What is in the course?

Analysis of Counter Systems
From Reachability to Temporal Logics

• Part I
 • Lecture 1: Introduction to counter systems
 • Lecture 2: Classes of semilinear reachability sets
 • Lecture 3: Vector addition systems with states

• Part II
 • Lecture 4: Linear-time temporal logics
 • Lecture 5: Model-checking counter systems
 • Lecture 6: Data logics and counter systems

but also Presburger arithmetic, undecidability, computational complexity, etc.
What can you expect to learn?

- Presentation of numerous **classes of counter systems**.

- **Proof techniques** to decide reachability problems for infinite-state systems.

- **Temporal reasoning** on transition systems.
Background

1 Necessary background

- Basics of first-order logic and temporal logics.
- Basics of finite-state automata and formal languages.
- Basics of complexity theory, decidability.

2 Optional background

- Temporal logic LTL and automata-based approach.
- Petri nets.
- Familiarity with complexity classes NP, PSPACE, EXPSPACE etc.
Course material

- Main material can be found in ESSLLI 2010 lecture notes:

 www.lsv.ens-cachan.fr/~demri/esslli10-course.html

- Slides shall be available on the dedicated web page:

 www.lsv.ens-cachan.fr/~demri/UBAUNC10-course.php
Formal Verification
Verification at the heart of computer science

- Digital systems are everywhere. Desktops, embedded systems, cellular phones, etc.
Verification at the heart of computer science

• Digital systems are everywhere.
 Desktops, embedded systems, cellular phones, etc.

• Needs for verifying functional/security properties:
 • Hardware components
 • Software (programs, communication protocols, web applications, . . .)
Verification at the heart of computer science

- Digital systems are everywhere. Desktops, embedded systems, cellular phones, etc.

- Needs for verifying functional/security properties:
 - Hardware components
 - Software (programs, communication protocols, web applications, ...)

Formal verification is a process in which mathematical techniques are used to guarantee the correctness of a design with respect to some specified behavior.

[Halpern et al., BSL 01]
From systems to models

• Systems are modelled as abstract operational models (counter systems, timed automata, etc.).
From systems to models

- Systems are modelled as abstract operational models (counter systems, timed automata, etc.).
Verification as a logical problem

- Properties are represented by logical formula.
 “The system S never reaches a bad state” $\rightarrow \Box G \neg \text{bad}$.
Verification as a logical problem

- Properties are represented by logical formula. “The system S never reaches a bad state” $\rightarrow \forall G \neg \text{bad}$.

- Logical problems involve abstract models and formulae.
Verification as a logical problem

- Properties are represented by logical formula. “The system S never reaches a bad state” $\rightarrow \forall G \neg \text{bad}$.

- Logical problems involve abstract models and formulae.

- Development of procedures to solve these problems. automata, analytic proof systems, ad-hoc methods . . .
Verification as a logical problem

- Properties are represented by logical formula. “The system S never reaches a bad state” → $\forall G \neg \text{bad}$.

- Logical problems involve abstract models and formulae.

- Development of procedures to solve these problems. automata, analytic proof systems, ad-hoc methods . . .

- Ultimate goal: automatic verification.
Verification as a logical problem

- Properties are represented by logical formula. “The system S never reaches a bad state” $\rightarrow \forall G \neg \text{bad}$.

- Logical problems involve abstract models and formulae.

- Development of procedures to solve these problems. automata, analytic proof systems, ad-hoc methods . . .

- Ultimate goal: automatic verification.

- There are theoretical limits for this entreprise.
 - The halting problem for Turing machines is undecidable. [Turing, 37]
Verification as a logical problem

• Properties are represented by logical formula. “The system S never reaches a bad state” $\rightarrow A \Diamond \neg \text{bad}$.

• Logical problems involve abstract models and formulae.

• Development of procedures to solve these problems. automata, analytic proof systems, ad-hoc methods . . .

• Ultimate goal: automatic verification.

• There are theoretical limits for this enterprise.
 • The halting problem for Turing machines is undecidable. [Turing, 37]
 • The set of valid first-order formulae is undecidable. [Church, JSL 36]
Methodology

- System, property \mapsto model, logical formula.
Methodology

• System, property \rightarrow model, logical formula.

• Logical problems:
 • Decision problems (model-checking, validity, . . .)
 • Search problems (controller synthesis, query checking, . . .)
Methodology

- System, property \mapsto model, logical formula.

- Logical problems:
 - Decision problems (model-checking, validity, ...)
 - Search problems (controller synthesis, query checking, ...)

- Analysis of the computational resources to solve the problems
 - Decision procedures vs. undecidability.
 - Complexity in time or memory space.
 - Worst-case complexity, parameterized complexity, etc.
Methodology

- System, property \mapsto model, logical formula.

- Logical problems:
 - Decision problems (model-checking, validity, . . .)
 - Search problems (controller synthesis, query checking, . . .)

- Analysis of the computational resources to solve the problems
 - Decision procedures vs. undecidability.
 - Complexity in time or memory space.
 - Worst-case complexity, parameterized complexity, etc.

