Decidable Problems for Counter Systems

Day 2

Linear-Time Temporal Logics

Stéphane Demri
demri@lsv.ens-cachan.fr

LSV, ENS Cachan, CNRS, INRIA

ESSLLI 2010, Copenhagen, August 2010
Plan of the talk

• Yesterday’s lecture:
 • Classes of counter systems (Minsky machines, CA, VASS, VAS, relational CA, etc.) and standard decision problems.
 • Presburger arithmetic and semilinear sets.

• Standard LTL

• Logic $LTL^{CS}(PrA)$ for counter systems

• Presburger LTL

• LTL with registers
Specifying existence of runs in temporal logic

- Repeated reachability can be obviously expressed by $G F q_f$.

- Initialized VASS $(\mathcal{V}, (q, \vec{z}))$ is unbounded iff there is a run $(q, \vec{z}) \xrightarrow{*} (q', \vec{y}) \xrightarrow{*} (q', \vec{y}')$ with $\vec{y} \prec \vec{y}'$ for some q'.

- In temporal logic lingua:

$$\models E \exists y_1, \ldots, y_n F(\bigwedge_{i=1}^{n} x_i = y_i \land F(\bigwedge_{i=1}^{n} x_i \geq y_i \land \bigvee_{i=1}^{n} x_i > y_i))$$

- Linear-time temporal logics offer genericity and fragments can be easily designed.
Temporal Modalities in Computations
Modalities

- Temporal logics contain modalities with a temporal interpretation.

- A modality is a syntactic object (term) that modifies the relationships between a predicate and a subject.

- In the sentence “Tomorrow, it will rain”, the term “Tomorrow” is a temporal modality.

- The temporal modalities allow one to speak about the sequencing of configurations along a run.

- Standard temporal modalities:
 - \mathcal{X} (“neXt”),
 - \mathcal{F} (“sometimes”),
 - \mathcal{G} (“always”).

- We also use the Boolean connectives: \neg (negation), \lor (disjunction), \land (conjunction) and \Rightarrow (material implication).
“next” and “sometimes”

- \(X\varphi \) states that the next state satisfies \(\varphi \).

 \(Xp: \) next-time \(p \)

 !Diagram

 For example, \(\varphi \lor X\varphi \) states that \(\varphi \) is satisfied now or in the next state.

- \(Fp \) announces that a future state satisfies \(\varphi \) without specifying which state, and \(G\varphi \) that all the future states satisfy \(\varphi \).

 \(Fp: \) sometimes \(p \)

 !Diagram
“always” and “until”

- The operator G is the dual of F: whatever the formula φ may be, if φ is always satisfied, then it is not true that $\neg \varphi$ will some day be satisfied, and conversely. ($G\varphi$ and $\neg F\neg \varphi$ are equivalent.)

 Gp: always p

 ![Diagram for Gp]

 \[Gp, p \rightarrow p \rightarrow p \rightarrow p \rightarrow p\]

- The \cup operator is richer and more complicated than the combinator F. $\varphi_1 \cup \varphi_2$ states that φ_1 is true until φ_2 is true.

 $p\cup q$: p until q

 ![Diagram for $p\cup q$]

 \[p\cup q, p \rightarrow p \rightarrow p \rightarrow p \rightarrow q\]

 $G(\text{alert} \Rightarrow F\text{ halt})$ can be refined with

 \[G(\text{alert} \Rightarrow (\text{alarm} \cup \text{halt})).\]
The F combinator is a special case of U: $F\varphi$ and $true \ U \ \varphi$ are equivalent.

Weak until operator \bar{w}.

$\varphi_1 \bar{w} \varphi_2$ expresses “$\varphi_1 \ U \varphi_2$”, but without the inevitable occurrence of φ_2 and if φ_2 never occurs, then φ_1 remains true forever.

$\varphi_1 \bar{w} \varphi_2$ is equivalent to $G \varphi_1 \lor (\varphi_1 \ U \varphi_2)$.
Plain LTL
LTL syntax

- LTL formulae:

\[\phi, \psi ::= p \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid X\phi \mid \phi U \psi \]

- Atomic formulae are propositional variables.

- Later, control states or arithmetical constraints about counter values are considered at the atomic level.

