW .

The (deterministic) algorithms proposed in this work to solve mean-payoff games give new pseu-
dopolynomial upper bounds for all problems considered above. In particular, we provideO(|E| · |V | ·
W ) algorithms for the decision problem and the three-way partition problem, achieving a linear im-
provement in|V | of the corresponding previous upper bound. We define an algorithm for the value
problem with a complexityO(|E| · |V |2 ·W ·(log|V |+log W )) while the value-iteration algorithm by
Zwick and Paterson has complexityO(|E| · |V |3 ·W ). Thus, our procedure performs better whenW is
polynomial in|V |. WhenW is exponential in|V |, the complexity of both algorithms is outperformed
by theO(|E| · |V | · 2|V | · log W ) algorithm in [22]. Finally, our algorithmic solution for the (optimal)
strategy synthesis has complexityO(|E| · |V | · W ) (resp.O(|E| · |V |2 · W (log|V | + log W ))), also
improving on previous upper bounds in [12].

Tables 1 and 2 summarize the results obtained in this paper and compare them with the main
algorithms in the literature.

Structure of the paper The rest of this paper is organized as follows. In Section 2, we provide basic
definitions and notations. In Section 3, we develop energy progress measures to be used in Section 4
for solving energy game problems. In Section 5, we build up onthe new algorithm to improve the
state-of-the-art pseudopolynomial time upper bounds for mean-payoff games.

3



2 Preliminaries

Weighted graphs Let Z (resp.N) denote the set of integer (resp. nonnegative integer) numbers. A
weighted graphG = (V,E,w) consists of a finite setV of vertices, a setE ⊆ V × V of edges, and
a weight functionw : E → Z, assigning integer weights to edges. Givenw : E → Z andν ∈ Z,
we denote byw − ν the function that assigns to each edgee ∈ E the weightw(e) − ν. We assume
that weighted graphs aretotal, i.e. for all v ∈ V , there existsv′ ∈ V such that(v, v′) ∈ E. Given
U ⊆ V , we denoteE ↾ U the restriction ofE to U , i.e. E ↾ U = E ∩ U × U . Given a functionf
ranging overV , f : V → cod(f), andU ⊆ V , we denote byf ↾ U the restriction off to U , i.e.
f ↾ U : U → cod(f) maps eachu ∈ U to f ↾ U(u) = f(u). GivenU ⊆ V such that for allv ∈ U ,
there existsv′ ∈ U with (v, v′) ∈ E, we denote byG ↾ U = (V ′, E′, w′) the weighted subgraph
whereV ′ = U , E′ = E ↾ V ′, andw′ = w ↾ V ′. Note that weighted subgraphs are total. A finite
pathp is a nonempty sequence of verticesv0v1 . . . vn such that(vi, vi+1) ∈ E for all 0 ≤ i < n. A
cycle is a finite pathp = v0v1 . . . vn such thatn ≥ 1 andv0 = vn. A cycle v0v1 . . . vn is reachable
from v in G if there exists a pathu0u1 . . . um in G such thatu0 = v andum = v0. The average weight
of a cyclev0 . . . vn is equal to1

n · ∑n−1
i=0 w(vi, vi+1). A pathv0v1 . . . vn is acyclic if vi 6= vj for all

0 ≤ i < j ≤ n. We say that a cycle in a weighted graph isnegative(resp.nonnegative) if the sum
of its edge weights is less than0 (resp. not less than0). Given a set of verticesU ⊆ V , we denote by
pre(U) the set of vertices having a successor inU , i.e.pre(U) = {v | ∃v′ ∈ U : (v, v′) ∈ E}, and by
post(U) the set of successors of vertices inU , i.e.post(U) = {v | ∃v′ ∈ U : (v′, v) ∈ E}.

Game graphs A game graphis a tupleΓ = (V,E,w, 〈V0, V1〉) whereGΓ = (V,E,w) is a weighted
graph and〈V0, V1〉 is a partition ofV into the setV0 of player-0 vertices and the setV1 of player-
1 vertices. Aninfinite gameon Γ is played for infinitely many rounds by two players moving a
pebble along the edges of the weighted graphGΓ . In the first round, the pebble is on some vertex
v ∈ V . In each round, if the pebble is on a vertexv ∈ Vi (i = 0, 1), then playeri chooses an edge
(v, v′) ∈ E and the next round starts with the pebble onv′. A play in the game graphΓ is an infinite
sequencep = v0v1 . . . vn . . . such that(vi, vi+1) ∈ E for all i ≥ 0. A strategyfor playeri (i = 0, 1)
is a functionσ : V ∗ · Vi → V , such that for all finite pathsv0v1 . . . vn with vn ∈ Vi, we have
(vn, σ(v0v1 . . . vn)) ∈ E. We denote byΣi (i = 0, 1) the set of strategies for playeri. A strategyσ for
playeri is memorylessif σ(p) = σ(p′) for all sequencesp = v0v1 . . . vn andp′ = v′0v

′
1 . . . v′m such

thatvn = v′m. We denote byΣM
i the set of memoryless strategies of playeri. A play v0v1 . . . vn . . .

is consistentwith a strategyσ for playeri if vj+1 = σ(v0v1 . . . vj) for all positionsj ≥ 0 such that
vj ∈ Vi. Given an initial vertexv ∈ V , theoutcomeof two strategiesσ1 ∈ Σ1 andσ2 ∈ Σ2 in v is
the (unique) playoutcomeΓ (v, σ0, σ1) that starts inv and is consistent with bothσ0 andσ1. Given a

Problems

Algorithms Value Problem Optimal Strategy Synthesis Note

This paper O(|E | · |V |2 · W · (log |V | + logW )) O(|E | · |V |2 · W · (log |V | + logW )) Det.

[19] Θ(|E | · |V |3 · W ) Θ(|E | · |V |4 · W · log |E |
|V |

) Det.

[22] O(|E | · |V | · 2 |V | · logW ) — Det.

[12] min(O(|E | · |V |3 · W · (logV + logW )), min(O(|E | · |V |3 · W · (log |V | + logW )), Rand.
2O(

√
|V |·log|V |) · logW ) 2O(

√
|V |·log|V |) · logW )

[3] O(|V |2 · |E | · e2 ·
q

|V |·ln(|E |/
√

|V |)+O(
√

|V |+ln|E |)) — Rand.

Table 2.Complexity of the main algorithms to solve the mean-payoff game problems4–5 considered in Section 2.

4



memoryless strategyπi for playeri in the gameΓ , we denote byGΓ (πi) = (V,Eπi , w) the weighted
graph obtained by removing fromGΓ all edges(v, v′) such thatv ∈ Vi andv′ 6= πi(v).

Mean-Payoff Games [1] A mean-payoff game(MPG) is an infinite game played on a game graphΓ
where player0 wins a payoff value defined as the long-run average weights ofthe play, while player1
loses that value. Formally, the payoff value of a playv0v1 . . . vn . . . in Γ is

MP(v0v1 . . . vn . . . ) = lim inf
n→∞

1

n
·

n−1
∑

i=0

w(vi, vi+1).

The valuesecuredby a strategyσ0 ∈ Σ0 in a vertexv is

valσ0(v) = inf
σ1∈Σ1

MP(outcomeΓ (v, σ0, σ1))

and the(optimal) valueof a vertexv in a mean-payoff gameΓ is

valΓ (v) = sup
σ0∈Σ0

inf
σ1∈Σ1

MP(outcomeΓ (v, σ0, σ1)).

We say thatσ0 is optimal if valσ0(v) = valΓ (v) for all v ∈ V . Secured value and optimality
are defined analogously for strategies of player1. Ehrenfeucht and Mycielski [1] show that mean-
payoff games arememoryless determined, i.e., memoryless strategies are sufficient for optimalityand
the optimal (maximum) value that player0 can secure is equal to the optimal (minimum) value that
player1 can achieve.

Theorem 1 ([1]).For all MPG Γ = (V,E,w, 〈V0 , V1〉) and all verticesv ∈ V , we have

valΓ (v) = sup
σ0∈Σ0

inf
σ1∈Σ1

MP(outcomeΓ (v, σ0, σ1)) = inf
σ1∈Σ1

sup
σ0∈Σ0

MP(outcomeΓ (v, σ0, σ1)),

and there exist memoryless strategiesπ0 ∈ ΣM
0 andπ1 ∈ ΣM

1 such that

valΓ (v) = valπ0(v) = valπ1(v).