- Classification
 - Generalizing the models or logics (e.g., Extended TL).
 - Fragments with better computational properties (e.g., FO2).
Formal verification and temporal logics

- Aspects of temporality in computer science
 - Specification and verification of concurrent/reactive systems.
 - Real-time processes and systems.
 - Temporal databases.

- Logics as formal specification languages
 - To define mathematically the correctness of systems.
 - To express properties without ambiguities.
 - To make formal proofs and develop generic methods.
Model-checking and temporal logic

- Temporal logic for specifying behaviors of reactive systems [Pnueli, FOCS 77].
Model-checking and temporal logic

- Temporal logic for specifying behaviors of reactive systems [Pnueli, FOCS 77].

- Model-checking approach:
 - Computer system is modelled as a graph/model M.
 - Specification is a temporal logic formula φ.
 - Check whether M satisfies φ ($M \models \varphi$).

(Turing award recipients’07: Clarke & Emerson & Sifakis)
Model-checking and temporal logic

- Temporal logic for specifying behaviors of reactive systems [Pnueli, FOCS 77].

- Model-checking approach:
 - Computer system is modelled as a graph/model \mathcal{M}.
 - Specification is a temporal logic formula φ.
 - Check whether \mathcal{M} satisfies φ ($\mathcal{M} \models \varphi$).

 (Turing award recipients’07: Clarke & Emerson & Sifakis)

- Automata-based approach
 (Gödel prize 2000) [Vardi & Wolper, IC 94]
Model-checking and temporal logic

• Temporal logic for specifying behaviors of reactive systems [Pnueli, FOCS 77].

• Model-checking approach:
 • Computer system is modelled as a graph/model M.
 • Specification is a temporal logic formula φ.
 • Check whether M satisfies φ ($M \models \varphi$).

 (Turing award recipients’07: Clarke & Emerson & Sifakis)

• Automata-based approach
 (Gödel prize 2000) [Vardi & Wolper, IC 94]

• Early work on logic and automata. [Büchi, 62]
In this Course: Focus on Counter Systems
Ubiquity of counter systems

- Counter system: finite-state automaton with counters interpreted by non-negative integers.
- Techniques for model-checking infinite-state systems are required for formal verification.
Ubiquity of counter systems

- Counter system: finite-state automaton with counters interpreted by non-negative integers.

- Techniques for model-checking infinite-state systems are required for formal verification.

- Many applications:
 - Broadcast protocols, Petri nets, . . .
 - Programs with pointer variables. [Bouajjani et al., CAV’06]
 - Replicated finite-state programs. [Kaiser & Kroening & Wahl, CAV’10]
 - Relationships with data logics. [Bojańczyk et al., LICS’06]
 - . . .
Ubiquity of counter systems

- Counter system: finite-state automaton with counters interpreted by non-negative integers.

- Techniques for model-checking infinite-state systems are required for formal verification.

- Many applications:
 - Broadcast protocols, Petri nets, . . .
 - Programs with pointer variables. [Bouajjani et al., CAV’06]
 - Replicated finite-state programs. [Kaiser & Kroening & Wahl, CAV’10]
 - Relationships with data logics. [Bojańczyk et al., LICS’06]
 - . . .

- But, counter systems can simulate Turing machines.

- Checking safety or liveness properties for counter systems are undecidable problems.
Taming counter systems

- Design of subclasses with decidable reachability problems
 - Vector addition systems (\(\approx\) Petri nets).
 [Mayr, STOC 81; Kosaraju, STOC’82]
 - Flat relational counter systems. [Comon & Jurski, CAV’98]
 - Reversal-bounded counter automata. [Ibarra, JACM 78]
 - Flat affine counter systems.
 [Boigelot, PhD 98; Finkel & Leroux, FSTTCS’02]
- . . .
Taming counter systems

- Design of subclasses with decidable reachability problems
 - Vector addition systems (≈ Petri nets).
 [Mayr, STOC 81; Kosaraju, STOC’82]
 - Flat relational counter systems. [Comon & Jurski, CAV’98]
 - Reversal-bounded counter automata. [Ibarra, JACM 78]
 - Flat affine counter systems.
 [Boigelot, PhD 98; Finkel & Leroux, FSTTCS’02]
 -
 - Decision procedures
 - Translation into Presburger arithmetic (see 2nd lecture).
 - Direct analysis on runs (see 3rd lecture). [Rackoff, TCS 78]
 - Approximating reachability sets. [Karp & Miller, JCSS 69]
 - Well-structured transition systems.
 [Finkel & Schnoebelen, TCS 01]
 - Approximating reachability sets. [Karp & Miller, JCSS 69]
Taming counter systems

- Design of subclasses with decidable reachability problems
 - Vector addition systems (≈ Petri nets).
 [Mayr, STOC 81; Kosaraju, STOC’82]
 - Flat relational counter systems. [Comon & Jurski, CAV’98]
 - Reversal-bounded counter automata. [Ibarra, JACM 78]
 - Flat affine counter systems.
 [Boigelot, PhD 98; Finkel & Leroux, FSTTCS’02]
 - ...