- LTL models \(\rho \) are \(\omega \)-sequences of propositional valuations of the form \(\rho : \mathbb{N} \rightarrow \mathcal{P}(\text{PROP}) \).
Satisfaction relation (formal semantics)

- $\rho, i \models p \iff p \in \rho(i),$

- $\rho, i \models \neg \varphi \iff \rho, i \not\models \varphi,$

- $\rho, i \models \varphi_1 \land \varphi_2 \iff \rho, i \models \varphi_1 \text{ and } \rho, i \models \varphi_2,$

- $\rho, i \models X \varphi \iff \rho, i + 1 \models \varphi,$

- $\rho, i \models \varphi_1 \cup \varphi_2 \iff \text{there is } j \geq i \text{ such that } \rho, j \models \varphi_2 \text{ and } \rho, k \models \varphi_1 \text{ for all } i \leq k < j.$

$F \varphi \overset{\text{def}}{=} T \cup \varphi, \ G \varphi \overset{\text{def}}{=} \neg F \neg \varphi, \ \varphi \Rightarrow \psi \overset{\text{def}}{=} \neg \varphi \lor \psi,$ etc.
About LTL

- Models(φ): set of models ρ such that ρ, 0 ⊨ φ.

- Models can be viewed as ω-words over the alphabet P(PROP).

- Models(φ) can be effectively represented by a Büchi automaton Aφ.

- Satisfiability and model-checking (see later) are PSPACE-complete problems [Sistla & Clarke, JACM 85].
A Brief Introduction to Büchi Automata
Automata-based approach

- Automata-based approach: to reduce logical problems into automata-based decision problems in order to take advantage of known results from automata theory.

- Another view: a means to transform declarative statements (formulae) into operational devices (automata).

- Standard target problems on automata:
 - the nonemptiness problem checks whether an automaton admits at least one accepting computation,
 - the universality problem checking whether an automaton accepts everything,
 - the inclusion problem checking whether the language accepted by automaton \mathcal{A} is included in the language accepted by automaton \mathcal{B}.
Desirable properties

- The reduction should be conceptually simple.

- The computational complexity of the automata-based target problem should be well-characterized.

- Preferrably, the reduction might allow to obtain the optimal complexity for the source logical problem.

- A pioneering work by R. Büchi [Buchi, 62] in which Büchi automata are shown equivalent to formulae in monadic second-order logics (MSO).
Definition for Büchi automata

- Büchi automaton: finite-state automaton except that ω-words are accepted instead of finite words.

- The set of final states is used as an acceptance condition for ω-words.

- Büchi automaton $A = (\Sigma, Q, Q_0, \delta, F)$:

 - Σ is a finite alphabet,

 - Q is a finite set of states,

 - $Q_0 \subseteq Q$ is the set of initial states,

 - the transition relation δ is a subset of $Q \times \Sigma \times Q$,

 - $F \subseteq Q$ is a set of final states.
Recognizing infinitely many a’s

- Run $\rho = q_0 \xrightarrow{a_0} q_1 \xrightarrow{a_1} q_2 \ldots$: for $i \geq 0$, $(q_i, a_i, q_{i+1}) \in \delta$.

- Run ρ is successful: $q_0 \in Q_0$ and some state of F is repeated infinitely often in ρ.

- Label of ρ: $\sigma = a_0 a_1 \cdots \in \Sigma^\omega$.

- A accepts $L(A)$ made of ω-words $\sigma \in \Sigma^\omega$ such that there exists a successful run of A with label σ.
Generalized Büchi automata

- Standard generalization: conjunctions of classical Büchi conditions.

- Generalized Büchi automaton (GBA)
 \(\mathcal{A} = (\Sigma, Q, Q_0, \delta, \{F_1, \ldots, F_k\}) \) with \(F_1, \ldots, F_k \subseteq Q \).

- Successful run \(\rho \) of \(\mathcal{A} \): the first state is initial and there is a state in \(F_i \) that is repeated infinitely often in \(\rho \) for \(1 \leq i \leq n \).

- Let \(\mathcal{A} = (\Sigma, Q, Q_0, \delta, \{F_1, \ldots, F_k\}) \) be a GBA. One can compute (in logarithmic space in the size of \(\mathcal{A} \)) a Büchi automaton \(\mathcal{A}^b = (\Sigma, Q^b, Q_0^b, \delta^b, F^b) \) such that \(L(\mathcal{A}^b) = L(\mathcal{A}) \).
Proof

- \(\mathcal{A} = (\Sigma, Q, Q_0, \delta, \{F_1, \ldots, F_k\}) \).

- \(\mathcal{A}^b \) is made of \(k \) copies of \(\mathcal{A} \) and simulates the generalized accepting condition by passing from one copy to another.

