Verification of temporal logics on infinite-state systems

Lecture 5.2
Timed temporal logics

Stéphane Demri and Valentin Goranko

ESSLLI 2007, Trinity College, August 2007
Overview

TPTL
- Definition
- Decidable problems

MTL
- Definition
- Finitary problems are decidable
- Infinitary problems are undecidable
- Related issues

Few words about TCTL
Timed propositional temporal logic TPTL
Definition [Alur & Henzinger, JACM 94]

- **TPTL formulae:**
 \[
 \pi ::= x + k \mid k \\
 \phi ::= a \mid \pi_1 \leq \pi_2 \mid \pi_1 \equiv_d \pi_2 \mid \neg \phi \mid \phi \land \phi \mid X\phi \mid \phi U \phi \mid x \cdot \phi
 \]

- **TPTL model:** infinite timed word over \(\mathbb{N} \) without initialization condition.

- **Freeze formula** \(x \cdot \phi \): "Store in \(x \) the current time value and check whether \(\phi \) holds true".

- **Environment** \(env : \text{VAR} \rightarrow \mathbb{N} \) (assuming that the time domain is \(\mathbb{N} \)).
Satisfaction relation

- $\rho, i \models_{\text{env}} a$ iff $a = \sigma_i$.

- $\rho, i \models_{\text{env}} \pi_1 \leq \pi_2$ iff $\text{env}(\pi_1) \leq \text{env}(\pi_2)$ with $\text{env}(k) = k$ and
 $\text{env}(x + k) = \text{env}(x) + k$.

- $\rho, i \models_{\text{env}} \pi_1 \equiv_d \pi_2$ iff $\text{env}(\pi_1) \equiv_d \text{env}(\pi_2)$

- Clauses for \neg, \land, X, U are standard.

- $\rho, i \models_{\text{env}} x \cdot \phi$ iff $\rho, i \models_{\text{env}[x \leftarrow \tau_i]} \phi$.
Examples

- $G\ x \cdot (a \Rightarrow a U y \cdot (b \land y \leq x + 10))$

 $b \ a \ a \ a \ a \ b$

 0 6 6 7 8 15

- Synchronous real-time systems:

 $G x \cdot X y \cdot y = x + 1$
Satisfiability problem

- Satisfiability is ExpSpace-complete.

 [Alur & Henzinger, JACM 94]

- Ingredients of the automata-based decision procedure:
 - If ϕ has a model and Δ is the product of all constants in ϕ, ϕ has a model in which two successive states do not increase more than Δ.

 - Region-like abstractions for Δ-bounded models.

- ExpSpace-hardness is a consequence of the fact that
 - imposing all over the model $Gx \cdot Xy \cdot y = x + 1$ and,
 - using $x = y + 2^n$
 allow to jump to the 2^nth state, providing the possibility to have constraints on exponential-size tapes.
A model-checking problem

- Timed state graph:

- Timed state sequence

- Model-checking problem:
 - input: a timed graph state G and a TPTL formula ϕ
 - question: Do all the timed state sequences of G satisfy ϕ?

- Model-checking problem is ExpSpace-complete.

 [Alur & Henzinger, JACM 94]

 (upper bound obtained by a product construction)
Undecidable variants [Alur & Henzinger JACM 94]

- TPTL satisfiability by relaxing the monotonicity condition for timed sequences is Σ_1^1-complete.

- TPTL satisfiability extended to constraints with multiplication by 2 is Σ_1^1-complete.

- TPTL satisfiability with time interpreted over \mathbb{Q}/\mathbb{R} is Σ_1^1-complete.
Metric temporal logic MTL
Definition [Koymans, RTS 90]

MTL formulae

\[\phi ::= a \mid \phi \land \phi \mid \neg \phi \mid X_I \phi \mid \phi U_I \phi \]

with

- \(a \in \Sigma \),
- \(I \) is an open, closed, half-open interval with endpoints in \(\mathbb{N} \cup \{\infty\} \).

- \(G_I \phi \equiv \neg (\top U_I \neg \phi) \).

- MTL models: infinite timed words.
Satisfiability relation

- \(\rho, i \models a \) iff \(\sigma_i = a \)

- \(\rho, i \models X I \phi \) iff \(i < |\rho|, \tau_{i+1} - \tau_i \in I \) and \(\rho, i + 1 \models \phi \)

- \(\rho, i \models \phi_1 U I \phi_2 \) iff there is \(i \leq j < |\rho| - 1 \) such that \(\rho, j \models \phi_2, \tau_j - \tau_i \in I \) and for every \(i \leq k < j \), we have \(\rho, k \models \phi_1 \).