Moreover,uniformoptimal strategies exist for both players, i.e., a unique memoryless strategy can
be used to secure the optimal values, independently of the initial vertex [1].

The next lemmas follow from memoryless determinacy of mean-payoff games.

Lemma 1 ([1, 12]). Let Γ = (V,E,w, 〈V0, V1〉) be anMPG. For all ν ∈ R, for all memoryless
strategiesπ0 ∈ ΣM

0 for player 0, and for all verticesv ∈ V , the valuevalπ0(v) secured byπ0 in v
is greater thanν if and only if all cycles reachable fromv in the graphGΓ (π0) have average weight
greater thanν.

Lemma 2 ([1, 22]).LetΓ = (V,E,w, 〈V0 , V1〉) be aMPG and letW = max(v,v′)∈E |w(v, v′)|. For

each vertexv ∈ V , the optimal valuevalΓ (v) is a rational numbernd such that1 ≤ d ≤ |V | and
|n| ≤ d · W .

We consider the following five classical problems [19, 12] for aMPG Γ = (V,E,w, 〈V0, V1〉):
1. Decision Problem. Given a thresholdν ∈ Z and a vertexv ∈ V , decide ifvalΓ (v) ≥ ν.
2. Strategy Synthesis. Given a vertexv ∈ V and a thresholdν ∈ Z such thatν ≤ valΓ (v), construct

a memoryless strategyπ0 ∈ ΣM
0 for player0 such thatvalπ0(v) ≥ ν.

3. Three-way partition Problem. Given a integer thresholdν ∈ Z, partition the setV into subsets
V>ν , V<ν , V=ν of vertices from which player0 can secure a payoff greater thanν, less thanν, and
equal toν respectively.

4. Value Problem. Compute for each vertexv ∈ V the value2 valΓ (v).
5. Optimal Strategy Synthesis. Given a vertexv, construct an optimal strategy fromv for player0.
2 Note that by lemma 2, this value is a rational number.

5



Energy Games [5, 4]An energy game(EG) is an infinite game on the game graphΓ , where the goal
of player0 is to construct an infinite playv0v1 . . . vn . . . such that for someinitial credit c ∈ N:

c +

j
∑

i=0

w(vi, vi+1) ≥ 0 for all j ≥ 0. (1)

The quantityc +
∑j−1

i=0 w(vi, vi+1) is called theenergy levelof the play prefixv0v1 . . . vj. Given
a creditc, a playp = v0v1 . . . is winning for player0 if it satisfies (1), otherwise it is winning for
player1. A vertexv ∈ V is winningfor playeri if there exists an initial creditc and a winning strategy
for playeri from v for creditc. In the sequel, we denote byWi the set of winning states for playeri.
Energy games are memoryless determined [4], i.e. for allv ∈ V , eitherv is winning for player0, or v
is winning for player1, and memoryless strategies are sufficient.

Theorem 2 ([4]).LetΓ = (V,E,w, 〈V0, V1〉) be anEG, for all v ∈ V , the following four statements
are equivalent:

– ∃σ0 ∈ Σ0 · ∀σ1 ∈ Σ1 · outcomeΓ (v, σ0, σ1) is winning for player 0;
– ∀σ1 ∈ Σ1 · ∃σ0 ∈ Σ0 · outcomeΓ (v, σ0, σ1) is winning for player 0;
– ∃π0 ∈ ΣM

0 · ∀π1 ∈ ΣM
1 · outcomeΓ (v, π0, π1) is winning for player 0;

– ∀π1 ∈ ΣM
1 · ∃π0 ∈ ΣM

0 · outcomeΓ (v, π0, π1) is winning for player 0;

Using the memoryless determinacy of energy games, we can derive the next lemma.

Lemma 3 ([1, 22]).LetΓ = (V,E,w, 〈V0, V1〉) be anEG, for all verticesv ∈ V , for all memoryless
strategiesπ0 ∈ ΣM

0 for player0, the strategyπ0 is winning fromv if and only if all cycles reachable
from v in the weighted graphGΓ (π0) are nonnegative.

We consider the following problems for an energy gameΓ = (V,E,w, 〈V0, V1〉):

1. Decision Problem. Givenv ∈ V , decide ifv is winning for player0.
2. Strategy Synthesis. Givenv ∈ V , if v is winning for playeri (i = 0, 1), construct a corresponding

winning strategy for playeri from v.
3. Partition Problem. Construct the sets of verticesWi (i = 0, 1) of winning vertices for playeri.
4. Minimum Credit Problem. For each vertexv ∈ W0, compute the minimum initial creditc∗(v)

such that there exists a winning strategyσ0 for player0.

Using Lemma 1 and Lemma 3, we can relate the decision problemsfor MPG andEG as follows.

Theorem 3 ([4]). Let Γ = (V,E,w, 〈V0 , V1〉) be a game graph. For all thresholdsν ∈ Z, for all
verticesv ∈ V , player0 has a strategy in theMPG Γ = (V,E,w, 〈V0, V1〉) that secures value at
leastν from v if and only if player0 has a winning strategy in theEG Γ = (V,E,w − ν, 〈V0, V1〉)
from v.

Example 1.Consider the mean-payoff gameΓ = (V,E,w, 〈V0, V1〉) illustrated on the left of Fig. 1,
where player0 (resp. player1) controls the square (resp. round) vertices. Assume that player0 wants
to ensure a payoffν ≥ 1 from v. To solve such a mean-payoff decision problem we can consider
the energy gameΓ ′ = (V,E,w − 1, 〈V0, V1〉), on the right of Fig. 1, where the weights of all edges
are decreased by1. By construction, each cyclec in the EG Γ ′ is nonnegative if and only ifc has
mean-payoffν ≥ 1 in Γ . In particular, player0 has a strategy to confine the play into the nonnegative
cycle (zwz) and win theEG Γ ′ from v (with initial credit 6). Therefore, player0 has a strategy to
confine the play into the cycle(zwz) having mean-payoffν ≥ 1 in theMPG Γ .

6



3

x

zy

v w
1

−5 2

4

−5 −1 2

x

zy

v w

−6

0

3

1 −6 −2

Fig. 1.SolvingMPG via EG.

3 A Small Energy Progress Measure

Progress measures are functionsf : V → N, definedlocally on the set of vertices of a weighted graph,
that allow to inferglobal properties of the graph. In this section, we introduce a notion of progress
measure calledenergy progress measure, which is tailored to witness the absence of negative cycles
in a weighted graphG. Intuitively, the valuef(v0) of a vertexv0 is a sufficient credit to ensure that all
pathsv0 . . . vn can be traversed while maintaining a nonnegative level.

Definition 1 (Energy Progress Measure).Let G = 〈V,E,w〉 be a weighted graph. Anenergy
progress measurefor G is a functionf : V → N such that for all(v, v′) ∈ E:

f(v) ≥ f(v′) − w(v, v′).

Lemma 4. LetG = (V,E,w) be a weighted graph. IfG admits an energy progress measure, then:

1. all cycles ofG are nonnegative, and
2. for all pathsv0v1 . . . vn in G it holds:

f(v0) +

n−1
∑

i=0

w(vi, vi+1) ≥ 0

Proof. Let G = (V,E,w) be a weighted graph andf be an energy progress measure forG. Consider
an arbitrary pathp = v0v1 . . . vn in G. By definition of energy progress measure, we have:

f(v0) ≥ f(v1) − w(v0, v1) ≥ · · · ≥ f(vn) −
n−1
∑

i=0

w(vi, vi+1). (2)

This leads tof(v0) +
∑n−1

i=0 w(vi, vi+1) ≥ f(vn) ≥ 0, which proves item2. In the particular case
wherep is a cycle (i.e.,v0 = vn) Inequality (2) can also be developed into

∑n−1
i=0 w(vi, vi+1) ≥ 0

which proves item1. ⊓⊔

The next lemma shows that if all cycles ofG are nonnegative, thenG admits an energy progress
measure whose codomain has a pseudopolynomial upper bound (in the size ofG). Hence, we refer to
our progress measure as asmall energy progress measure. Given a weighted graphG = (V,E,w),
define:

MG =
∑

v∈V

max({0} ∪ {−w(v, v′) | (v, v′) ∈ E})

Note that, ifW = maxe∈E|w(e)| is the maximal absolute value of the edge-weights inG, then
MG ≤ |V | · W .