- \(Q^b \overset{\text{def}}{=} Q \times \{1, \ldots, k\} \); \(Q_0^b \overset{\text{def}}{=} Q_0 \times \{1\} \); \(F^b \overset{\text{def}}{=} F_1 \times \{1\} \).

- \(\delta^b((q, i), a) \) is the union of the following sets:
 1. \(\{(q', i) : q \xrightarrow{a} q' \in \delta, q \not\in F_i\} \) (stay in the same copy if no final state in \(F_i \) is reached),
 2. \(\{(q', (i \mod k) + 1) : q \xrightarrow{a} q' \in \delta, q \in F_i\} \) (go to the next copy if a final state in \(F_i \) is reached).

- \(\mathcal{A} \) and \(\mathcal{A}^b \) accepts the same language.
Properties about Büchi automata

• The class of languages accepted by Büchi automata corresponds to the class of \(\omega \)-regular languages.

• The family of \(\omega \)-regular languages is closed by intersection, union and complementation.

• Nonemptiness problem for Büchi automata:

 Input: a Büchi automaton \(\mathcal{A} \),

 Question: is \(L(\mathcal{A}) \neq \emptyset \)?

• The nonemptiness problem for Büchi automata is \(\text{NLOGSPACE} \)-complete.
 (and can therefore be solved in polynomial time.)

• By contrast, the universality problem for Büchi automata is \(\text{PSPACE} \)-complete [Sistla & Vardi & Wolper, TCS 87].
Recapitulation

- **LTL formulae:**

 \[\varphi, \psi ::= p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid X \varphi \mid \varphi U \psi \]

- **Models:** \(\omega \)-sequences over \(\mathcal{P}(\text{PROP}) \).

- **Models(\(\varphi \)):** the set of sequences \(\rho \) in \(\mathcal{P}(\text{PROP})^\omega \) such that \(\rho, 0 \models \varphi \).

- Nonemptiness for GBA can be reduced (in logarithmic space) to nonemptiness for BA.

- The nonemptiness problem for Büchi automata can be solved in polynomial-time.
From LTL Formulae to Automata
LTL captured by Büchi automata

- $L(A) = \text{Models}(p \cup p')$.

```
{p, p'}, \{p\}
```

- There is a Büchi automaton A_φ s.t.
 1. $L(A_\varphi) = \text{Models}(\varphi)$; $|A_\varphi|$ is in $2^{O(|\varphi|)}$,
 2. A_φ can be effectively computed in polynomial space in $|\varphi|$.

[Vardi & Wolper, IC 94]

- Below, we briefly recall how A_φ is defined from φ.
Closure set

- Closure set contains all the formulae we need to consider to check satisfiability.

- Closure \(\text{cl}(\varphi) \) of \(\varphi \): smallest set
 - containing the subformulae of \(\varphi \),
 - closed under negation (we identify \(\neg\neg\psi \) with \(\psi \)),
 - if \(\chi_1 \cup \chi_2 \in \text{cl}(\varphi) \), then \(x(\chi_1 \cup \chi_2) \in \text{cl}(\varphi) \).

- Cardinal of \(\text{cl}(\varphi) \) is linear in the size of \(\varphi \).
Atom

- An atom is nothing but a maximally consistent subset of \(\text{cl}(\varphi) \).

- Atom \(X \): subset of \(\text{cl}(\varphi) \) s.t.

 1. for all formulae \(\psi \) in \(\text{cl}(\varphi) \), \(\psi \in X \) iff \(\neg \psi \notin X \),

 2. \(\psi_1 \land \psi_2 \in X \) iff \(\psi_1, \psi_2 \in X \),

 3. \(\psi_1 \lor \psi_2 \in X \) iff \(\psi_1 \in X \) or \(\psi_2 \in X \),
One-step consistent pairs

- \((Y, Y')\) is one-step consistent:
 - if \(\psi_1 \cup \psi_2 \in Y\), then \(\psi_2 \in Y\) or \((\psi_1 \in Y \text{ and } \psi_1 \cup \psi_2 \in Y')\).
 \((\psi_1 \cup \psi_2\) is equivalent to \(\psi_2 \lor (\psi_1 \land X\psi_1 \cup \psi_2)\).
 - for \(X\psi \in \text{cl}(\varphi)\), \(X\psi \in Y\) iff \(\psi \in Y'\).

