Decidable Problems for Counter Systems

Day 5
Model-Checking Counter Systems

Stéphane Demri
demri@lsv.ens-cachan.fr

LSV, ENS Cachan, CNRS, INRIA

ESSLLI 2010, Copenhagen, August 2010
Plan of the talk

- Previous lectures:
 - CS, Presburger arithmetic, linear-time temporal logics.
 - VASS, reversal-bounded CA.

- Repeated reachability problem.

- Plain LTL for several classes of counter systems.
 (Automata)

- Introduction to admissible counter systems.

- Reachability relation is effectively semilinear.

- $\text{LTL}^\text{CS} (\text{PrA})$ for admissible counter systems.
 (Presburger Arithmetic)
LTL and Control State Repeated Reachability
LTL(\(Q\))

- LTL(\(Q\)): fragment where atomic formulae are control states. Example: \(G (q_1 \Rightarrow X q_2)\).

- LTL(\(Q\)) does not speak about counter values but counter values constrain the runs.

- **Existential Model-Checking Problem for LTL(\(Q\))**:

 Input: CS \(S = (Q, n, \delta), (q_0, \vec{x}_0)\) and \(\varphi \in \text{LTL}(\mathcal{Q})\).

 Question: Is there an infinite run \(\rho\) from \((q_0, \vec{x}_0)\) s.t. \(\rho, 0 \models \varphi\)?

- In this part, we present a sufficient condition for deciding the model-checking problem for LTL(\(Q\)) restricted to subclasses of counter systems.

- Problem restricted to CA is already undecidable.
Projection on runs

- Counter system S, configuration (q_0, \vec{x}_0) and φ in $\text{LTL}(Q)$.

- $\rho, 0 \models \varphi$ implies $\text{proj}_Q(\rho), 0 \models \varphi$, where $\text{proj}_Q(\rho) \in Q^\omega$ is obtained from ρ by erasing the counter values.

- One can effectively construct a Büchi automaton A_φ over Q such that:
 - $L(A_\varphi)$ is the set of models of φ.
 - Size of A_φ is at most exponential in size of φ.
(see Day 2 slides)

- In A_φ, there is a successful run of the form

\[\rho' = X_0 \xrightarrow{\text{proj}_Q(\rho)(0)} X_1 \xrightarrow{\text{proj}_Q(\rho)(1)} X_2 \xrightarrow{\text{proj}_Q(\rho)(2)} X_3 \cdots \]

(recall that states of A_φ are sets of formulae)
Synchronized product

- Satisfaction of $\rho, 0 \models \varphi$ and $\text{proj}_Q(\rho), 0 \models \varphi$ can be represented by two synchronized sequences:

 $$(q_0, \vec{x}_0) \rightarrow (q_1, \vec{x}_1) \rightarrow (q_2, \vec{x}_2) \rightarrow (q_3, \vec{x}_3) \rightarrow \models \varphi$$

 $$X_0 \xrightarrow{q_0} X_1 \xrightarrow{q_1} X_2 \xrightarrow{q_2} X_3 \xrightarrow{q_3} \models \varphi$$

- To design a unique counter system synchronizing S and A_φ with control states of the form (q_i, X_i).

- To update the counter values according to the transitions from S.

- $S = (Q, n, \delta)$, $A = (\Sigma, Q', Q'_0, \delta', F)$ with $\Sigma = Q$.

 Synchronized product $S \otimes A = (Q'', n, \delta'')$:

 - $Q'' = Q \times Q'$,

 - $(q_0, q'_0) \varphi (q_1, q'_1) \overset{\text{def}}{\iff} q_0 \varphi q_1 \in \delta$ and $q'_0 \xrightarrow{q_0} q'_1 \in \delta'$.
Reduction to repeated reachability

- CS S, (q, \bar{x}) and formula $\varphi \in \text{LTL}(Q)$.

- BA $A_{\varphi} = (\Sigma, Q', Q'_0, \delta', F)$ s.t. $\text{Models}(\varphi) = L(A_{\varphi})$.

- Equivalence between (I) and (II):

 (I) \exists infinite run ρ from (q, \bar{x}) s.t. $\rho, 0 \models \varphi$.

 (II) For some $q_i \in Q'_0$ and $(q'', q_f) \in Q \times F$, there is an infinite run in $S \otimes A_{\varphi}$ from $((q, q_i), \bar{x})$ such that (q'', q_f) is repeated infinitely often.