7



Lemma 5. For all weighted graphsG = (V,E,w), if all cycles ofG are nonnegative, then there
exists an energy progress measuref : V → {0, . . . ,MG} for G.

Proof. Givenv ∈ V , letAcyclicPath(v) be the set of (possibly trivial3) acyclic paths inG = (V,E,w)
starting inv:

AcyclicPath(v) = {v0v1 . . . vn | v0 = v ∧ ∀0 ≤ i < n : (vi, vi+1) ∈ E

∧ ∀0 ≤ i, j ≤ n : i 6= j → vi 6= vj}

Givenp = v0v1 . . . vn ∈ AcyclicPath(v), we denote byw(p), the sum of the weights inp:

w(p) =

{

0 if n = 0
∑n−1

i=0 w(vi, vi+1) otherwise

Consider the functionf : V → {0, . . . ,MG} defined by:

f(v) = max{−w(p) | p ∈ AcyclicPath(v)}

for all v ∈ V . Note that by definition ofw(p), we havef(v) ≥ 0. We claim thatf is an energy
progress measure forG. Towards contradiction, assume that there exists an edge(v, v′) for which:

f(v) < f(v′) − w(v, v′). (3)

There are two cases to consider, depending on whetherv is equal tov′ or not. In the first case (v = v′),
Inequality 3 immediately yields the contradiction that(v, v) is a negative cycle inG. In the second
case (v 6= v′), let pv′ = v0v1 . . . vn be an acyclic path inG from v′ (i.e. v0 = v′) such thatf(v′) =
−w(pv′). If pv′ does not containv, then by definition off we getf(v) ≥ −w(pv′) − w(v, v′) which
contradicts Inequality 3. Otherwise, let0 < i ≤ n such thatvi = v, and letw1 = w(v0v1 . . . vi) and
w2 = w(pv′)−w1. By Inequality 3, we havew(v, v′) + w1 + w2 < −f(v). Since all cycles ofG are
nonnegative, we havew(v, v′) + w1 ≥ 0, and thusw2 < −f(v), i.e. f(v) < −w2. This is again in
contradiction with the definition off sincew2 is the weight of a (possibly trivial) acyclic path from
the vertexv. ⊓⊔

4 Solving the Energy Game Problems

In this section, we devise efficient algorithms for theEG problems stated in Section 2. To this purpose,
we extend the notion of small progress measure from graphs togames, taking into account the partition
of vertices between the two players. LetΓ = (V,E,w, 〈V0, V1〉) be a game graph and consider the
set:

CΓ = {n ∈ N | n ≤ MGΓ } ∪ {⊤}.
We denote by� the total order onCΓ defined byx � y if and only if eithery = ⊤ or x ≤ y ≤ MGΓ .
Moreover, we define the operator⊖ : CΓ × Z → CΓ such that, for alla ∈ CΓ andb ∈ Z:

a ⊖ b =

{

max(0, a − b) if a 6= ⊤ anda − b ≤ MGΓ

⊤ otherwise

Intuitively, a small energy progress measure for the gameΓ = (V,E,w, 〈V0 , V1〉) is a mapping from
V to CΓ tailored to witness wether a vertexv is winning for player 0. In particular, if the small energy
progress measure functionf assumes a valuef(v) 6= ⊤ on the vertexv, then player 0 has a winning
strategy fromv, provided an initial creditf(v).

3 For eachv ∈ V , there is a trivial acyclic pathv in G.

8



Definition 2. Let Γ = (V,E,w, 〈V0, V1〉) be anEG. A functionf : V → CΓ is a small energy
progress measurefor Γ if and only if the following conditions hold:

– if v ∈ V0, thenf(v) � f(v′) ⊖ w(v, v′) for some(v, v′) ∈ E;
– if v ∈ V1, thenf(v) � f(v′) ⊖ w(v, v′) for all (v, v′) ∈ E.

Note that Definition 2 can be derived by the corresponding Definition 1 (on graphs) by means of
the following two extensions. First, specialize the local conditions constraining the (small) energy
progress measure on each nodev ∈ V by taking into account wetherv ∈ V0 or v ∈ V1. Second,
introduce the special value⊤ in the codomain of the small energy progress measure4 f , f : V 7→
CΓ = {0, . . . ,MGΓ

} ∪ {⊤}, ensuring that all games admit a small energy progress measure.
Given a small energy progress measuref for the game graphΓ = (V,E,w, 〈V0, V1〉), we denote

by Vf the set of statesVf = {v | f(v) 6= ⊤}. A (memoryless) strategyπf
0 : V0 → V for player 0 is

calledcompatible withf whenever for allv ∈ V0, if πf
0 (v) = v′ thenf(v) � f(v′) ⊖ w(v, v′). Note

that compatible strategies always exist by definition of progress measure. The next lemma establishes
that if πf

0 is a strategy for player0 compatible with the energy progress measuref , thenπf
0 is a

winning strategy for player0 from all vertices inVf .

Lemma 6. Let Γ = (V,E,w, 〈V0, V1〉) be anEG. For all small energy progress measuresf for Γ ,
if πf

0 is a strategy for player0 compatible withf , thenπf
0 is a winning strategy for player0 from

all verticesv ∈ Vf , i.e.Vf ⊆ W0. Moreover,Γ admits a small energy progress measuref such that
Vf = W0.

Proof. Let f be a small energy progress measure forΓ and consider a memoryless strategyπf
0 for

player0 which is compatible withf . For the sake of contradiction, suppose thatπf
0 is not winning

for player0 from the vertexv ∈ Vf . Then, by Lemma 3,GΓ (πf
0 ) admits a negative cycle fromv.

Let v0v1 . . . vi . . . vn with v0 = v be the path inGΓ (πf
0 ) from v with a negative cyclevi . . . vn (i.e.,

vi = vn). We show thatvj ∈ Vf for all 0 ≤ j ≤ n, using an inductive argument onj. The base
case is obvious sincev0 = v ∈ Vf by hypothesis. Letj > 0. By inductive hypothesis we have that
vj−1 ∈ Vf . By definition of small energy progress measure onΓ , if vj−1 ∈ V0 (resp.vj−1 ∈ V1), then
there exists a successor (resp. for all successors)v′ of vj−1:

f(vj−1) � f(v′) ⊖ w(vj−1, v
′). (4)

By Inequality 4 and by definition ofπf
0 we obtainf(vj) 6= ⊤, i.e.vj ∈ Vf .

Hence, for each vertexvj , i ≤ j ≤ n, on the negative cyclevi . . . vn = vi reachable fromv,
f(vj) 6= ⊤. Thus, by definition off andπf

0 we obtain:

f(vi) ≥ f(vi+1) − w(vi, vi+1) ≥ · · · ≥ f(vn) −
n−1
∑

j=i

w(vj , vj+1)

which is a contradiction with our hypothesis thatvi . . . vn is a negative cycle.
We conclude by showing that there exists a small energy progress measuref on Γ such that

Vf = W0. Let π0 be a memoryless strategy winning for player0 from any vertexv ∈ W0. By
Lemma 3,GΓ (π0) ↾ W0 does not contain any negative cycle. Hence,GΓ (π0) ↾ W0 admits an energy
progress measuref by Lemma 5. The functionf can immediately be extended to an energy progress
measure on the gameΓ by settingf(v) = ⊤ for eachv /∈ W0. ⊓⊔

4 and appropriately define the operator⊖ : CΓ × Z 7→ CΓ in order to cast the minus operator to range overCΓ

9



For a game graphΓ = (V,E,w, 〈V0, V1〉), letF be the set of functionsf : V → CΓ . The partial order
⊑⊆ F × F is defined asf ⊑ g iff for all v ∈ V , f(v) � g(v). Note that for all functionsf andg, if
f(v) � f(v′) ⊖ w(v, v′) andg(v) � g(v′) ⊖ w(v, v′), thenmin{f(v), g(v)} � min{f(v′), g(v′)} ⊖
w(v, v′). Therefore, iff and g are small energy progress measures, then so is the functionh =
min{f, g} (wheremin is taken pointwise). We use(F ,⊑) to refer toF as a complete partial order.
Given any setF ⊆ F , we denote by⊓F the greatest lower bound ofF . As F is a complete partial
order, we know that⊓F ∈ F . We can now state the following two important properties.