- The states of \(A_\varphi\) are atoms and the transition relation contains one-step consistent pairs.

- Each state \(X\) of \(A_\varphi\) is a set of formulae that are intended to be satisfied from the current position.

- Either this satisfaction can be checked locally or the transition relation of \(A_\varphi\) allows us to propagate the constraints.
Defining A_φ

- GBA $A_\varphi = (\Sigma, Q, Q_0, \delta, F_1, \ldots, F_\alpha)$:
 - $\Sigma = \mathcal{P}\{p_1, \ldots, p_N\}$,
 - Q is the set of atoms,
 - Q_0 is the subset of atoms containing φ,
 - $X \xrightarrow{a} Y \in \delta$ iff $a = \{p_1, \ldots, p_N\} \cap X$ and (X, Y) is one-step consistent,
 - for $\psi_1 \cup \psi_2 \in \text{cl}(\varphi)$, there is exactly one set F_i such that $F_i = \{X \in Q : \text{either } \psi_1 \cup \psi_2 \notin X \text{ or } \psi_2 \in X\}$.

- Accepting conditions F_1, \ldots, F_α guarantee that the search for witnesses is not delayed forever.
Main properties for \mathbb{A}_φ

- $L(\mathbb{A}_\varphi) = \text{Models}(\varphi)$.

- Given a model $\rho : \mathbb{N} \rightarrow \mathcal{P}(\{p_1, \ldots, p_N\}) \in \text{Models}(\varphi)$, there is a unique accepting run $X_0 \xrightarrow{\rho(0)} X_1 \xrightarrow{\rho(1)} X_2 \xrightarrow{\rho(2)} \cdots$ in \mathbb{A}_φ s.t. (⋆) for $i \geq 0$ and $\psi \in \text{cl}(\varphi)$, we have
 $$\psi \in X_i \iff \rho, i \models \psi.$$

- Conversely, for each accepting run $X_0 \xrightarrow{a_0} X_1 \xrightarrow{a_1} X_2 \xrightarrow{a_2} \cdots$ in \mathbb{A}_φ, the model ρ defined by $\rho(i) = a_i$ for $i \geq 0$ satisfies (⋆).

- In the sequel, we write \mathbb{A}_φ to denote the Büchi automaton recognizing $\text{Models}(\varphi)$.

Full Presburger LTL for Counter Systems
New ingredients

- Models of the form \((q_0, \vec{x}_0), (q_1, \vec{x}_1), \ldots\).

- Control states \(q\) as atomic formulae.

- Arithmetical constraints about counter values \((x_1 > x_2)\).

- Comparing values at successive positions, e.g. \(x_1 > xx_2\).

- First-order quantification over counter values, e.g.
 \[\exists y \ G(x_1 \leq y) \approx \text{“Along the run, counter 1 is bounded.”}\]
LTLCS(PrA) syntax

- Queen logic LTLCS(PrA) (fragments are defined from it).
- Giving up the standard abstraction: propositional variables understood as properties about the current configuration.

- $\text{VAR}^p = \{y_1, y_2, \ldots\}$: set of integer variables.
- $\text{VAR} = \{x_1, x_2, \ldots\}$: set of counter variables.
- $\mathcal{Q} = \{q_1, q_2, \ldots\}$: set of control state symbols.

- LTLCS(PrA) formulae:
 \[
 \varphi ::= \psi \mid q \mid \varphi \land \varphi \mid \neg \varphi \mid X \varphi \mid \varphi \vee \varphi \mid \exists y \varphi
 \]

 - ψ is a Presburger formula with free variables included in $\text{VAR}^p \cup \text{VAR}$,
 - $q \in \mathcal{Q}$.

Satisfaction relation

- Model ρ of dimension n: element of $(Q \times \mathbb{N}^n)\omega$ with finite $Q \subseteq Q$.

- Environment \mathcal{E}: partial map $\text{VAR}^p \to \mathbb{N}$.

- $\rho, i \models \mathcal{E} \ q \overset{\text{def}}{\iff} q = q_i$.

- $\rho, i \models \mathcal{E} \ \psi \overset{\text{def}}{\iff} \mathbf{v}_i \models \psi$ in PrA
 with \mathbf{v}_i extends \mathcal{E} s.t. $\mathbf{v}_i(x_j) = \overrightarrow{x_i}(j) \ (j \in [1, n])$,
 assuming ψ is a Presburger formula with free variables in
 $\text{VAR}^p \cup \{x_1, \ldots, x_n\}$.