- Model-checking is reduced to repeated reachability.
Decidability

Let C be a class of counter systems such that

1. the control state repeated reachability problem is decidable,

2. C is closed under synchronized products with BA.

Then, existential model-checking problem restricted $\text{LTL}(Q)$ and to counter systems in C is decidable.
Proof

- There is an infinite run ρ with initial configuration (q, \vec{x}) such that $\rho, 0 \models \varphi$ iff for some $q_i \in Q'_0$ and $(q'', q_f) \in Q \times F$, there is an infinite run in $S \otimes A_\varphi$ with initial configuration $((q, q_i), \vec{x})$ such that (q'', q_f) is repeated infinitely often.

- Since both Q'_0 and $Q \times F$ are finite sets, the existence of a finite run ρ such that $\rho, 0 \models \varphi$ can be verified by checking at most $\text{card}(Q'_0) \times \text{card}(Q \times F)$ instances of the control state repeated reachability problem on the system $S \otimes A_\varphi$.

- By condition (2), such a system belongs also to C and the target problem is decidable by condition (1).
What about VASS?
ExpSpace upper bound

- Control state repeated reachability problem restricted to VASS can be solved in exponential space.

 [Habermehl, ICATPN 97]

- Adaptation of Rackoff’s proof for solving boundedness and covering in exponential space.

- Equivalence between the propositions below.
 - There is an infinite run with initial configuration \((q, \vec{x})\) such that the control state \(q_f\) is repeated infinitely often.
 - There is a finite run \((q_0, \vec{x}_0), \ldots, (q_k, \vec{x}_k)\) such that
 - \((q_0, \vec{x}_0) = (q, \vec{x})\),
 - there is \(k' < k\) such that \(\vec{x}_{k'} \preceq \vec{x}_k\),
 - \(q_k = q_{k'} = q_f\).
LTL model-checking

- Use of Dickson’s Lemma: for any infinite sequence $\vec{y}_0, \vec{y}_1, \ldots$ of tuples in \mathbb{N}^n, there are $i < j$ such that $\vec{y}_i \preceq \vec{y}_j$.

- The key argument to get the $\mathsf{EXPSPACE}$ upper bound is to show that k can be at most double-exponential in the size of the instance $S, (q, \vec{x}), q'$.

- Model-checking problem restricted to $\mathsf{LTL}(Q)$ and to VASS is $\mathsf{EXPSPACE}$-complete [Habermehl, ICATPN 97].
Another logic expressing fairness

- TLF formulae ($q \in Q$ and $c \in \mathbb{N}$):

 \[q \mid x_i \geq c \mid \neg(x_i \geq c) \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid GF\varphi \]

- TLF formulae are not closed under negations and the temporal properties are intersection or union of fairness conditions.

- Existential model-checking problem for TLF restricted to VASS is decidable [Jančar, TCS 90].

- Addition of F may lead to undecidability.

 [Howell & Rosier, TCS 89]

- Decidability/undecidability results for linear-time temporal logic on Petri nets can be found in [Esparza, CAAP’94]; e.g., $LTL(Q) + x_i = 0$ is undecidable.
What about reversal-bounded CA?

- Control state repeated reachability problem restricted to reversal-bounded counter automata is decidable.
 [Dang & Ibarra & San Pietro, FSTTCS’01]
 (see slides Day 4)

- A stronger result is shown since Presburger-definable atomic properties can be included while preserving decidability.

- **Corollary**: Existential model-checking problem restricted to $\text{LTL}(\varnothing)$ and to reversal-bounded CA is decidable.
What about gainy counter automata?
Gainy counter automata are back!

- Gainy counter automaton: standard counter automaton (Q, n, δ) such that for $q \in Q$ and $i \in [1, n]$, $q \xrightarrow{\text{inc}(i)} q \in \delta$.

- Alternative definition: to modify the one-step relation

 $$ (q, \vec{x}) \xrightarrow{t} g (q', \vec{x}') \overset{\text{def}}{\iff} \text{there are } \vec{y} \text{ and } \vec{y}' \text{ in } \mathbb{N}^n \text{ such that } \vec{x} \preceq \vec{y} \text{ and } (q, \vec{y}) \xrightarrow{t} (q', \vec{y}') - \text{perfect step} - \text{ and } \vec{y}' \preceq \vec{x}' \text{.} $$

- The control state reachability problem for gainy counter automata is decidable but with nonprimitive recursive complexity [Schnoebelen, IPL 02].

- The control state repeated reachability problem restricted to gainy counter automata is undecidable.

- Hence, model-checking problem restricted to LTL(Q) and to gainy counter automata is undecidable.
Undecidability proof – Step I

- Minsky machine $S = (Q, 2, \delta)$ with halting control state q_h.

- We have seen that the halting problem is undecidable.

- First, we build a CA $S' = (Q', 3, \delta')$ that behaves exactly as S as far as the counters 1 and 2 are concerned.

- Counter 3 is incremented after each instruction of S.