Proposition 1. Let Γ = (V,E,w, 〈V0 , V1〉) be anEG, (i) if f and g are small energy progress
measures forΓ such thatf ⊑ g, thenVg ⊆ Vf , and(ii) if f = ⊓{g ∈ F | g is a small energy
progress measure forΓ}, thenf is a small energy progress measure andVf = W0.

Proof. The first item is immediate by definition ofVf and⊑. The second item follows from Lemma 6,
item 1 and from the fact that iff andg are small energy progress measures, then so is the function
h = min{f, g} (wheremin is taken pointwise). ⊓⊔

By Lemma 6 and Proposition 1, the problem of determining the least energy progress measure for the
energy gameΓ = (V,E,w, 〈V0, V1〉) subsumes the decision problem forΓ . Hence, we present here
an efficient algorithm (Algorithm 1) to compute the least energy progress measuref : V → CΓ . Our
algorithm initializesf to the constant function0 and relies on the following operator.

Definition 3. Givenv ∈ V , the lifting operatorδ(·, v) : [V → CΓ ] → [V → CΓ ] is defined by
δ(f, v) = g where:

g(u) =







f(u) if u 6= v
min{f(v′) ⊖ w(v, v′) | (v, v′) ∈ E} if u = v ∈ V0

max{f(v′) ⊖ w(v, v′) | (v, v′) ∈ E} if u = v ∈ V1

The operatorδ(·, v) can be computed in timeO(|post(v)|), and is⊑-monotone.

Lemma 7. For eachv ∈ V , the operatorδ(·, v) is monotone, i.e.δ(f, v) ⊑ δ(g, v) for all f ⊑ g.

Proof. Immediate from Definition 3. ⊓⊔

Given a functionf : V → CΓ , we say thatf is inconsistentin v if:

– v ∈ V0 and for allv′ such that(v, v′) ∈ E it holdsf(v) ≺ f(v′) ⊖ w(v, v′);
– v ∈ V1 and there existsv′ such that(v, v′) ∈ E andf(v) ≺ f(v′) ⊖ w(v, v′).

Algorithm 1 maintains a listL of vertices that witness an inconsistency off . Initially, v ∈ V0 ∩ L if
and only if all outgoing edges fromv are negative, whilev ∈ V1 ∩L if and only if v is the source of a
negative edge. As long as the listL is nonempty, the algorithm picks a vertexu from L and performs
the following operations:

1. apply tof the lifting operatorδ(f, v) in order to solve the inconsistency off in v;
2. insert into the listL the set of vertices witnessing a new inconsistency, due to the increase off(v).

The update ofL following a lifting operationδ(f, v) requiresO(|pre(v)|) time. In fact, a vertexv′ can
witness a new inconsistency because of the incrementing off(v) only if v′ ∈ pre(v). In particular,
checking ifv′ ∈ pre(v) ∩ V1 witnesses a new inconsistency simply amounts at checking whether
f(v′) ≺ f(v) ⊖ w(v′, v). Some more attention needs to be paid for vertices inpre(v) ∩ V0. Indeed,
for such vertices the conditionf(v′) ≺ f(v) ⊖ w(v′, v) may not be sufficient to witness a new
inconsistency inv′, due to the existence of another successorv′′ of v′ such thatf(v′) � f(v′′) ⊖
w(v′, v′′). In order to efficiently determine ifv′ needs to be inserted inL, we maintain a counter
function count : V0 → N such thatcount(v) = 0 for all v ∈ V0 ∩ L, andcount(v) is the number

10



3
x

y

z v

w

1

1
−3

1
2

0
−4

0 0 0

0 L=(w) 0
Fig 2.(a)

3
x

y

z v

w

1

1
−3

1
2

0
−4

0 0 0

0
Fig 2.(b)

4L=(z,v)

3
x

y

z v

w

1

1
−3

1
2

0
−4

0 0

0 4

3

L=(v)
Fig 2.(c)

3
x

y

z v

w

1

1
−3

1
2

0
−4

0

0 4

3

L=(w)
Fig 2.(d)

4

3
x

y

z v

w

1

1
−3

1
2

0
−4

0

0

3

L=(v)
Fig 2.(e)

4

3
x

y

z v

w

1

1
−3

1
2

0
−4

0

0

3

Fig 2.(f)

Fig. 2. EG algorithm applied on a concrete game graph, illustrated in Example 2.

of successorsv′ of v such thatf(v) � f(v′) ⊖ w(v, v′) for v ∈ V0 \ L. Initially, count(v) � 1 for
all v ∈ V0 \ L. When the valuef(v) is updated, we compute the new value ofcount(v) (with cost
O(|post(v)|)), and we decrement the valuecount(v′) of all predecessorsv′ of v such thatf(v′) ≺
f(v)⊖w(v′, v). Those predecessorsv′ for which count(v′) is now0 are inserted inL. The algorithm
terminates when the listL is empty. Example 2 illustrates ourEG algorithm on a concrete game graph.

Example 2.Consider the game graphΓ = (V,E,w, 〈V0, V1〉) illustrated in Fig.2.(a), where player0
(resp. player1) controls the square (resp. round) vertices. Algorithm 1 initializes the energy progress
measuref to the constant function0, and the listL with the only nodew. Fig. 2.(b) shows the result
of the execution of the main while-loop at line 7, upon the extraction of the vertexw. In particular,
f(w) is updated to4 leading to the insertion of the nodesz, v into L, within the innermost for-loop.
Fig. 2.(c) illustrates the energy progress measure computed by the second iteration of the while-loop
at line 7, whenz is taken fromL. In this case, the new value3 of f(z) does not lead to any new
insertion intoL. In fact, at this point of the computation, the valuesf(x), f(y), f(z) are fixed, and
only f(w) andf(v) continue to increase until reaching the maximal value encoded as⊤. Fig. 2.(e)
and2.(f) show the last steps of the algorithm, and the corresponding winning strategy for player0.

Note that, once a small energy progress measuref has been computed andW0 = Vf has been
determined, a (memoryless) winning strategyσ0 for player0 on W0 can be immediately derived in
time O(|E|), as follows: For each vertexv ∈ V0, setσ0(v) = v′, where(v, v′) ∈ E andf(v′) =
min{f(v′) ⊖ w(v, v′) | (v, v′) ∈ E}. Such a strategy could also be computed online throughout the
execution of Algorithm 1, rather than as a post-processing operation.

The correctness of the algorithm is established by Theorem 4on the ground of Lemma 7 and
Lemma 8, applying the Knaster-Tarski fixpoint theorem to ourlifting operator in(F ,⊑). In particular,
the functionf computed by Algorithm 1 is a simultaneous least fixpoint of the operatorsδ(·, v) for all
v ∈ V . Thus, the functionf is the least energy progress measure forΓ (sincef is the least fixpoint of
δ(·, v) for all v ∈ V ) such thatVf = W0 (sincef is a leastfixpoint of δ(·, v) for all v ∈ V ).

Lemma 8. The following is an invariant of the while-loop of Algorithm1 (line 7): for all vertices
v ∈ V \L, (i) δ(f, v) = f and(ii) if v ∈ V0, thencount(v) = |{v′ ∈ V | f(v) � f(v′)⊖w(v, v′)}|.