- \(L_f(\phi) \): set of finite timed words satisfying \(\phi \).
Examples from [Ouaknine & Worrell, LMCS]

- Events $\Sigma = \{\text{req}_i, \text{acq}_i, \text{rel}_i : i = A, B\}$ (request, acquire, release a lock).

- B cannot acquire the lock less than 3 time units after A acquires the lock:

 $$G_{[0,\infty)}(\text{acq}_A \Rightarrow G_{[0,3)} \neg \text{acq}_B)$$

- Whenever A requests the lock, it acquires the lock within 2 time units and releases it exactly one time unit later:

 $$G_{[0,\infty)}(\text{req}_A \rightarrow F_{[0,2)}(\text{acq}_A \land F_1 \text{rel}_A))$$
In sequel, TPTL and MTL are over timed words with time domain \mathbb{R}.

$t(X_I \phi) = x \cdot X(t(\phi) \land y \cdot (y - x) \in I)$.

$t(\phi_1 U_I \phi_2) = x \cdot t(\phi_1)U(t(\phi_2) \land y \cdot (y - x) \in I)$.

TPTL is undecidable with the time domain \mathbb{R}.

What about MTL?
Finitary satisfiability for MTL is decidable

- Finitary satisfiability for MTL (with the pointwise semantics) is decidable [Ouaknine & Worrell, LICS 05].

- Reduction into the nonemptiness problem for one-clock timed alternating automata.

- Undecidable variant:
 - Finitary MTL satisfiability with the interval-semantics is undecidable. [Alur & Feder & Henzinger, PODC 91]
From MTL formula ϕ to ATA A_ϕ

- Formula ϕ in negation normal form with dual until R and end (only atomic formulae can be in the scope of negation).

- $\phi_1 R I \phi_2 \equiv \neg (\neg \phi_1 U I \neg \phi_2)$ and $\text{end} \equiv \neg X_{[0,\infty)} \top$.

- $cl(\phi)$: set of subformulæ of ϕ, and for each $X_I \phi$, we introduce the residual copy of $X_I \phi$ denoted by $(X_I \phi)^r$.

- The set of locations of A_ϕ is $cl(\phi)$.
Transition relation

- $\delta(a, b) = \top$ if $a = b$.

- $\delta(\phi_1 \land \phi_2, a) = \delta(\phi_1, a) \land \delta(\phi_2, a)$.

- $\delta(X_I \psi, a) = x \cdot (X_I \psi)^r$.

- $\delta((X_I \psi)^r, a) = x \in I \land x \cdot \delta(\psi, a)$.

- $\delta(\psi_1 U_I \psi_2, a)$ is equal to
 $((x \cdot \delta(\psi_2, a)) \land x \in I) \lor ((x \cdot \delta(\psi_1, a)) \land (\psi_1 U_I \psi_2))$.

- $\delta(\text{end}, a) = \bot$.

- Dual clocks constraints for the other cases.
Satisfiability and model-checking problems

- Accepting locations: end and formulae with outermost connective R_I.
- $L_f(A_{\phi}) = L_f(\phi)$ [Ouaknine & Worrell, LICS 05].
- \Rightarrow Finitary satisfiability for MTL (with the pointwise semantics) is decidable.
- Model-checking problem for MTL

 input: a timed automaton A and a MTL formula ϕ;
 question: $L_f(A) \subseteq L_f(\phi)$?

- \Rightarrow Model-checking problem for MTL is decidable but . . . the proof relies of the construction of a well-structured transition system representing the execution of A_{ϕ} and A in parallel.
Infinitary satisfiability for MTL is undecidable

- Infinitary satisfiability for MTL with the pointwise semantics is undecidable [Ouaknine & Worrell, FOSSACS 06].

- Reduction from the recurrent problem for gainy counter automata (see Lecture 3.2 on Wednesday).