- Decision procedures
 - Translation into Presburger arithmetic (see 2nd lecture).
 - Direct analysis on runs (see 3rd lecture). [Rackoff, TCS 78]
 - Approximating reachability sets. [Karp & Miller, JCSS 69]
 - Well-structured transition systems.
 [Finkel & Schnoebelen, TCS 01]

- Tools: MONA, FAST, LASH, TREX, TAPAS, SMT solvers etc.
Toy Example: Pay Phone Controller
\(x_1 = x_2 = 0, \text{lift?}\)

\(x_1 = x_2, x_1' = x_2' = 0\)

\(x_1 + +, \text{coin?} \quad \text{if } x_1 + +, \text{coin?} \quad \text{then } \)

\(x_2 < x_1, \text{signal?}, x_2 + +\)

\(x_2 \leq x_1\)

\(x_2' \leq x_1, x_2 + +, \text{coin!}\)

- \(x_1\): number of coins which have been inserted.
- \(x_2\): number of time units spent for communication.
- \(x_1'\) [resp. \(x_2'\)] is the next value of \(x_1\) [resp. \(x_2\)].
- \(x_1 + +\) is a shortcut for \(x_1' = x_1 + 1 \land x_2' = x_2\).
How to read the figure

- q_1 is the initial state and the final state.

- x_1 and x_2 can only take non-negative values.

- The controller interacts with the environment including the phone box. It can receive or send messages.

- Message ’coin?’: the controller receives the information that a coin has been inserted.

- Message ’coin!’: the controller sends the information that a coin has been released.
Underlying infinite transition system

- Configuration: description of the current state of the system.
Underlying infinite transition system

- Configuration: description of the current state of the system.

- A configuration is a triple \((q, n_1, n_2)\) where \(q\) is a control state and \(n_1\) [resp. \(n_2\)] is the value of \(x_1\) [resp. \(x_2\)].

- Because of the presence of messages, queues for messages should be added (omitted here).
Underlying infinite transition system

- Configuration: description of the current state of the system.

- A configuration is a triple \((q, n_1, n_2)\) where \(q\) is a control state and \(n_1\) [resp. \(n_2\)] is the value of \(x_1\) [resp. \(x_2\)].

- Because of the presence of messages, queues for messages should be added (omitted here).

- An execution is a (possibly infinite) sequence of configurations constrained by the system.

- Unbounded insertion of coins:
 \[
 (q_1, 0, 0), (q_2, 0, 0), (q_2, 1, 0), (q_2, 2, 0), (q_2, 3, 0), \ldots
 \]

- This system is a finite and concise representation of an infinite labeled transition system.
Which properties hold true?

- Total communication time is never greater than the number of inserted coins:
 \[A \ G \neg(x_2 > x_1). \]

- For all infinite executions, the number of coins is infinitely often equal to zero:
 \[A \ G \ F (x_1 = 0). \]

- There is an execution of the controller such that the total communication time is always equal to zero:
 \[E \ G (x_2 = 0). \]

- Whenever the communication is over, eventually the system can reach the initial configuration:
 \[A \ G (q_5 \Rightarrow F q_1). \]

- Whenever the control state \(q_1 \) is reached, \(x_1 = x_2 = 0 \) and conversely:
 \[A \ G (q_1 \Leftrightarrow (x_1 = 0 \land x_2 = 0)). \]
A Fundamental Model: Minsky Machines
Deterministic Minsky machines

- A counter stores a single natural number.

- A Minsky machine can be viewed as a finite-state machine with two counters.

- Operations on counters:
 - Check whether the counter is zero.
 - Increment the counter by one.
 - Decrement the counter by one if nonzero.
2-counter Minsky machines

- Set of n instructions.

- The lth instruction has one of the forms below ($i \in \{1, 2\}$, $l' \in \{1, \ldots, n\}$):

 I: $C_i := C_i + 1; \text{ goto } l'$

 I: if $C_i = 0$ then goto l' else $C_i := C_i - 1; \text{ goto } l''$.

- Configurations are elements of $\{1, \ldots, n\} \times \mathbb{N} \times \mathbb{N}$.

- Initial configuration: $(1, 0, 0)$.
A computation is a sequence of configurations starting from the initial configuration and such that two successive configurations respect the instructions.

The Minsky machine

1: $C_1 := C_1 + 1; \text{ goto } 2$
2: $C_2 := C_2 + 1; \text{ goto } 1$

has unique computation

$(1, 0, 0) \rightarrow (2, 1, 0) \rightarrow (1, 1, 1) \rightarrow (2, 2, 1) \rightarrow (1, 2, 2) \rightarrow (2, 3, 2) \ldots$
Halting problem

- Halting problem:
 - **input:** a 2-counter Minsky machine M;
 - **question:** is there a finite computation that ends with location equal to n?

 (n may also be a special instruction that halts the machine)

- **Theorem:** The halting problem is undecidable.

 [Minsky, 67]
Halting problem

- Halting problem:
 - **input**: a 2-counter Minsky machine M;
 - **question**: is there a finite computation that ends with location equal to n?