- Control state q_h cannot be reached in S iff for the unique run of S', the counter 3 has no bounded value.
Step II

- Gainy counter automaton S'' with 6 counters:
 - The counters 1, 2 and 3 behave as the 3 respective counters in S'.
 - Counter 4 is the global budget that is progressively incremented.
 - Counter 5 is the current budget. It records how many increments on one of the counters 1, 2 or 3 can be still performed. E.g., increment of counter 3 is followed by decrement of counter 5.
 - Counter 6 is auxiliary.

- We shall implement two subroutines: $\text{copy}(4, 5)$ and $\text{transfer}(1 + 2 + 3, 5)$
copy(4, 5) and transfer(1 + 2 + 3, 5) (incrementing errors can occur)
Gainy counter automata S''

Simulation of S'

MO: Memory Overflow

$\text{transfer}(1 + 2 + 3, 5)$
Simulation of S'

- A transition $q^{\text{dec}(i)} \rightarrow q'$ is simulated by $q^{\text{dec}(i)} \circ^{\text{inc}(5)} \rightarrow q'$. The location \circ is an arbitrary new location only used to simulate this transition.

- A transition $q^{\text{zero}(i)} \rightarrow q'$ is simulated by itself.

- A transition $q^{\text{inc}(i)} \rightarrow q'$ is simulated by $q^{\text{inc}(i)} \circ^{\text{dec}(5)} \rightarrow q'$ and $\circ^{\text{zero}(5)} \rightarrow \text{MO}$.
Non-reachability and repeated reachability

- One shall show that S cannot reach q_h iff S'' visits infinitely often the control state (1).
- S cannot reach q_h iff S' cannot reach q_h.
- If S' cannot reach q_h, then an error-free run of S'' visits infinitely often (1).
Converse direction

- Converse direction uses these facts:
 - In (A), the only way to decrement counter 5 is to simulate exactly S'.
 - In order to reach (1), in the part between q_i and (A), counter 5 is decremented regularly.
 - If S'' visits infinitely often (1) and S' can reach some configuration (q_h, \vec{x}), then at some point an error-free simulation of S' shall be done with value for counter 5 greater than $\vec{x}(1) + \vec{x}(2) + \vec{x}(3)$, a contradiction.

- **Theorem**: control state repeated reachability problem restricted to gainy counter automata is undecidable.
Admissible Counter Systems
Overview

- Introduction to the class of admissible counter systems.
- Reachability relation is effectively semilinear.
- Existential model-checking problem for $\text{LTL}^{\text{CS}}(\text{PrA})$ restricted to such counter systems is decidable.
Affine functions

• Binary relation of dimension n: relation $R \subseteq \mathbb{N}^{2n}$.

• R is Presburger definable \iff there is a Presburger formula $\varphi(x_1, \ldots, x_n, x'_1, \ldots, x'_n)$ such that $R = \text{REL}(\varphi)$.

\[
(\text{REL}(\varphi(x_1, \ldots, x_k))) \overset{\text{def}}{=} \{(v(x_1), \ldots, v(x_k)) \in \mathbb{N}^k : v \models \varphi\}.
\]

• Partial function $f : \mathbb{N}^n \to \mathbb{N}^n$ is affine \iff there exist a matrix $A \in \mathbb{Z}^{n \times n}$ and $\vec{b} \in \mathbb{Z}^n$ such that for every $\vec{a} \in \text{dom}(f)$,

\[
f(\vec{a}) = A\vec{a} + \vec{b}
\]

• f is Presburger definable \iff the graph of f is a Presburger definable relation.
Affine counter systems

- Affine counter system $S = (Q, n, \delta)$: for every transition $q \xrightarrow{\varphi} q' \in \delta$, $\text{REL}(\varphi)$ is affine.

- φ can be encoded by a triple (A, \vec{b}, ψ) such that
 1. $A \in \mathbb{Z}^{n \times n}$,
 2. $\vec{b} \in \mathbb{Z}^n$,
 3. ψ has free variables x_1, \ldots, x_n,
 4. $\text{REL}(\varphi) = \{(\vec{x}, \vec{x}') \in \mathbb{N}^{2n} : \vec{x}' = A\vec{x} + \vec{b} \text{ and } \vec{x} \in \text{REL}(\psi)\}$.

- Guard ψ and deterministic update function (A, \vec{b}).