- Given an instance of a gainy counter automaton A, one can compute an MTL formula ϕ such that A has an infinite computation (with some final location repeated infinitely often) iff ϕ is satisfiable in some infinite timed word.
Using MTL as a programming language

- Gainy counter automaton $A = (Q, q_0, k, \delta, F)$.
 ($\delta \subseteq Q \times L \times Q$ with $L = \{inc, dec, ifzero\} \times \{1, \ldots, k\}$)

- MTL formula ϕ_A over the alphabet

$$Q \cup \{\bullet\} \cup \delta \cup \{[i,]i : 1 \leq i \leq k\}$$

- Each configuration is encoded within $2k + 2$ states and counter i is encoded within its interval $(2i - 1, 2i)$.

- Models of ϕ_A are strongly monotonic: $\phi_{sm} = GX_{>0} \top$.

- Büchi acceptance condition: $GF \bigvee_{q \in F} q$.

Stéphane Demri and Valentin Goranko
Other formulae

- Locations occur every $2k + 2$-position:
 \[
 \phi_S = q_0 \land G(\bigvee Q \Rightarrow (F_{=2k+2} \bigvee Q \land G_{<2k+2} \neg \bigvee Q))
 \]

- Constraints on the occurrences of $[i,]_i$ and $\bullet (\phi[i, \phi]_i, \phi\bullet)$
 e.g.,
 \[
 G(\bigvee Q \Rightarrow (G(2i,2i-1) \bullet \land G(2i,2i+1) \perp))
 \]

- Formula ϕ_δ states which positions are marked by letters in δ whereas $\phi_\delta Q$ verifies the correct succession of locations wrt δ.

- Copying formula: $\phi_{copy} = G_{(0,1)}(\bullet \Rightarrow F_{=2k+2}\bullet)$.
Constraints on counter valuations

\[
G(\bigvee Q \Rightarrow \bigwedge_{\text{inst} \in L} (F=2k+1 \bigvee \{(−, l, −) \in \delta \Rightarrow \phi_l\}))
\]

\[
\phi(\text{ifzero}, i) = \bigwedge_{1 \leq j \leq k} F=2j−1 \\phi_{\text{copy}} \land G(2i−1, 2i) \perp
\]

\[
\phi(\text{inc}, i) = \bigwedge_{1 \leq j \leq k} F=2j−1 \\phi_{\text{copy}} \land F[2i−1, 2i)(X \setminus i) \land F=2k+2X \bullet
\]

\[
\phi(\text{dec}, i) = \bigwedge_{1 \leq j \leq k, j \neq i} F=2j−1 \\phi_{\text{copy}} \land F=2i−1X(\bullet \land \phi_{\text{copy}}).
\]

\[\phi_A\] is the conjunction of all the above formulae and \(A\) has a recurrent computation iff \(\phi\) has an infinite model.

[Ouaknine & Worrel, FOSSACS 06].
Related issues

- Safety MTL
 - every occurrence of U_i with positive polarity has an interval I of bounded length.
 - The model-checking problem for safety MTL over infinite words is decidable [Ouaknine & Worrell, LICS 05].

- Finitary satisfiability and model-checking for MTL have non-primitive recursive complexity.
 [Ouaknine & Worrell, LICS 05] (use of [Schnoebelen, IPL 02])

- Finitary satisfiability and model-checking for MTL restricted to nonsingular intervals (MITL) with interval-based semantics are ExpSpace-complete [Alur & Feder & Henzinger, JACM 96].

- TPTL is strictly more expressive than MTL.
 [Bouyer & Chevalier & Markey, FSTTCS 05]
Timed CTL
Timed CTL [Alur & Courcoubetis & Dill, IC 93]

- TCTL = CTL + time constraints.

- Until operators are replaced by

 \[E \cdot U_{x \sim k} \cdot A \cdot U_{x \sim k} \cdot \]

 with \(\sim \in \{=, <, \geq, \leq, >\} \) and \(k \in \mathbb{N} \)

- Example: AG(problem ⇒ AF_{\leq 3} \text{ alarm})

- TCTL\textsubscript{h} is for TCTL what is TPTL for MTL.

- Model-checking problems for TCTL and TCTL\textsubscript{h} over timed automata are PSPACE-complete.
Incomplete bibliography

R. Alur, R. Courcoubetis, and D. Dill.
Model-checking in dense real-time.

The benefits of relaxing punctuality.

R. Alur and Th. Henzinger.
A really temporal logic.

J. Ouaknine and J. Worrell.
On Metric temporal logic and faulty Turing machines.