 (n may also be a special instruction that halts the machine)

- **Theorem**: The halting problem is undecidable.

 [Minsky, 67]

- Minsky machines are Turing-complete (see next slide).
Turing machines

- Nondeterministic Turing machine $M = (Q, q_0, \Sigma, \delta, q_a)$:
 - Q: set of control states.
 - q_0: initial state; q_a: accepting state.
 - Σ: tape symbols (including a blank symbol or an end symbol).
 - Transition relation $\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q \times \{−1, 0, 1\} \times \Sigma)$.

- We can assume that the Turing machine starts with an “empty” tape.

- The halting problem for Turing machines is undecidable [Turing, 1936].
Simulating a Turing machine (ideas only)

- A Turing machine can be simulated by two stacks (the tape is cut in half).
 - E.g., moving the head left or right is equivalent to popping a bit from one stack and pushing it onto the other.
Simulating a Turing machine (ideas only)

- A Turing machine can be simulated by two stacks (the tape is cut in half).
 - E.g., moving the head left or right is equivalent to popping a bit from one stack and pushing it onto the other.

- A stack over a binary alphabet can be simulated by two counters. One counter contains the binary representation of the bits on the stack.
 - E.g., pushing a one is equivalent to doubling and adding 1, assuming that in the binary representation the least significant bit is on the top.
Simulating a Turing machine (ideas only)

- A Turing machine can be simulated by two stacks (the tape is cut in half).
 - E.g., moving the head left or right is equivalent to popping a bit from one stack and pushing it onto the other.

- A stack over a binary alphabet can be simulated by two counters. One counter contains the binary representation of the bits on the stack.
 - E.g., pushing a one is equivalent to doubling and adding 1, assuming that in the binary representation the least significant bit is on the top.

- Four counters can be simulated by two counters.
 - Counter values \((a, b, c, d)\) encoded by value \(2^a3^b5^c7^d\).
 - E.g., checking the third counter is zero is equivalent to dividing by 5 and see what the remainder is. The second counter is auxiliary.
Non-deterministic Minsky machines

- Nondeterministic choice after incrementation and decrementation.

- Instructions are of the forms below:
 \[i: \quad C_i := C_i + 1; \text{ goto } l' \text{ or goto } l'' \]
 \[i: \quad \text{ if } C_i = 0 \text{ then goto } l' \text{ else } C_i := C_i - 1; \text{ goto } l'' \text{ or goto } l_1'' . \]
Non-deterministic Minsky machines

- Nondeterministic choice after incrementation and decrementation.

- Instructions are of the forms below:
 \[l: \quad C_i := C_i + 1; \text{ goto } l' \text{ or goto } l'' \]
 \[l: \quad \text{if } C_i = 0 \text{ then goto } l' \text{ else } C_i := C_i - 1; \text{ goto } l'' \text{ or goto } l''' \]

- Recurrence problem:
 \textbf{input:} a NDM Minsky machine \(M \);
 \textbf{question:} is there an infinite computation with instruction 1 occurring infinitely often?

- The recurrence problem is \(\Sigma_1 \)-complete, i.e. highly undecidable.

[Alur & Henzinger, JACM 94]
Minsky machines: an assembly language?

- Minsky machines have a strong computational power.
- But, it is unlikely that one may wish to solve decision problems by programming Minsky machines.
Minsky machines: an assembly language?

- Minsky machines have a strong computational power.
- But, it is unlikely that one may wish to solve decision problems by programming Minsky machines.
- Problems on Minsky machines are easily undecidable.
Minsky machines: an assembly language?

- Minsky machines have a strong computational power.
- But, it is unlikely that one may wish to solve decision problems by programming Minsky machines.
- Problems on Minsky machines are easily undecidable.
- Counter systems will allow more flexibility and admit a richer set of instructions.
- ...but, first we need to present Presburger arithmetic.
Presburger Arithmetic
A fundamental decidable theory

- First-order theory of $(\mathbb{N}, +)$ introduced by Mojcesz Presburger (1929).

- Instrumental to constrain counter values in counter systems.

- Formulae are viewed as symbolic representations for (infinite) sets of tuples of natural numbers.

- A first-order theory with many interesting properties:
 - Decidability (by contrast to first-order theory of $(\mathbb{N}, +, \times)$).
 - Sets definable in Presburger arithmetic are precisely semilinear sets (see next slides).

- Formalism also used to express constraints on graphs, on number of events, etc.

 See e.g., [Seidl & Schwentick & Muscholl, chapter 07]
Presburger arithmetic [Presburger, 29]

- “First-order theory of $\langle \mathbb{N}, + \rangle$” (no multiplication).

- Terms: $t ::= 0 \mid 1 \mid x \mid t + t$.

- $2x + 3$ is a shortcut for $x + x + 1 + 1 + 1$.
Presburger arithmetic [Presburger, 29]

• “First-order theory of \((\mathbb{N}, +)\)” (no multiplication).