11



Algorithm 1: Value-iteration algorithm for energy games.
Input : A game graphΓ = (V, E, w, 〈V0, V1〉).
Output : A small energy progress measuref : V → CΓ for Γ .
begin

1 L← {v ∈ V0 | ∀(v, v′) ∈ E : w(v, v′) < 0}
2 L← L ∪ {v ∈ V1 | ∃(v, v′) ∈ E : w(v, v′) < 0}
3 foreachv ∈ V do
4 f(v)← 0
5 if v ∈ V0 ∩ L then count(v)← 0
6 if v ∈ V0 \ L then count(v)← |{v′ ∈ post(v) | f(v) � f(v′)⊖ w(v, v′)}|
7 while L 6= ∅ do
8 Pickv ∈ L
9 L← L \ {v}; old← f(v)

10 f ← δ(f, v)
11 if v ∈ V0 then count(v)← |{v′ ∈ post(v) | f(v) � f(v′)⊖ w(v, v′)}|
12 foreachv′ ∈ pre(v) such thatf(v′) ≺ f(v) ⊖w(v′, v) do
13 if v′ ∈ V0 then
14 if f(v′) � old⊖ w(v′, v) then count(v′)← count(v′)− 1
15 if count(v′) ≤ 0 then L← L ∪ {v′}
16 if v′ ∈ V1 then L← L ∪ {v′}

17 return f

end

Proof. First, we show that the invariant holds after line 6. Consider an arbitrary vertexv ∈ V \ L. If
v ∈ V0, then there exists(v, v′) ∈ E such thatw(v, v′) ≥ 0 (line 1 of Alg. 1). Sincef(v′) = 0, we
getf(v′) ⊖ w(v, v′) = 0 = f(v), showing thatδ(f, v)(v) = 0 = f(v) by Definition 3. It is obvious
thatδ(f, v)(v′) = f(v′) for all v′ 6= v, and thusδ(f, v) = f . The proof of part(ii) of the invariant is
straightforward. The casev ∈ V1 is proven analogously.

Second, assume that the invariant holds before executing the loop, and letv be the vertex selected
at line 8. Consider the case where(v, v) 6∈ E. Let f ′ = δ(f, v) (see also line 10). Note thatf ′ differs
from f only in the value assigned to vertexv, i.e.f ′(v′) = f(v′) for all v′ 6= v. Therefore, the value
count(v′) needs to be updated only for the predecessorsv′ ∈ pre(v) of v, and this can be done as in
line 14. Now, since we assumed thatv 6∈ pre(v), the vertexv is not inserted back in the listL in the
loop of line 12, and thus we need to show thatδ(f ′, v) = f ′. It is easy to see thatδ(f ′, v)(v′) = f ′(v′)
for all v′ 6= v, while for v′ = v, this follows from the fact thatf ′ andf agree on the value of all
successors ofv.

Finally, it is easy to see that the listL is correctly updated in lines 12-16: forv′ ∈ pre(v) ∩ V1, if
f(v′) � f(v)⊖w(v′, v) (i.e.v′ is not inserted in the list), thenδ(f ′, v′) = f ′; for v′ ∈ pre(v) ∩ V0, if
the valuecount(v′) is positive (i.e.v′ is not inserted in the list), thenδ(f ′, v′) = f ′.

The case where(v, v) ∈ E is proven analogously. ⊓⊔
Theorem 4 (Correctness).Let Γ = (V,E,w, 〈V0 , V1〉) be anEG. Algorithm 1 computes a small
energy progress measuref onΓ such thatVf = W0 is the set of winning vertices for player0.

Proof. By Lemma 7 , Lemma 8, and the Knaster-Tarski theorem, the function computedf returned
by Algorithm 1 is the unique least fixpoint of simultaneouslyall operatorsδ(·, v) for all v ∈ V .
Therefore, the setVf is the set of winning vertices for player0 according to Lemma 6.

Termination of Algorithm 1 is enforced by the fact that everyupdate of line 10 strictly increases
the value off in one vertexv, and the fact that the codomain of energy progress measures is finite. ⊓⊔
Theorem 5 characterizes the small energy progress measure computed by Algorithm 1, putting it into
relation with the minimum credit problem, and Theorem 6 establishes the complexity of Algorithm 1.

12



Theorem 5 (Minimal credit). Let Γ = (V,E,w, 〈V0 , V1〉) be anEG. The small energy progress
measuref computed by Algorithm 1 is such that:(i) if v ∈ W0 (v is winning for player0), then
c∗(v) = f(v), wherec∗(v) is the minimum initial credit to build a winning play for player 0 from v.
(ii) if v ∈ W1 (v is winning for player1), thenf(v) = ⊤.

Proof. By Theorem 4, the functionf is a small energy progress measure onΓ such thatVf = W0.
Hence, for eachv /∈ W0, f(v) = ⊤, which establishes the second item of our claim.

In order to show that for eachv ∈ W0, f(v) = c∗(v), we start proving thatf is an energy progress
measure on the graphGΓ (πf

0 ) ↾ Vf . This will immediately imply thatf(v) ≥ c∗(v) for all v ∈ W0

by Lemma 4. Let(v, v′) be an edge in the graphGΓ (πf
0 ) ↾ Vf . Thenf(v) 6= ⊤, f(v′) 6= ⊤, and

by definition off we immediately obtain thatf(v) ≥ f(v′) − w(v, v′), which yields our claim. We
finally get to the result by showing that for eachv ∈ W0, the relation

f(v) ≤ c∗(v) (5)

is an invariant of Algorithm1. By contradiction, letv ∈ W0 be the first node for which Equation
5 is falsified within the execution of Algorithm1. Sincef(v) is initialized to the constant0, such a
violation needs to occur immediately afterf(v) gets updated, at line(10), to the valuef(v′)−w(v, v′),
for some successorv′ of v. Then:

f(v′) − w(v, v′) = f(v) > c∗(v) ≥ c∗(v′) − w(v, v′). (6)

Equation 6 impliesf(v′) > c∗(v′), which contradicts the fact thatv was the first node witnessing a
violation of equation 5. ⊓⊔

Theorem 6 (Complexity).The worst-case complexity of Algorithm 1 isO(|E| · MGΓ ).

Proof. The initialization phase (lines(1)–(6)) costsO(
∑

v∈V (|post(v)|)) = O(|E|). Each iteration
of the while-loop at line7 (corresponding to a lift operation off via v, followed by an update of
the listL) costsO(|post(v)| + |pre(v)|). Since the valuef(v) for each vertexv can increase at most
MGΓ + 1 times, the global cost of Algorithm 1 is:

O(
∑

v∈V

(|post(v)| + |pre(v)|) · MGΓ ) = O(|E| ·MGΓ )

⊓⊔

We are now ready to state the following theorem, relative to the complexity of the energy games
problems introduced in Section 2.

Theorem 7. Let Γ = (V,E,w, 〈V0, V1〉) be anEG. The decision problem, the strategy synthesis
problem, the partition problem, and the minimum credit problem onΓ can be solved in timeO(|E| ·
MGΓ ).

Proof. It follows immediately from Lemma 6, Theorem 4, Theorem 5, and Theorem 6. ⊓⊔

Remark 1.Note that it is also possible to use the results in Section 3 and Section 4 (and in particular
Lemma 5 and Lemma 6) to derive an algorithm that solves the decision problem forEG by reducing
it to the decision problem forsafety games[23]. A safety game is simple2-player game played on an
un-weighted arena, where the vertices are partitioned intoallowed and forbidden positions. The goal
of player0 is that of building a play that never enters any forbidden position. It is well known that
safety games can be solved in time linear w.r.t. the size of the corresponding arenas. On the ground of
Lemma 5 and Lemma 6, the decision problem for anEG Γ = (V,E,w, 〈V0, V1〉) can be reduced to

13



the decision problem for a safety gameΓ ′ in time andspaceO(|E| · MGΓ ), i.e. pseudopolynomial
w.r.t. the size ofΓ . In fact, given theEG Γ = (V,E,w, 〈V0, V1〉), we can build a safety gameΓ ′

played on an arena having set of positionV × {0, . . . ,MGΓ } ∪ {⊤}. Given a vertex(v, k) in Γ ′, v
represents a position in the originalEG andk corresponds to a level of energy. The set of forbidden
positions in the safety gameΓ ′ is B = {(v,⊤) | v ∈ V }. The encoding safety gameΓ ′ contains the
edge((v, k), (v′ , k′)) iff:

(v, v′) ∈ E ∧ k 6= ⊤ ∧ (k + w(v, v′) = k′ ≤ MGΓ ∨ (k + w(v, v′) > MGΓ ∧ k′ = ⊤)).

It is easy to see that player0 has a winning strategy from(v, k) in the encoding safety gameΓ ′ (i.e.
she can avoid to reach a (forbidden) position with global energy level⊤) iff player 0 has a winning
strategy from the vertexv with creditk in the originalEG Γ .

Algorithm 1 can be also seen as a space-efficient counterpartof the above procedure of reduction
from energy games to safety games where, rather than maintaining explicitly the whole space of
possible energy values, we efficiently update online a set ofenergy-counters. This allows to use a
space linear w.r.t. the size of the arena of theEG, rather than pseudopolynomial.