- Succinct counter automata are affine counter systems in which the matrices are equal to identity.
Composing two affine updates

Let \((A_1, \vec{b}_1, \psi_1)\) and \((A_2, \vec{b}_2, \psi_2)\) be two affine updates. There is \((A, \vec{b}, \psi)\) such that

\[
\text{REL}((A, \vec{b}, \psi)) = \\
\{(\vec{x}, \vec{x}') \in \mathbb{N}^{2n} : \exists \vec{y} \in \mathbb{N}^n (\vec{x}, \vec{y}) \in \text{REL}((A_1, \vec{b}_1, \psi_1)) \\
\quad \text{and } (\vec{y}, \vec{x}') \in \text{REL}((A_2, \vec{b}_2, \psi_2))\}
\]

- \(A = A_2 A_1\).
- \(\vec{b} = A_2 \vec{b}_1 + \vec{b}_2\).
- \(\psi = \exists \vec{y} \psi_1(\vec{x}) \land \vec{y} = A_1 \vec{x} + \vec{b}_1 \land \psi_2(\vec{y})\).
Loop effect

\[(A, \vec{b}, \psi)\]

- How to represent symbolically
 \[X = \{(\vec{x}, \vec{x}') \in \mathbb{N}^{2n} : (q, \vec{x}) \xrightarrow{*} (q, \vec{x}')}\]?

- Is \(X\) definable in Presburger arithmetic?

- Reflexive and transitive closure \(R^* \subseteq \mathbb{N}^{2n}\) of \(R \subseteq \mathbb{N}^{2n}\):
 \[(\vec{y}, \vec{y}') \in R^* \text{ iff there are } \vec{x}_1, \ldots \vec{x}_k \in \mathbb{N}^n \text{ such that}\]
 - \(\vec{x}_1 = \vec{y}\),
 - \(\vec{x}_k = \vec{y}'\),
 - for \(i \in [1, k - 1]\), we have \((\vec{x}_i, \vec{x}_{i+1}) \in R\).

• If R is Presburger definable, this does not imply that R^* is Presburger definable too.

• $R = \{(\alpha, 2\alpha) \in \mathbb{N}^2 : \alpha \in \mathbb{N}\}$.
 • $R^* = \{(\alpha, 2^\beta \alpha) \in \mathbb{N}^2 : \alpha, \beta \in \mathbb{N}\}$.
 • If R^* is Presburger definable, then so is $\{2^\beta \in \mathbb{N} : \beta \in \mathbb{N}\}$.
 • Semilinear subset of \mathbb{N} are ultimately periodic.
 • $\rightarrow R^*$ is not Presburger definable.

• If $S = \{(\alpha, \alpha + 1) \in \mathbb{N}^2 : \alpha \in \mathbb{N}\}$ then $S^* = \{(\alpha, \beta) \in \mathbb{N}^2 : \alpha < \beta, \alpha, \beta \in \mathbb{N}\}$ is Presburger definable.
The counting iteration of $R \subseteq \mathbb{N}^{2n}$ is $R_{CI} \subseteq \mathbb{N}^n \times \mathbb{N} \times \mathbb{N}^n$ such that $(\vec{a}, i, \vec{b}) \in R_{CI}$ iff $(\vec{a}, \vec{b}) \in R^i$.

R has a Presburger counting iteration if its counting iteration is Presburger definable.

$\{(\alpha, \alpha + 1) \in \mathbb{N}^2 : \alpha \in \mathbb{N}\}$ has a Presburger counter iteration.

For $A \in \mathbb{Z}^{n \times n}$, A^* denotes the monoid generated from A with $A^* = \{A^i : i \in \mathbb{N}\}$.

The identity element is $A^0 = I$.

Given $A \in \mathbb{Z}^{n \times n}$, checking whether the monoid generated by A is finite, is decidable [Mandel & Simon, TCS 77].
Main result

- Let $R = \{(\vec{x}, \vec{x'}) \in \mathbb{N}^{2n} : \vec{x'} = A\vec{x} + \vec{b} \text{ and } \vec{x} \in \text{REL}(\psi)\}$.

- **Theorem**: If A^* is finite, then R has a Presburger counting iteration.

 [Boigelot, PhD 98; Finkel & Leroux, FSTTCS’02]

- In CA, A is the identity and therefore A^* is finite.

- General theme in the literature to determine when Presburger definable relations admit Presburger definable reflexive and transitive closure.
Proof – Preliminaries

- Let $R \subseteq \mathbb{N}^{2n}$ be defined by (A, \vec{b}, ψ).

- g: affine update function obtained by ignoring the guard ψ.
 \[
g(\vec{a}) = A\vec{a} + \vec{b}
 \]

- Since A^* is finite, there are $\alpha, \beta \in \mathbb{N}$ such that $A^{\alpha+\beta} = A^\alpha$.

- α and β can be effectively computed from A.
 [Mandel & Simon, TCS 77]

- Simple equalities ($k \geq 1$):
 - $g^k(\vec{a}) = A^k \vec{a} + A^{k-1} \vec{b} + \cdots + \vec{b}$.
 - $g^k(0) = A^{k-1} \vec{b} + \cdots + \vec{b}$.