• Terms: \(t ::= 0 \mid 1 \mid x \mid t + t. \)

• \(2x + 3\) is a shortcut for \(x + x + 1 + 1 + 1.\)

• Presburger formulae \((k \geq 2)\)

\[\varphi ::= t \equiv_k t \mid t < t \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x \, \varphi \mid \forall x \, \varphi \]

• Valuation \(v : \text{VAR} \rightarrow \mathbb{N} + \) extension to all terms with

\[v(0) = 0 \quad v(1) = 1 \quad v(t + t') = v(t) + v(t') \]

• Oddness: \(\exists y \ x = y + y + 1.\)

(with \(“t = t’” \overset{\text{def}}{=} \neg(t < t' \lor t' < t)”) \)
Semantics

- \(\mathbf{v} \models t \equiv^k t' \ \overset{\text{def}}{\iff} \) there is \(m \in \mathbb{Z} \) such that \(km + \mathbf{v}(t) = \mathbf{v}(t') \),

- \(\mathbf{v} \models t < t' \ \overset{\text{def}}{\iff} \) \(\mathbf{v}(t) < \mathbf{v}(t') \),

- \(\mathbf{v} \models \neg \varphi \ \overset{\text{def}}{\iff} \) \(\mathbf{v} \not\models \varphi \),

- \(\mathbf{v} \models \varphi \land \varphi' \ \overset{\text{def}}{\iff} \) \(\mathbf{v} \models \varphi \) and \(\mathbf{v} \models \varphi' \),

- \(\mathbf{v} \models \exists x \ \varphi \ \overset{\text{def}}{\iff} \) there is \(n \in \mathbb{N} \) such that \(\mathbf{v}[x \mapsto n] \models \varphi \) where \(\mathbf{v}[x \mapsto n] \) is equal to \(\mathbf{v} \) except that \(x \) is mapped to \(n \),

- \(\mathbf{v} \models \forall x \ \varphi \ \overset{\text{def}}{\iff} \) for every \(n \in \mathbb{N} \), we have \(\mathbf{v}[x \mapsto n] \models \varphi \).
Semantics

- \(v \models t \equiv_k t' \stackrel{\text{def}}{\iff} \text{there is } m \in \mathbb{Z} \text{ such that } km + v(t) = v(t'), \)
- \(v \models t < t' \stackrel{\text{def}}{\iff} v(t) < v(t'), \)
- \(v \models \neg \varphi \stackrel{\text{def}}{\iff} v \not\models \varphi, \)
- \(v \models \varphi \land \varphi' \stackrel{\text{def}}{\iff} v \models \varphi \text{ and } v \models \varphi', \)
- \(v \models \exists x \varphi \stackrel{\text{def}}{\iff} \text{there is } n \in \mathbb{N} \text{ such that } v[x \rightarrow n] \models \varphi \text{ where } v[x \rightarrow n] \text{ is equal to } v \text{ except that } x \text{ is mapped to } n, \)
- \(v \models \forall x \varphi \stackrel{\text{def}}{\iff} \text{for every } n \in \mathbb{N}, \text{ we have } v[x \rightarrow n] \models \varphi. \)

\(t \equiv_k t' \) is equivalent to \(\exists x \ (t = kx + t') \lor (t' = kx + t) \).
Defining sets of tuples

- Formula $\varphi(x_1, \ldots, x_n)$ with n free variables:

 \[
 \text{REL}(\varphi(x_1, \ldots, x_n)) \overset{\text{def}}{=} \{(v(x_1), \ldots, v(x_n)) \in \mathbb{N}^n : v \models \varphi\}.
 \]

- φ is satisfiable \iff there is v such that $v \models \varphi$.

- φ is valid \iff for all v, we have $v \models \varphi$.

- If φ has no free variable, then satisfiability is equivalent to validity.

- $\varphi(x_1, \ldots, x_n)$ is valid iff $\forall x_1, \ldots, x_n \varphi(x_1, \ldots, x_n)$ is satisfiable/valid.
Decidability and quantifier elimination

- **Theorem:** The satisfiability problem for Presburger arithmetic is decidable. [Presburger, 29]

- Every Presburger formula is **effectively equivalent** to a Presburger formula without first-order quantification. [Presburger, 29]

 (periodicity atomic formulae are needed here)

- Satisfiability problem for quantifier-free formulae is NP-complete. [Papadimitriou, JACM 81]

 See also [Borosh & Treybig, AMS 76]

- About other first-order theories
 - Skolem arithmetic \((\mathbb{N}, 0, 1, \times)\) is decidable.
 - \((\mathbb{Z}, 0, 1, <, +)\) is decidable.
 - \((\mathbb{N}, 0, 1, \times, +)\) is undecidable.
Semilinear sets

- A linear set X is defined by a basis $\vec{b} \in \mathbb{N}^k$ and a finite set of periods $\{\vec{p}_1, \ldots, \vec{p}_m\}$:

$$X = \{ \vec{b} + \sum_{i=1}^{i=m} n_i \vec{p}_i : n_1, \ldots, n_m \in \mathbb{N} \}$$

- A semilinear set is a finite union of linear sets.