- $\rho, i \models \mathcal{E} \ \exists y \ \varphi \iff$ there is $k \in \mathbb{N}$ such that $\rho, i \models \mathcal{E}[y \mapsto k] \ \varphi$.

- $\rho, i \models \mathcal{E} \ x \varphi \overset{\text{def}}{\iff} \rho, i + 1 \models \mathcal{E} \ \varphi$.

- $\rho, i \models \mathcal{E} \ y \varphi$.
Decision problems for $\text{LTL}^{\text{CS}}(\text{PrA})$

- Semi-closed formula: no variable from VAR^p is free. $F(x_1 = y)$ is not semi-closed unlike $G(x_1 > x_2)$ and $\exists y \ G(x_1 \leq y)$.

- **Satisfiability Problem**

 Input: An $\text{LTL}^{\text{CS}}(\text{PrA})$ semi-closed formula φ with free counter variables x_1, \ldots, x_n.

 Question: Is there a model $\rho \in (Q \times \mathbb{N}^n)$ s.t. $\rho, 0 \models_\emptyset \varphi$?

- **Existential Model-Checking Problem**

 Input: CS $S = (Q, n, \delta)$, (q_0, \vec{x}_0) and semi-closed formula φ with free variables in $\{x_1, \ldots, x_n\}$.

 Question: Is there an infinite run ρ starting at (q_0, \vec{x}_0) such that $\rho, 0 \models_\emptyset \varphi$?

 (Infinite runs of CS are $\text{LTL}^{\text{CS}}(\text{PrA})$ models)
A simple reduction

- The control state repeated reachability problem can be reduced to the model-checking problem for $\text{LTL}^{CS}(\text{PrA})$.

- Let S, (q, \vec{x}) and q_f be an instance.

- Equivalence:
 - there is an infinite run from (q, \vec{x}) such that q_f is repeated infinitely often,
 - there is an infinite run ρ from (q, \vec{x}) such that $\rho, 0 \models G F q_f$.

- This can be extended to the sequence F_1, \ldots, F_N understood conjunctively and each F_i disjunctively.

\[\bigwedge_{i=1}^{N} \left(\bigvee_{q' \in F_i} G F q' \right) \]
Temporal logics with Presburger constraints

- Constraints on the number of event occurrences.
 [Bouajjani et al., LICS’95; Laroussinie et al., TIME’10]

- Constraints on XML documents.
 [Dal Zilio & Lugiez, RTA’03; Seidl et al, ICALP’04]

- LTL with first-order variables for log auditing.
 [Roger & Goubault-Larrecq, CSFW’01]

- Fairness logic for VASS [Jančar, TCS 90].

- and many many others . . .
LTL^{CS}(PrA) is sometimes too expressive!

- Model-checking restricted to LTL^{(Q)} is already undecidable …

- … but LTL^{CS}(PrA) restricted to formulae in which temporal operators are not in the scope of first-order quantification has a decidable satisfiability problem.

- Let us restrict first-order quantification on LTL^{CS}(PrA) to regain decidability for satisfiability.

- Two types of restrictions:
 - First-order quantification only to speak about successive counter values.
 - First-order quantification only to store a counter value and possibly perform equality tests later.
Fragments

\[
\text{LTL} \rightarrow \text{LTL}^\text{CS(PrA)} \rightarrow \text{CLTL(PrA)} \rightarrow \text{CLTL(QFP)} \rightarrow \text{CLTL(DL^+)} \rightarrow \text{CLTL(DL)} \rightarrow \text{CLTL(IPC*)} \rightarrow \text{LTL(Q)} \approx \text{LTL}
\]
Presburger LTL \(\text{CLTL}(\text{PrA}) \)
A macro for comparing successive counter values

• From PrA formula \(\psi(z_1, \ldots, z_k) \),

\[
\psi(X^{i_1}x_{j_1}, \ldots, X^{i_k}x_{j_k}) \overset{\text{def}}{=} \\
(\exists y_1, \ldots, y_k \ X^{i_1}(y_1 = x_{j_1}) \land \cdots \land X^{i_k}(y_k = x_{j_k}) \land \psi(y_1, \ldots, y_k)
\]

• For instance, \(x_1 = Xx_2 \) is obtained from \(z_1 = z_2 \).

• \(G(x_1 = Xx_1) \) states that first counter has constant value.

• CLTL(PrA): fragment of LTL^{CS}(PrA) by allowing quantification only in \(\psi(X^{i_1}x_{j_1}, \ldots, X^{i_k}x_{j_k}) \).