Proof – Vectors of terms

- Terms in Presburger Arithmetic:

\[t ::= 0 \mid 1 \mid x \mid t + t \]

- Given an \(n \)-tuple \(\vec{t} \) of terms, \(g^k(\vec{t}) \) denotes the \(n \)-tuple

\[A^k \vec{t} + A^{k-1} \vec{b} + \cdots + \vec{b} \]

- \(\psi(\vec{t}) \) is a shortcut for the Presburger formula

\[\exists x_1, \ldots, x_n \psi(x_1, \ldots, x_n) \land (\bigwedge_{i \in [1,n]} x_i = \vec{t}(i)) \]

\[\vec{t} = \begin{pmatrix} 2 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 2x - 2y + 1 \\ -3x + 7y - 2 \end{pmatrix} \]

\[\psi(\vec{t}) \stackrel{\text{def}}{=} \exists x_1, \ldots, x_n \psi(x_1, \ldots, x_n) \land x_1 + 2y = 2x + 1 \land x_1 + 3x + 2 = 7y \]
Proof – Quantifying over number of compositions

- \((\vec{x}, \vec{x}') \in R^* \) iff there is \(i \geq 0 \) such that
 1. \(\vec{x}' = g^i(\vec{x}) \),
 2. for \(0 \leq j < i \), \(g^j(\vec{x}) \models \psi \).

- Presburger formula defining \(R^* \) may look like
 \[\exists i \; \vec{x}' = g^i(\vec{x}) \land \bigwedge_{j<i} \psi(g^j(\vec{x})). \]

- But,
 1. \(g^i(\vec{x}) \) is a shortcut for \(A^i\vec{x} + A^{i-1}\vec{b} + \cdots + \vec{b}, \)
 2. generalized conjunction has exactly \(i \) conjuncts.

- \(\vec{x}' = g^i(\vec{x}) \land \bigwedge_{j<i} \psi(g^j(\vec{x})) \) defines a family of formulae rather than a single formula.
Proof – Transforming an exponent into a factor

• Use $A^{\alpha + \beta} = A^{\alpha}$ to replace i applications of g by expressions in which i appears as a variable.

• For $q \geq 1$, we shall show $g^{\alpha + q\beta}(\vec{a}) = g^{\alpha}(\vec{a}) + qA^{\alpha}g^{\beta}(\vec{0})$.

• q becomes a factor and $A^{\alpha}g^{\beta}(\vec{0})$ is constant tuple.

• For $i - \alpha = r + q\beta$ with $r < \beta$ and $i \geq \alpha$,

$$g^i(\vec{a}) = g^r(g^{\alpha}(\vec{a}) + qA^{\alpha}g^{\beta}(\vec{0})).$$
(Proof – $g^{\alpha+q\beta}(\vec{a}) = g^\alpha(\vec{a}) + qA^\alpha g^\beta(\vec{0})$)

• Preliminary identities:

 \[g^{\alpha+\beta}(\vec{a}) = A^{\alpha+\beta} \vec{a} + A^{\alpha+\beta-1} \vec{b} + \cdots + \vec{b}. \]

 \[= A^{\alpha+\beta} \vec{a} + A^\alpha (A^{\beta-1} \vec{b} + \cdots + \vec{b}) + (A^{\alpha-1} \vec{b} + \cdots + \vec{b}) \]

 \[= A^\alpha \vec{a} + A^\alpha g^\beta(\vec{0}) + (A^{\alpha-1} \vec{b} + \cdots + \vec{b}) \]

 \[= g^\alpha(\vec{a}) + A^\alpha g^\beta(\vec{0}). \]

• Case $q = 1$ is above.

• $g^{\alpha+(q+1)\beta}(\vec{a}) = g^\alpha(g^\beta(\vec{a})) + qA^\alpha g^\beta(\vec{0})$.

• $g^{\alpha+(q+1)\beta}(\vec{a}) = g^\alpha(\vec{a}) + A^\alpha g^\beta(\vec{0}) + qA^\alpha g^\beta(\vec{0})$.

• $g^{\alpha+(q+1)\beta}(\vec{a}) = g^\alpha(\vec{a}) + (q + 1)A^\alpha g^\beta(\vec{0})$.
Proof – Towards the final formula

• For fixed $i \geq 0$, let $R[i]$ be such that

$$\text{REL}(R[i]) = \{ (\vec{y}, \vec{y}') \in \mathbb{N}^{2n} : \vec{y} R^i \vec{y}' \}$$

• $R[0]$ is equal to $\bigwedge_{j \in [1, n]} x_j = x'_j$.