- A linear set:

$$\left\{ \begin{pmatrix} 3 \\ 4 \end{pmatrix} + i \times \begin{pmatrix} 2 \\ 5 \end{pmatrix} + j \times \begin{pmatrix} 4 \\ 7 \end{pmatrix} : i, j \in \mathbb{N} \right\}$$

- Subsets of \mathbb{N} that are not semilinear:

 - $\{2^i : i \in \mathbb{N}\}$.
 - $\{i^2 : i \in \mathbb{N}\}$.

$X = \{2^i : i \in \mathbb{N}\}$ is not semilinear

- Suppose that X is semilinear.

- Since X is infinite, there are $b \in \mathbb{N}$ and $p_1 > \cdots > p_m > 0$ ($m \geq 1$) such that

 \[Y = \{b + \sum_{i=1}^{i=m} n_ip_i : n_1, \ldots, n_m \in \mathbb{N}\} \subseteq X \]

- Let $2^\alpha \in Y$ such that $p_1 < 2^\alpha$.

- By definition of Y, we have $2^\alpha + p_1 \in Y$.

- However, $2^\alpha < 2^\alpha + p_1 < 2^{\alpha+1}$, which leads to a contradiction.
The fundamental characterization
[Ginsburg & Spanier, PJM 66]

- For every Presburger formula φ with $n \geq 1$ free variables, $\text{REL}(\varphi)$ is a semilinear subset of \mathbb{N}^n.

- For every semilinear set $X \subseteq \mathbb{N}^n$, there is φ such that $X = \text{REL}(\varphi)$.
The fundamental characterization
[Ginsburg & Spanier, PJM 66]

- For every Presburger formula φ with $n \geq 1$ free variables, $\text{REL}(\varphi)$ is a semilinear subset of \mathbb{N}^n.

- For every semilinear set $X \subseteq \mathbb{N}^n$, there is φ such that $X = \text{REL}(\varphi)$.

- The class of semilinear sets are effectively closed under union, intersection, complementation and projection.

- For instance, $(X_1 = \text{REL}(\varphi_1)$ and $X_2 = \text{REL}(\varphi_2))$ imply $X_1 \cap X_2 = \text{REL}(\varphi_1 \land \varphi_2)$
The fundamental characterization
[Ginsburg & Spanier, PJM 66]

- For every Presburger formula \(\varphi \) with \(n \geq 1 \) free variables, \(\text{REL}(\varphi) \) is a semilinear subset of \(\mathbb{N}^n \).
- For every semilinear set \(X \subseteq \mathbb{N}^n \), there is \(\varphi \) such that \(X = \text{REL}(\varphi) \).
- The class of semilinear sets are effectively closed under union, intersection, complementation and projection.
- For instance, \((X_1 = \text{REL}(\varphi_1) \text{ and } X_2 = \text{REL}(\varphi_2))\) imply \(X_1 \cap X_2 = \text{REL}(\varphi_1 \land \varphi_2) \)
- Presburger formula for

\[
\left\{ \begin{pmatrix} 3 \\ 4 \end{pmatrix} + i \times \begin{pmatrix} 2 \\ 5 \end{pmatrix} + j \times \begin{pmatrix} 4 \\ 7 \end{pmatrix} : i, j \in \mathbb{N} \right\}
\]

\[
\exists \, I, J \ (x_1 = 3 + 2I + 4J \land x_2 = 4 + 5I + 7J)
\]
Parikh image

- $\Sigma = \{a_1, \ldots, a_k\}$ with ordering $a_1 < \cdots < a_k$.

- Parikh image of $u \in \Sigma^*$:

 $$
 \begin{pmatrix}
 n_1 \\
 n_2 \\
 \vdots \\
 n_k
 \end{pmatrix} \in \mathbb{N}^k
 $$

 where each n_j is the number of occurrences of a_j in u.

- Parikh image of $a b a a b$ is $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

- Definition for Parikh image extends to languages.

- The Parikh image of any context-free language is semilinear. [Parikh, JACM 66]

- Effective computation from pushdown automata.
Counter Systems
Counter systems

- Counter system = finite-state automaton + counters governed by Presburger formulae.

\[x'_1 = x_1 + 1 \quad x'_2 = x_2 + 1 \quad x'_3 = x_3 + 1 \]

- Labels on transitions are Presburger formulae with
 - \(\vec{x} = x_1, x_2, x_3 \) (current values).
 - \(x' = x'_1, x'_2, x'_3 \) (next values).

\[x'_1 = x'_2 = x'_3 = 0 \]
A simple counter system

1: \(C_1 := C_1 + 1 \); goto 2
2: \(C_2 := C_2 + 1 \); goto 1

\[
x'_1 = x_1 + 1 \land x'_2 = x_2
\]

\[
x'_2 = x_2 + 1 \land x'_1 = x_1
\]
A formal definition

- Counter system $S = (Q, n, \delta)$ of dimension n:
 - Q is a nonempty finite set of control states.
 - $n \geq 1$ is the dimension.
 - δ is the transition relation: finite set of transitions of the form
 \[t = (q, \varphi, q') \]
 where $q, q' \in Q$ and φ is a Presburger formula with free variables $x_1, \ldots, x_n, x'_1, \ldots, x'_n$.