5 Solving the Mean-Payoff Game Problems

In this section we provide new efficient pseudopolynomial algorithms for theMPG problems stated
in Section 2, featuring a better worst-case complexity thanthe corresponding state-of-the-art pseu-
dopolynomial procedures by Zwick and Paterson [19]. Our newsolutions for those problems build up
on the notion of small energy progress measure and use Algorithm 1 as a basic step.

5.1 Decision Problem, Strategy Synthesis, and Three-Way Partition

First, we consider the decision problem and the strategy synthesis problem forMPG. Let Γ =
(V,E,w, 〈V0, V1〉) be aMPG wherew : V → {−W, . . . ,W}, and letν ∈ Z. Consider the problem
to decide if the value of a given vertexv ∈ V is greater than or equal toν. If |ν| > W , then according
to Lemma 2 we can immediately provide an answer to this decision problem (YES if ν < −W , NO

if ν > W ). Otherwise, consider the gameΓ−ν = (V,E,w − ν, 〈V0, V1〉), this game can be used to
solve our original problems as stated in the following lemma.

Lemma 9. Given aMPG Γ = (V,E,w, 〈V0, V1〉) and a thresholdν ∈ Z, let f be a small energy
progress measure forΓ−ν = (V,E,w − ν, 〈V0, V1〉). All strategiesπf

0 of player0 compatible withf
secure a payoff at leastν from all v ∈ Vf in theMPG Γ .

Proof. Towards contradiction, assume thatv ∈ Vf is a vertex such that the payoff that player0 can

secure fromv is less thanν. By Lemma 1, the graphGΓ (πf
0 ) admits a pathp = v0v1 . . . vi . . . vn

from v = v0 to a cyclevi . . . vn (vi = vn) having average weight1n−i

∑n−1
j=i w(vj , vj+1) < ν, which

implies:
n−1
∑

j=i

(w − ν)(vj , vj+1) < (n − i)ν − (n − i)ν = 0.

Sincev ∈ Vf , the inductive application of the definition off for 0 ≤ j ≤ n yields vj ∈ Vf for all
0 ≤ j ≤ n. Hence, the graphGΓ−ν

(πf
0 ) ↾ Vf admits a pathv0 . . . vi . . . vn from v to a negative cycle.

This contradicts Lemma 4, sincef ↾ Vf is an energy progress measure onGΓ−ν
(πf

0 ) ↾ Vf . ⊓⊔

14



We now turn to the three-way partition problem, and we show how this problem can also be solved
in time O(|E| · MGΓ ) using Algorithm 1 as a basic ingredient. In fact, consider the MPG Γ =
(V,E,w, 〈V0, V1〉) wherew : V → [−W, . . . , 0, . . . ,+W ], and defineV∗ := V0, V

∗ := V1. Given
ν ∈ Z, |ν| ≤ W , we can construct the two game graphsΓ ′ = (V,E,w − ν, 〈V0 := V∗, V1 := V ∗〉)
andΓ ′′ = (V,E,−w + ν, 〈V0 := V ∗, V1 := V∗〉). Running Algorithm 1 onΓ ′ yields the partition on
V into V≥ν (for vertices securing player0 a payoff at leastν in Γ ) andV<ν . Running Algorithm 1 on
Γ ′′ yields the partition onV into V≤ν andV>ν . The desired three-way partition can be immediately
extracted from the above two partitions. Thus, we obtain:

Theorem 8. Let Γ = (V,E,w, 〈V0 , V1〉) be aMPG. The decision problem, the strategy synthesis
problem, and the three-way partition problem onΓ can be solved in timeO(|E| · |V | · W ).

Proof. For the decision problem and the strategy synthesis problem, the result immediately follows
from Lemmas 2, 9, and Theorems 4, 6.

For the three-way partition problem, letΓ be aMPG with weight functionw, andν ∈ Z. Consider
the gameΓ ′ obtained as a copy ofΓ with weight functionw − ν, and the gameΓ ′′ obtained by
exchanging the role of the players inΓ and with value function−w + ν. By Theorem 1, Lemma 9,
and Theorem 4, running Algorithm 1 onΓ ′ yields the partitionV≥ν (for vertices from which player0
secures a payoff at leastν in Γ ) andV<ν , while onΓ ′′, it yields the partition onV into V≤ν andV>ν .
Hence the three-way partition ofV into 〈V<ν , V=ν = V≤ν ∩V≥ν , V>ν〉 can be hence obtained in time
O(|E| · MGΓ ), by Theorem 6. ⊓⊔

5.2 Value Problem and Optimal Strategy Synthesis

We finally consider the value problem. LetΓ = (V,E,w, 〈V0, V1〉) be aMPG. By Lemma 2, for each
vertexv ∈ V , the valuevalΓ (v) is contained in the following set of rationals:

S = { p

m
| p,m ∈ Z, 1 ≤ m ≤ |V | ∧ −m · W ≤ p ≤ m · W}.

Thus, a conceptually simple algorithm for computing the value of each vertexv ∈ V would be to
perform|V | dichotomic searches in the setS. In particular, givenv ∈ V and p

m ∈ S, the application
of Algorithm 1 onΓ ′ = (V,E,m · w − p, 〈V0, V1〉) allows to decide whethervalΓ (v) ≥ p

m . The
global cost of such an algorithm isO(|E| · |V |3 ·W · log(|V | ·W ), sinceS has sizeO(|V |2 ·W ) and
Algorithm 1 is called on a reweighted version ofΓ , where the maximal (absolute) weight is2· |V | ·W .
In the sequel, we build on the ideas described above to designanO(|V |2 · |E| · W · log(|V | · W ))
algorithm to compute the values of aMPG.

Instead of performing a dichotomic search inS to assign the valuevalΓ (v) to each vertexv ∈ V
individually, Algorithm 2 combines the dichotomic search with recursive calls. Each branch of the
(binary) recursive tree for Algorithm 2 builds a sequenceΓ = Γ 0, . . . , Γ n of game subgraphs ofΓ ,
coupled with a decreasing sequenceS = S0 ⊇ S1 ⊇ · · · ⊇ Sn of subsets ofS such that:

– for all 0 ≤ i ≤ n, the values of the vertexes inΓ i are included inSi

– for all 0 ≤ i < n, it holdsmax(Si+1) − min(Si+1) ≤ 1
2(max(Si) − min(Si))

In particular, the second item above ensures that the lengthof each branch in the tree of recursive
calls in Algorithm 2 is at mostO(log(V · W )), since the difference between two values inS is at
most2W and at least1

V 2 . Each recursive call to Algorithm 2 onΓ i, Si, whereSi is represented by its
extreme valuesri = min(Si), si = max(Si), performs the following operations. First, it determines
the largest elementa1 of Si less than or equal tori+si

2 , and the smallest elementa2 of Si greater
than or equal to5 ri+si

2 . (e.g. by simply enumerating on the fly the elements inSi). Then, Algorithm 1

5 Note thatri+si

2
is not guaranteed to be an element ofSi, since its denominator may not belong to the range1 . . . |V |.

15



is used to determine the partition〈V i
<a1

, V i
=a1

, V i
=a2

, V i
>a2

〉 over the set of verticesVi of the game
subgraphΓ i. Finally, Algorithm 2 is recursively called on the disjointsubgamesΓ i ↾ V i

<a1
, Γ i ↾ V i

>a2
.

The recursive reduction of the problem to smaller and disjoint instances provides a linear (w.r.t.|V |)
improvement of Algorithm 2 over the naive iterative procedure.

The correctness of Algorithm 2 is established in Theorem 9 using the following lemma.

Lemma 10. Given aMPG Γ = (V,E,w, 〈V0, V1〉) and µ ∈ Q, considerΓ ′ = Γ ↾ V∼µ, where
∼∈ {<,>}. If v ∈ V∼µ, thenvalΓ

′
(v) = valΓ (v).