• $R[i + 1]$ is equal to $\exists \vec{y} \ \psi(\vec{y}) \land R[i](\vec{x}, \vec{y}) \land \vec{x}' = A\vec{y} + \vec{b}$.

• To show that R has a Presburger counting iteration, we define $\chi(\vec{x}, z, \vec{x}')$ such that $R_{\text{CI}} = \text{REL}(\chi(\vec{x}, z, \vec{x}'))$.

• $\chi(\vec{x}, z, \vec{x}')$ is equal to:

$$((z = 0 \land R[0]) \lor \cdots \lor (z = \alpha - 1 \land R[\alpha - 1])) \lor$$

$$(z \geq \alpha \land \exists q (\chi_{q,0} \lor \cdots \lor \chi_{q,\beta-1}))$$
Proof – Defining the last chunks

- \(\chi_{q,r} \) is equal to \((z - \alpha = r + \beta \times q) \land \\
 (\exists \vec{y} \,' \vec{y} \,' = A^\alpha \vec{x} + qA^\alpha (A^{\beta - 1} \vec{b} + \cdots + \vec{b}) \land \vec{x} \,' = g^r(\vec{y} \,')) \land \chi^{\text{guard}}(z, \vec{x}) \)

- This encodes \(g^i(\vec{a}) = g^r(g^\alpha(\vec{a}) + qA^\alpha g^\beta(\vec{0})) \) and the point below.

- \(\chi^{\text{guard}}(z, \vec{x}) \) checks that the guard is satisfied for all the intermediate configurations.

\[
\chi^{\text{guard}}(z, \vec{x}) \overset{\text{def}}{=} \left(\bigwedge_{i \in [1,\alpha]} \exists \vec{y} R[i](\vec{x}, \vec{y})) \land \forall z' \alpha \leq z' < z \Rightarrow \\
\bigvee_{r' \in [1,\beta - 1]} \exists q' (z' - \alpha = r' + q'\beta \land (\exists \vec{y} \,' \vec{y} \,' = A^\alpha \vec{x} + q'A^\alpha (A^{\beta - 1} \vec{b} + \cdots + \vec{b}) \land \psi(g^{r'}(\vec{y} \,'))))
\]
Admissible counter systems

- A loop in an affine counter system has the finite monoid property \(\iff A^* \) is finite for its corresponding affine update \((A, \vec{b}, \psi)\).

- Admissible counter system \(S \):
 1. \(S \) is an affine counter system,
 2. there is at most one transition between two control states,
 3. its control graph is flat,
 4. each loop has the finite monoid property.

- Consequently, the effect of each loop can be defined in Presburger Arithmetic.
Flatness

A CS is flat if every control state belongs to at most one simple cycle. Moreover, there is at most one transition between two control states.
Reachability is semilinear!

- Let S be an admissible counter system and $q, q' \in Q$. One can effectively compute φ such that for every v, we have $v \models \varphi$ iff $(q, (v(x_1), \ldots, v(x_n))) \rightarrow^* (q', (v(x'_1), \ldots, v(x'_n)))$.

 [Finkel & Leroux, FSTTCS’02; Leroux, PhD 03]

- First, build FSA A that overapproximates the language of transitions between q and q' (ignore counter values).
Proof

- The language of transitions between q and q' can be approximated by the union below ($\Sigma = \delta$):

$$t_1 t_3 (t_4 t_2 t_3)^* t_5 t_6^* \cup t_7 t_8 (t_10 t_9)^* t_{11} t_6^*$$

- By flatness, $L(\mathcal{A})$ is a finite union of languages of the form $u_1(v_1)^* u_2(v_2)^* \cdots (v_k)^* u_{k+1}$ with $u_i \in \Sigma^*$ and $v_i \in \Sigma^+$.
Proof – Glueing pieces

• We know that there is a Presburger formula that encodes the effect of applying a finite number of times the loop v_i.

• We also know that there is a Presburger formula that encodes the effect of applying once the segment u_i.