- Prime variables are intended to be interpreted as the next values of the unprimed variables.
Interpretation: transition system

- Configuration \((q, \vec{y}) \in Q \times \mathbb{N}^n\).

- Let us define the valuation \(v_{\vec{y}, \vec{y}'} \approx v[\vec{x} \leftarrow \vec{y}, \vec{x}' \leftarrow \vec{y}']\). For \(i \in [1, n]\),
 1. \(v_{\vec{y}, \vec{y}'}(x_i) \overset{\text{def}}{=} \vec{y}(i)\),
 2. \(v_{\vec{y}, \vec{y}'}(x'_i) \overset{\text{def}}{=} \vec{y}'(i)\).

- Given \(t = q \xrightarrow{\varphi} q', (q, \vec{y}) \xrightarrow{t} (q', \vec{y}') \overset{\text{def}}{=} v_{\vec{y}, \vec{y}'} \models \varphi\).

- Transition system \(T(S) = (S, \rightarrow)\)
 - \(S = Q \times \mathbb{N}^n\),
 - \((q, \vec{y}) \rightarrow (q', \vec{y}') \overset{\text{def}}{=} \exists t \in \delta \text{ s.t. } (q, \vec{y}) \xrightarrow{t} (q', \vec{y}')\).
 - Reflexive and transitive closure \(\rightarrow^*\).

- Runs as nonempty (possibly infinite) sequences
 \[
 \rho = (q_0, \vec{y}_0) \rightarrow (q_1, \vec{y}_1) \cdots (q_k, \vec{y}_k) \cdots
 \]
Reachability problems

- **Reachability Problem:**

 Input: counter system S, (q, \vec{x}) and (q', \vec{x}').

 Question: is there a finite run with initial configuration (q, \vec{x}) and final configuration (q', \vec{x}')? (in symbols $(q, \vec{x}) \rightarrow^* (q', \vec{x}')$)
Reachability problems

- **Reachability Problem**:

 Input: counter system S, (q, \vec{x}) and (q', \vec{x}').

 Question: is there a finite run with initial configuration (q, \vec{x}) and final configuration (q', \vec{x}')?

 (in symbols $(q, \vec{x}) \xrightarrow{*} (q', \vec{x}')$?)

- **Control State Reachability Problem**:

 Input: counter system S, (q, \vec{x}) and q'.

 Question: is there a finite run with initial configuration (q, \vec{x}) and whose final configuration has control state q'?

 $(\exists \vec{x}' (q, \vec{x}) \xrightarrow{*} (q', \vec{x}')$?)
Reachability problems

- **Reachability Problem:**

 Input: counter system S, (q, \vec{x}) and (q', \vec{x}').

 Question: is there a finite run with initial configuration (q, \vec{x}) and final configuration (q', \vec{x}')?

 (in symbols $(q, \vec{x}) \xrightarrow{*} (q', \vec{x}')$?)

- **Control State Reachability Problem:**

 Input: counter system S, (q, \vec{x}) and q'.

 Question: is there a finite run with initial configuration (q, \vec{x}) and whose final configuration has control state q'?

 $(\exists \vec{x}' (q, \vec{x}) \xrightarrow{*} (q', \vec{x}')$?)

- **Control State Repeated Reachability Problem:**

 Input: counter system S, (q, \vec{x}) and q_f.

 Question: is there an infinite run with initial configuration (q, \vec{x}) such that the control state q_f is repeated infinitely often?
Variant problems

- **Covering Problem:**

 Input: counter system S, (q, \vec{x}) and (q', \vec{x}').

 Question: is there a finite run with initial configuration (q, \vec{x}) and whose final configuration is (q', \vec{x}'') with $\vec{x}' \preceq \vec{x}''$?

 (control state reachability is an instance with $\vec{x}' = \vec{0}$)
Variant problems

- **Covering Problem:**

 Input: counter system S, (q, \vec{x}) and (q', \vec{x}').

 Question: is there a finite run with initial configuration (q, \vec{x}) and whose final configuration is (q', \vec{x}''') with $\vec{x}' \preceq \vec{x}'''$?

 (control state reachability is an instance with $\vec{x}' = \vec{0}$)

- **Boundedness Problem:**

 Input: counter system S and (q, \vec{x}).

 Question: is the set $\{(q', \vec{x}') \in Q \times \mathbb{N}^n : (q, \vec{x}) \xrightarrow{*} (q', \vec{x}')\}$ finite?
Variant problems

- **Covering Problem:**
 - **Input:** counter system S, (q, \bar{x}) and (q', \bar{x}').
 - **Question:** is there a finite run with initial configuration (q, \bar{x}) and whose final configuration is (q', \bar{x}'') with $\bar{x}' \preceq \bar{x}''$?

 (control state reachability is an instance with $\bar{x}' = \bar{0}$)

- **Boundedness Problem:**
 - **Input:** counter system S and (q, \bar{x}).
 - **Question:** is the set $\{ (q', \bar{x}') \in Q \times \mathbb{N}^n : (q, \bar{x}) \rightarrow^* (q', \bar{x}') \}$ finite?