Proof. We start by showing that the relationE ↾ V∼µ, whereµ ∈ Q and∼∈ {<,>}, is total6. Let
π0 (resp.π1) be an optimal memoryless strategy inΓ for player0 (resp. player1), and consider the
graphGΓ (π0, π1). Given v ∈ V∼µ, consider the maximal (i.e cyclic) path fromv in GΓ (π0, π1),
v0, . . . , vn, v0 = v, vn = vk, 0 ≤ k ≤ n. In such a path, the average weight of the cyclevk, . . . , vn

determines the payoff of each elementvi, 0 ≤ i ≤ n. Sinceπ0 andπ1 are optimal, for all0 ≤ i ≤ n,
valΓ (vi) equals the payoff fromvi usingπ0 (resp.π1) againstπ1 (resp.π0). Hence, the average weight
of the cyclevk, . . . , vn is equal tovalΓ (v) ∼ µ, and for all1 ≤ i ≤ n, valΓ (vi) ∼ µ. In particular,v1

is a successor ofv having value∼ µ, which implies thatE ↾ V∼µ is total.
Given the above premise, the result follows from the fact that Γ ′ is a mean-payoff game and that

for all memoryless optimal strategiesπi ∈ ΣM
i of playeri (i = 0, 1), for all verticesv ∈ Vi, we have

valΓ (v) = valΓ (πi(v)). Therefore, all edges(v, v′) in Γ such thatvalΓ (v) 6= valΓ (v′) are useless for
optimality, and in particular, playing inΓ or in Γ ′ does not change the optimal value. ⊓⊔

Theorem 9. LetΓ = (V,E,w, 〈V0, V1〉) be a mean-payoff game such thatw : V → {−W, . . . ,W}.
Algorithm 2 applied to the input(Γ,−W,W ) computes for eachv ∈ V the valuevalΓ (v).

Proof. Given the mean-payoff gameΓ = (V,E,w, 〈V0, V1〉), let {valΓ (v) | v ∈ V } ⊆ U ⊆ S =
{ p

m | 1 ≤ m ≤ |V | ∧ −W ≤ p
m ≤ W}. We prove that Algorithm 2(Γ,min(U),max(U)) terminates

and computes the set of values inΓ . The termination is ensured by the fact that Algorithm 2 performs
a binary search over the (finite) setU ⊆ S, where|S| = O(|V |2 · W ). To complete the proof of our
claim of correctness, we use an inductive argument on|U |.

For the base case,|U | = 1. Let p
q be the only element ofU such that for allv ∈ V , it holds

valΓ (v) = p
q . By Lemma 9 and by Theorem 4, the application of Algorithm 1 tothe gameΓ ′ =

(V,E, qw − p, 〈V0, V1〉) (resp.Γ ′′ = (V,E,−qw + p, 〈V1, V0〉)) at Lines(5)–(6) yields the partition
〈V≥ p

q
= V, V< p

q
= ∅〉 (resp.〈V≤ p

q
= V, V> p

q
= ∅〉 ) onV , whereV∼ p

q
= {v ∈ V | valΓ (v) ∼ p

q },∼∈
<,≤,≥, >. Hence, Line(9) correctly assigns to each node ofV its valuevalΓ (v) = p

q .
For the inductive step, suppose that|U | > 1. Let a1 = max{ q

l | 1 ≤ l ≤ |V | ∧ min(U) ≤ q
l ≤

1
2(min(U) + max(U))}, a2 = min{ q

l | 1 ≤ l ≤ |V | ∧ max(U) ≥ q
l ≥ 1

2 (min(U) + max(U))}.
By Lemma 9 and by Theorem 4, the application of Algorithm 1 Lines(5)–(10) assign to each node
in V=a1 (resp.V=a2) its valuevalΓ (v) = a1 (resp.valΓ (v) = a2). By inductive hypothesis and by
Lemma 10 Line(13) (resp. Line(14)) computes the value of the nodes inV<a1 (resp.V>a2). ⊓⊔

Lemma 11 proves that the height of the tree of recursive callscorresponding to Algorithm 2 is
asymptotically logarithmic w.r.t.|V |2 · W , and Lemma 12 states that the cost of executing lines(1)–
(11) in each recursive call of Algorithm 2 for the subgameΓ ′ = (V ′, E′, w, 〈V ′

0 , V ′
1〉) isO(|E′|·|V ′|2 ·

W ). Here, the quadratic dependence on|V ′| comes from the need of applying Algorithm 1 (cf. Lines
(5)–(8)) on a reweighted version ofΓ ′, where all edge-weights are multiplied by a natural number
of size at most|V ′|. Theorem 10 then gives the complexity of Algorithm 2 for the value problem on
mean-payoff games.

6 i.e.∀v ∈ V∼µ∃u ∈ V∼µ((v, u) ∈ E ↾ V∼µ)

16



Algorithm 2: Solving the value problem for mean-payoff games.
Input : Mean-payoff gameΓ = (V, E, w : V → {−W, . . . , W }, 〈V0, V1〉); lower and upper boundsp1

m1

≤
p2

m2

on the values of the nodes inΓ , where−W ≤ p1

m1

≤ p2

m2

≤ W , p1, p2, m1, m2 ∈ N, and
1 ≤ m1 ≤ |V |, 1 ≤ m2 ≤ |V |.

Output : For eachu ∈ V , the valuevΓ (u).
begin

1 if V 6= ∅ then
2 a1 ← q1

l1
← max{ q

l
| 1 ≤ l ≤ |V | ∧ p1

m1

≤ q
l
≤ 1

2
( p1

m1

+ p2

m2

)}
3 a2 ← q2

l2
← min{ q

l
| 1 ≤ l ≤ |V | ∧ p2

m2

≥ q
l
≥ 1

2
( p1

m1

+ p2

m2

)}
4

/* Use Algorithm 1 to determineV<a1
, V=a1

, V=a2
, V>a2

*/
5 f1 ← Algorithm 1(V, E, l1w − q1, 〈V0, V1〉)
6 f2 ← Algorithm 1(V, E,−l1w + q1, 〈V1, V0〉)
7 f3 ← Algorithm 1(V, E, l2w − q2, 〈V0, V1〉)
8 f4 ← Algorithm 1(V, E,−l2w + q2, 〈V1, V0〉)
9 foreach (u | f1(u) 6= ⊤ ∧ f2(u) 6= ⊤) do vΓ (u)← a1

10 foreach (u | f3(u) 6= ⊤ ∧ f4(u) 6= ⊤) do vΓ (u)← a2

11 V<a1
← {u | f1(u) = ⊤}; V>a2

← {u | f4(u) = ⊤}
12

/*Recursive Calls*/
13 Algorithm 2((V<a1

, E ↾ V<a1
, w ↾ V<a1

, 〈V0 ∩ V<a1
, V1 ∩ V<a1

〉), p1

m1

, a1)

14 Algorithm 2((V>a2
, E ↾ V>a2

, w ↾ V>a2
, 〈V0 ∩ V>a2

, V1 ∩ V>a2
〉), a2,

p2

m2

)

end

Lemma 11. Let Γ = (V,E,w, 〈V0, V1〉) be aMPG, wherew : V → {−W, . . . ,W}. The height of
the tree of recursive calls corresponding to Algorithm 2 applied to (Γ,−W,W ) isO(log(|V | · W )).

Proof. Let c1, . . . , ck be a branch of recursive calls in the tree of recursive calls corresponding to Al-
gorithm 2, and letd1, . . . , dk be the distances between the input parametersp1

m1
, p2

m2
in each recursive

call c1, . . . , ck. Then,d1 = 2W and for alli = 1, . . . , k, di+1 ≤ di
2 . Since two rational numbers with

denominator at most|V | have distance at least1|V |2 , we obtain thatk ≤ log 2W
|V |−2 = log(2W |V |2).

⊓⊔

Lemma 12. The cost of executing lines(1)–(11) in a recursive call of Algorithm 2 on the subgame
Γ ′ = (V ′, E′, w, 〈V ′

0 , V ′
1〉) of Γ = (V,E,w, 〈V0 , V1〉), wherew : V → {−W, . . . ,W}, is O(|E′| ·

|V ′|2 · W ).