• One can effectively compute the effect of applying a sequence of transitions in the language L. (use existential quantification for intermediate positions)

• Since $L(A)$ is a finite union of bounded languages and Presburger arithmetic has obviously disjunction, there is $\varphi(\vec{x}, \vec{x}')$ such that for \mathbf{v}, we have

$$\mathbf{v} \models \varphi \iff (q, (\mathbf{v}(x_1), \ldots, \mathbf{v}(x_n))) \xrightarrow{\ast} (q', (\mathbf{v}(x'_1), \ldots, \mathbf{v}(x'_n)))$$
About flatness

- Flat CS are not widely spread in real-life applications.
- A relaxed version of flatness: reachability can be captured by a flat unfolding of the system.
- \((S, (q, \vec{x}))\) is flattable whenever there is a partial unfolding of \((S, (q, \vec{x}))\) that is flat and has the same reachability set as \((S, (q, \vec{x}))\).
- \(\Sigma = \delta; \) let \(L\) be a finite union of languages of the form
 \[u_1(v_1)^* u_2(v_2)^* \cdots (v_k)^* u_{k+1},\]
 such that two consecutive transitions share the intermediate control state.
- \((S, (q, \vec{x}))\) is initially flattable iff there is some \(L\) of the above form such that
 \[\{(q', \vec{x}') : (q, \vec{x}) \xrightarrow{u} (q', \vec{x}')\} = \{(q', \vec{x}') : (q, \vec{x}) \xrightarrow{u} (q', \vec{x}'), u \in L\}\]
Is \((S, (q_1, \vec{0}))\) initially fltable?

\[
\begin{align*}
q_1 & \quad x_1 = x_2 = 0 \\
q_2 & \quad x_1 + + \\
q_3 & \quad x_1 + + \\
q_4 & \quad x_2 < x_1, x_2 + + \\
q_6 & \quad x_1 = x_2, x_1' = x_2' = 0 \\
q_5 & \quad x_2 \leq x_1, x_2 + +
\end{align*}
\]
On being globally fltable

- \mathcal{S} is globally fltable $\overset{\text{def}}{\iff}$ there is a finite union of bounded languages \mathcal{L} such that

$$\forall (q, \vec{x}) \exists u \in \mathcal{L} : (q, \vec{x}) \overset{u}{\rightarrow} (q', \vec{x}')$$

- Flattable counter systems are everywhere. [Leroux & Sutre, ATVA’05]
 - Globally reversal-bounded CA are globally fltable.
 - Reversal-bounded initialized CA are initially fltable.
 - Initialized gainy CA are initially fltable.

- Semilinearity for reversal-bounded CA is regained:
 - \mathcal{L} can be effectively computed.
 - Initialized CA + \mathcal{L} leads to an admissible counter system.
 - Reachability relation for admissible CS is semilinear.
Decidable model-checking problem

- \(\text{LTL}^{\text{CS}}(\text{PrA}) \) formulae:

\[\varphi ::= \psi \mid q \mid \varphi \land \varphi \mid \neg \varphi \mid X \varphi \mid \varphi U \varphi \mid \exists y \varphi \]

- **Theorem**: Existential model-checking problem for \(\text{LTL}^{\text{CS}}(\text{PrA}) \) restricted to admissible counter systems is decidable.

- The proof partly uses that the reachability relation for admissible counter systems is effectively semilinear . . .

- . . . but this is not sufficient to show the result.
Proof – Showing a stronger property

- Instance: $S = (Q, n, \delta), (q, \vec{x}), \varphi$.

- W.l.o.g., φ has no control states as atomic formulae.

- We wish to check whether there is an infinite run ρ from (q, \vec{x}) such that $\rho, 0 \models \varphi$.

- We build ψ such that for every \mathbf{v}, propositions below are equivalent:
 1. $\mathbf{v} \models \psi$.
 2. \exists an infinite run ρ from $(q, (\mathbf{v}(x_1), \ldots, \mathbf{v}(x_n)))$ s.t. $\rho, 0 \models \varphi$.

- It remains to test the satisfaction of $\psi \land (\bigwedge_{i \in [1,n]} x_i = \vec{x}(i))$.
Proof – Run schemata

- Run schemata:
 \[t_1 t_3 (t_4 t_2 t_3)^* t_5 t_6^\omega, t_1 t_3 (t_4 t_2 t_3)^\omega, t_7 t_8 (t_10 t_9)^* t_11 t_6^\omega, t_7 t_8 (t_10 t_9)^\omega. \]

- Number of run schemata is at most exponential in \(\text{card}(Q) \).

- The run schemata can be effectively computed.
Quantifying over runs with natural numbers

- From $L = u_1(v_1)^* u_2(v_2)^* \cdots (v_k)\omega$ and $m_1, \ldots, m_{k-1} \in \mathbb{N}$, we get the sequence
 \[u_1(v_1)^{m_1} u_2(v_2)^{m_2} \cdots (v_k)^\omega \]
 - The sequence may correspond to an infinite run from (q, \overrightarrow{x}) (but not necessarily).

- With L and m_1, \ldots, m_{k-1}, there is at most one infinite run from (q, \overrightarrow{x}) respecting $u_1(v_1)^{m_1} u_2(v_2)^{m_2} \cdots (v_k)^\omega$.