- **Termination Problem:**
 - **Input:** counter system S and (q, \bar{x}).
 - **Question:** is there an infinite run with initial configuration (q, \bar{x})?

 Does termination implies boundedness?
What’s next? . . . subclasses

• How to obtain subclasses:

 • restriction on syntactic resources (number of counters, Presburger formulae etc.)

 • restriction on the control graph (e.g. flatness),

 • semantical restrictions (reversal-boundedness, etc.)

• Syntactic presentation of counter systems may be simplified (e.g., avoiding the use of Presburger formulae).
Classes of counter systems

- Reset VASS
 - VASS – L3
 - VAS
 - Succinct CA – L1
 - Minsky Machines
 - Standard CA – L1
 - Reversal-bounded CA – L2
- Affine CS – L2
- Relational CS – L2
 - Flat relational CS
- VASS – L3
- Admissible CS – L2
 - Lossy/Gainy CA – L5
- Reversal-bounded CA – L2
Counter Automata
Standard counter automata

- Standard counter automaton \((Q, n, \delta)\): transitions are of the form either \(q \xrightarrow{\text{inc}(i)} q'\) or \(q \xrightarrow{\text{dec}(i)} q'\) or \(q \xrightarrow{\text{zero}(i)} q'\) where
 - \(\text{inc}(i)\) is a shortcut for \((x'_i = x_i + 1) \land (\bigwedge_{j \neq i} x'_j = x_j)\),
 - \(\text{dec}(i)\) is a shortcut for \((x'_i = x_i - 1) \land (\bigwedge_{j \neq i} x'_j = x_j)\),
 - \(\text{zero}(i)\) is a shortcut for \((x_i = 0) \land (\bigwedge_j x'_j = x_j)\).

- Minsky machines are standard counter automata.
Succinct counter automata

- Each transition either performs zero-tests on a subset of counters or updates counters by adding a vector in \mathbb{Z}^n.

- Succinct counter automaton (Q, n, δ): transitions of the form either $q \xrightarrow{\text{inc}(\vec{b})} q'$ with $\vec{b} \in \mathbb{Z}^n$ or $q \xrightarrow{\text{zero}(\vec{b}')}$ with $\vec{b}' \in \{0, 1\}^n$ where
 - $\text{inc}(\vec{b})$ is a shortcut for $\land_{i \in [1, n]} x'_i = x_i + \vec{b}(i)$,
 - $\text{zero}(\vec{b}')$ is a shortcut for $\land_{i \in [1, n]} \text{s.t. } b'(i) = 1 x_i = 0 \land \land_{i \in [1, n]} x'_i = x_i$

- Morally, standard counter automata and succinct counter automata are identical but there may be differences for complexity issues.
Vector Addition Systems with States (VASS)
What is a VASS?

- **VASS** = finite-state automaton + translations of counters.

- **VASS** is a counter system with transitions of the form
 \[q \xrightarrow{\vec{b}} q' \text{ with } \vec{b} \in \mathbb{Z}^n, \]
 which is a shortcut for
 \[\bigwedge_{i \in [1,n]} x'_i = x_i + \vec{b}(i) \]

- **VAS** = **VASS** with a unique control state.

- Petri nets, **VAS** and **VASS** are equivalent models.
Example
Example

Can q_0, \[
\begin{pmatrix}
0 \\
0 \\
20 \\
80
\end{pmatrix}
\] be reached from q_0, \[
\begin{pmatrix}
4 \\
20 \\
0 \\
0
\end{pmatrix}
\]?
Decidability/complexity issues

• Theorem: The reachability problem is decidable.
 [Mayr, STOC 81; Kosaraju, STOC 82]

 • No primitive recursive algorithm is known.
 (use of well quasi-orderings)
 • EXPSPACE-hardness [Lipton, TR 76].

• Theorem: The covering and boundedness problems for VASS are EXPSPACE-complete.
 [Lipton, TR 76; Rackoff, TCS 78]

 • Decidability shown in [Karp & Miller, JCSS 69].
 • EXPSPACE upper bound for path sublogic [Faouzi Atig & Habermehl, RP 09], correcting [Yen, IC 92].

• Checking equality between accessibility sets of two configurations is undecidable [Hack, TCS 76].
A few more remarks

- Control-state reachability is an instance of the covering problem.

- \(\text{EXPSPACE} \)-hardness holds true even with coefficients -1, 0 and 1 only.

- Boundedness and reachability problems are undecidable for VASS with resets.
 [Dufourd & Finkel & Schnoebelen, ICALP 98].

- Boundedness implies that the transition system from \((q, \vec{x})\) is equivalent to a finite-state automaton.
Conclusion

• Today’s lecture:

 • Classes of counter systems and decision problems.

 • Presburger arithmetic.
Conclusion

• Today’s lecture:
 • Classes of counter systems and decision problems.
 • Presburger arithmetic.

• Tomorrow’s lecture: classes with semilinear reachability sets
 • Relational counter systems
 • Reversal-bounded counter automata
 • Flat relational counter automata