Proof. By assumption,1 ≤ mi∈{1,2} ≤ |V ′|, and−|V ′| · W ≤ pi∈{1,2} ≤ |V ′| · W . Hence, the
codomain of the functionsm1w − p1,−m1w + p1,m2w − p2,−m2w + p2 is the set of integers
{−2·|V ′|·W, . . . , 2·|V ′|·W}. By Theorem 6, Lines(5)–(8) can be executed in timeO(|E′|·|V ′|2·W ).
Lines(9)–(11) costO(|V ′|), while Lines(2)–(3) can be trivially executed in timeO(|V ′|2 ·W ) (e.g.,
by simply enumerating the elements of the setS = { p

m | 1 ≤ m ≤ |V ′| ∧ −W ≤ p
m ≤ W}, where

|S| = O(|V ′|2 · W )). ⊓⊔

Theorem 10. Let Γ = (V,E,w, 〈V0, V1〉) be aMPG wherew : V → {−W, . . . ,W}. Algorithm 2
applied to(Γ,−W,W ) solves the value problem and the optimal strategy synthesisproblem onΓ in
time:O((log(|V |) + log(W )) · |E| · |V |2 · W ).

Proof. Let Γ 〈ℓ,1〉, . . . , Γ 〈ℓ,kℓ〉 be thekℓ subgames ofΓ considered at levelℓ of the tree of recursive
calls corresponding to Algorithm 2. Then, the corresponding set of verticesV 〈ℓ,1〉, . . . , V 〈ℓ,kℓ〉 are
such thatV 〈ℓ,i〉 ∩ V 〈ℓ,j〉 = ∅ for j 6= i, 1 ≤ i, j,≤ kℓ, andV 〈ℓ,1〉 ∪ · · · ∪ V 〈ℓ,kℓ〉 ⊆ V . Hence, on the

17



ground of Lemmas 11, 12 we obtain that the global complexity of Algorithm 2 is:

O(

log(2|V |2W )
∑

ℓ=1

|E| · |V 〈ℓ,1〉|2 · W + · · · + |E| · |V 〈ℓ,kℓ〉|2 · W ) =

= O((log(|V |) + log(W )) · |E| · |V |2 · W )

since|E|·|V 〈ℓ,1〉|2 ·W +· · ·+|E|·|V 〈ℓ,kℓ〉|2 ·W ≤ |E|·W ·(|V 〈ℓ,1〉|+· · ·+|V 〈ℓ,kℓ〉|)2 ≤ |E|·|W |·|V |2.
⊓⊔

Thus, ourMPG value problem outperforms the corresponding deterministic procedure in [19], when
the maximum weight in theMPG graph is small (i.e.W is subexponential w.r.t.|V |). To design aMPG
value algorithm that outperforms previous solutions for all values ofW , we can consider arandomized
framework and combine our procedure with the one proposed in[3]. In particular, the solution to the

value problem proposed by [3] has expected complexity|V |2 · |E| ·e2·
q

|V |·ln(|E|/
√

|V |)+O(
√

|V |+ln|E|).
By interleaving ourMPG value algorithm with [3] and adding a stopping criterion which terminates
the computation when either of the two procedures finishes, we get a randomized algorithm for the
MPG value problem with expected complexitymin(O(|V |2 · |E| · W · log(|V | · W )), |V |2 · |E| ·
e2·

q

|V |·ln(|E|/
√

|V |)+O(
√

|V |+ln|E|)), which outperforms all previous solutions.

6 Conclusion

We designed simple and efficient deterministic algorithms for solving energy games and mean-payoff
games. Our algorithmic engine requiresO(|E| · |V | · W ) computational steps to solve theMPG
decision problem, outperforming the correspondingΘ(|E| · |V |2 · W ) pseudopolynomial procedure
in [19]. Note that the algorithm in [19] requiresalwaysΘ(|E| · |V |2 · W ), while our procedure is
O(|E| · |V | · W ) only in the worst case (it needs linear time when, for example, all the weights are
positive). The value problem can be solved in timeO(|E| · |V |2 · W (log|V | + log W )) using our
framework, while [19] requiresΘ(|E| · |V |3 · W ). As [12], our algorithm has also the advantage
to produce as a byproduct (optimal) winning strategies, while [19] needs further computation for
strategy synthesis. Hence, the winning strategy synthesisproblem (resp. the optimal strategy synthesis
problem) is solved in timeO(|E| · |V | · W ) (resp.O(|E| · |V |2 · W (log|V | + log W ))) using our
procedures, outperforming [12, 19]. In combination with the randomized algorithm of Andersson and
Vorobyov [3], ourMPG value algorithm is a randomized procedure with currently the best expected
complexity, namely:

min(O(|V |2 · |E| · W · log(|V | · W )), |V |2 · |E| · e2·
q

|V |·ln(|E|/
√

|V |)+O(
√

|V |+ln|E|))

References

1. A. Ehrenfeucht and J. Mycielski. International journal of game theory.Positional Strategies for Mean-Payoff Games,
8:109–113, 1979.

2. A. V. Karzanov and V. N. Lebedev. Cyclical games with proibitions. Mathematical Programing, 60:277–293, 1993.
3. D. Andersson and S. Vorobyov. Fast algorithms for monotonic discounted linear programs with two variables per

inequality. Technical Report Preprint NI06019-LAA, IsaacNewton Institute for Mathematical Sciences, Cambridge,
UK, 2006.

4. P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infinite runs in weighted timed automata with energy
constraints. InProc. of FORMATS: Formal Modeling and Analysis of Timed Systems, LNCS 5215, pages 33–47.
Springer, 2008.

18



5. A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource interfaces. InProc. of EMSOFT: Embedded
Software, LNCS 2855, pages 117–133. Springer, 2003.

6. J. Chaloupka and L.Brim. Faster algorithm for mean-payoff games. InProc. of the 5-th Docoral Workshop on Mathe-
matical and Engineering Methods in Computer Science (MEMICS ’09), pages 45–53. NOVPRESS, 2009.

7. A. Condon. On algorithms for simple stochastic games. InAdvances in Computational Complexity Theory, volume 13
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 51–73. American Mathematical
Society, 1993.

8. V. Dhingra and S. Gaubert. How to solve large scale deterministic games with mean payoff by policy iteration. InProc.
Performance evaluation methodolgies and tools,article no. 12. ACM, 2006.

9. L. Doyen, R. Gentilini, and J.-F. Raskin. Faster pseudopolynomial algorithms for meanpayoff games. Technical Report
2009.120, Universite Libre de Bruxelles (ULB), Bruxelles,Belgium, 2009.

10. E. A. Emerson, C. Jutla, and A. P. Sistal. On model checking for fragments of theµ-calculus. InProc. of CAV:
Computer Aided Verification, LNCS 697, pages 385–396. Springer, 1993.

11. Y. Gurevich and L. Harrington. Trees, automata, and games. InProc. of STOC: Symposium on Theory of Computing,
pages 60–65. ACM, 1982.

12. H. Bjorklund and S. Vorobyov. A combinatorial strongly subexponential strategy improvement algorithm for mean
payoff games.Discrete Applied Mathematics, 155:210–229, 2007.

13. M. Jurdzinski. Deciding the winner in parity games is in UP∩ coUP. Inf. Process. Lett., 68(3):119–124, 1998.
14. M. Jurdzinski. Small progress measures for solving parity games. InProceedings of STACS: Theoretical Aspects of

Computer Science, LNCS 1770, pages 290–301. Springer, 2000.
15. D. Kozen. Results on the propositional mu-calculus.Theor. Comput. Sci., 27:333–354, 1983.
16. N. Pisaruk. Mathematics of operations research.Mean Cost Cyclical Games, 4(24):817–828, 1999.
17. C. M. Papadimitriou.Computational complexity. Addison-Wesley, Reading, Massachusetts, 1994.
18. S. Schewe. From parity and payoff games to linear programming. InProceedings of MFCS: Mathematical Foundations

of Computer Science, LNCS 5734, pages 675–686. Springer, 2009.
19. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.Theoretical Computer Science, 158:343–

359, 1996.
20. V. A. Gurvich, A. V. Karzanov, and L. G. Kachiyan. Ussr computational mathematics and mathematical physics.Cyclic

Games and an Algorithm to Find Minmax Cycle Means in DirectedGraphs, 5(28):85–91, 1988.
21. I. Walukiewicz. Pushdown processes: Games and model checking. InProceedings of CAV: Computer Aided Verifica-

tion, LNCS 1102, pages 62–74. Springer, 1996.
22. Y. Lifshits and D. Pavlov. Potential theory for mean payoff games.Journal of Mathematical Sciences, 145(3):4967–

4974, 2007.
23. Z. Manna and A.Pnueli.The Temporal Logic of Reactive and Concurrent Programs. Springer-Verlag, 1992.

19