- Indeed, update functions in affine CS are deterministic.
Proof – Auxiliary formulae

• Auxiliary Presburger formulae such that for every \mathbf{v},
 • $\mathbf{v} \models \chi_L^3(z_1, \ldots, z_{k-1}, \vec{x})$ iff there is an infinite run from $(q, (\mathbf{v}(x_1), \ldots, \mathbf{v}(x_n)))$ resp. $u_1(v_1)^{v(z_1)}u_2(v_2)^{v(z_2)} \ldots (v_k)^{\omega}$.
 • $\mathbf{v} \models \chi_L^{steps}(z_1, \ldots, z_{k-1}, \vec{x}, z, \vec{x}')$ iff $\mathbf{v} \models \chi_L^3(z_1, \ldots, z_{k-1}, \vec{x})$ and the $\mathbf{v}(z)$th tuple of counter values is $(\mathbf{v}(x'_1), \ldots, \mathbf{v}(x'_n))$.

• ψ defined as a disjunction:
 $$\bigvee_{L = u_1(v_1)^*u_2(v_2)^*\ldots(v_k)^{\omega}} (\exists z_1, \ldots, z_{k-1}, z_0 \chi_L^3(z_1, \ldots, z_{k-1}, \vec{x}) \land z_0 = 0 \land t_L(z_0, \varphi))$$
From FO-definable temporal operators to FO on \((\mathbb{N}, +)\)

- \(t_L\) is homomorphic for Boolean connectives.

- \(t_L(z, x \psi) \overset{\text{def}}{=} \exists z' (z' = z + 1) \land t_L(z', \psi)\).

- The definition of \(t_L(z, \psi_1 \cup \psi_2)\) is analogous.

- \(t_L(z, \forall y \psi) \overset{\text{def}}{=} \forall y t_L(z, \psi)\).

- \(t_L(z, \psi(\vec{y}, \vec{x})) \overset{\text{def}}{=} \forall \vec{x}' \left(\chi_{\text{steps}}(z_1, \ldots, z_{k-1}, \vec{x}, z, \vec{x}') \Rightarrow \psi(\vec{y}, \vec{x}') \right)\)
where \(\psi(\vec{y}, \vec{x})\) is an atomic formula with a tuple \(\vec{y}\) of variables from \(\text{VAR}^p\).
• Computational complexity of the model-checking problem for $\text{LTL}^{\text{CS}}(\text{PrA})$ restricted to ACS is still open.

• Decidability extends to a CTL^* extension of $\text{LTL}^{\text{CS}}(\text{PrA})$. What about the linear μ-calculus extension?

• Which conditions in the presented definition of admissible counter systems can relaxed so that the model-checking problem for $\text{LTL}^{\text{CS}}(\text{PrA})$ remains decidable?

• ...but a slight relaxation can lead to undecidability.
Undecidable model-checking problem

\[x'_1 = x_1 + 1 \quad x'_2 = x_2 + 1 \quad x'_3 = x_3 + 1 \]

- Existential model-checking problem for $\text{LTL}^{\text{CS}}(\text{PrA})$ restricted to the affine counter system S_u is undecidable.

- Reduction from the recurrence problem for ND Minsky machines.
Concluding remarks for Day 5

• Today’s lecture:

 • Repeated reachability problem for several classes.
 • Plain LTL for several classes of counter systems.
 • $\text{LTL}^{\text{CS}}(\text{PrA})$ for admissible counter systems.

• We have illustrated two proof techniques:

 1. Combining repeated reachability with standard automata-based approach for temporal logics.
 2. Translation into the decidable Presburger Arithmetic.
Further topics

- Theory of well-structured transition systems.
 [Finkel & Schnoebelen, TCS 01]

- Decidability of reachability for VASS.
 [Reutenauer, Book 90]

- Recent developments on classes of counter systems with semilinear reachability relations.

- Computational complexity of reachability and model-checking problems.
Further topics (II)

• Decision procedures for Presburger Arithmetic.

• Applications:
 • Verification of broadcast protocols. [Esparza & Finkel & Mayr, LICS’99]
 • Program with pointers [Sangnier, PhD 08].
 • Thread-state reachability problem for replicated finite-state programs [Kaiser & Kroening & Wahl, CAV’10].
 • etc.
A few current trends

- Transition closures of integer relations.
 See e.g. [Bozga & Iosif & Konečný, CAV’10]

- SMT solvers for model-checking infinite-state systems.
 See e.g. [Ghilardi et al., CAV’07]

- Adding branching to VASS, leading to BVASS.
 See e.g. [Verma & Goubault-Larrecq, DMTCS 05]

- Relationships between counter automata and data logics.
 See e.g. [Bojańczyk & Lasota, LICS’10]