• \(X \) and \(x \) are of distinct nature but both refer to the next position.
The fragment CLTL(PrA)

- **Terms and formulae:**

 $t ::= 0 \mid 1 \mid X^i x \mid t + t$

 $\varphi ::= t \equiv_k t \mid t < t \mid q \mid \varphi \land \varphi \mid \neg \varphi \mid X \varphi \mid \varphi \cup \varphi.$

 with $x \in \text{VAR}$, $k > 1$ and $q \in \mathbb{Q}$.

- **NB:** no integer variables, quantifier-free Presburger formulae.

- $G(x_1 < X x_1)$ is satisfiable; $G(x_1 > X x_1)$ is not.

- $\sigma, i \models \psi(X^{l_1} x_1, \ldots, X^{l_n} x_n)$ iff

 $(\sigma_1(i + l_1)(x_1), \ldots, \sigma_1(i + l_n)(x_n)) \in \text{REL}(\psi)$ with

 - $\sigma = (\sigma_1, \sigma_2),$
 - $\sigma_1 : \mathbb{N} \rightarrow (\text{VAR} \rightarrow \mathbb{N}),$
 - $\sigma_2 : \mathbb{N} \rightarrow Q$ for some finite subset $Q \subseteq \mathbb{Q}$.

- Model-checking and satisfiability problems as subproblems for $\text{LTL}^{CS}(\text{PrA})$.
X-length

- **X-length of** φ: maximal l such that X^lx occurs in φ.

- **CLTLl_n(PrA):** restriction of **CLTL(PrA)** to formulae with at most n variables and X-length less or equal to l.

- There is a logspace reduction from the satisfiability problem for **CLTL(PrA)** to its restriction with X-length 1.
 - Expressions x_1, \ldots, X^3x_1 are encoded by

 $G(x'' = Xx' \land x' = Xx \land x = Xx_1)$

 - Xx_1 [resp. X^2x_1, X^3x_1] is replaced by x [resp. x', x''].
 - Take the conjunction.
Two fragments of \(\text{PrA} \)

- **Difference logic DL:**
 \[
 \varphi ::= x \sim y + d \mid x \sim d \mid \varphi \land \varphi \mid \neg \varphi
 \]
 with \(d \in \mathbb{Z}, \sim \in \{<, >, =\} \).

- **Quantifier-free Presburger arithmetic QFP:**
 \[
 \varphi ::= \sum_{i \in I} a_i x_i \sim d \mid \sum_{i \in I} a_i x_i \equiv_k c \mid \varphi \land \varphi \mid \neg \varphi
 \]
 \((c \in \mathbb{N}, k \geq 1, a_i’s \text{ in } \mathbb{Z})\).

- Satisfiability problem for QFP is NP-complete.

- **CLTL(\(L\)):** fragment of CLTL(\(\text{PrA}\)) to atomic formulae of the form \(\psi(X^{i_1}x_{j_1}, \ldots, X^{i_k}x_{j_k}) \) with \(\psi \in L \).
A bunch of complexity results

- DL-counter system: counter system such that the Presburger formulae labelling the transitions are in DL.

<table>
<thead>
<tr>
<th></th>
<th>MC (DL)</th>
<th>SAT</th>
<th>MC (CA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CLTL}^1_3(\text{DL})$</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>$\text{CLTL}^{\omega}_2(\text{DL})$</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>$\text{CLTL}^2_1(\text{DL})$</td>
<td>U</td>
<td>U</td>
<td>PSpace-c.</td>
</tr>
<tr>
<td>$\text{CLTL}^1_2(\text{DL})$</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>$\text{CLTL}^1_1(\text{DL or DL}^+)$</td>
<td>PSpace-c.</td>
<td>PSpace-c.</td>
<td>PSpace-c.</td>
</tr>
<tr>
<td>$\text{CLTL}^1_1(\text{QFP})$</td>
<td>U</td>
<td>U</td>
<td>PSpace-c.</td>
</tr>
<tr>
<td>$\text{CLTL}^{\omega}_1(\text{QFP})$</td>
<td>U</td>
<td>U</td>
<td>PSpace-c.</td>
</tr>
</tbody>
</table>
Satisfiability problem for $\text{CLTL}^{1}_3(\text{DL})$ is undecidable

- Simple reduction from halting problem for Minsky machines.

- Formulae in $\text{CLTL}^{1}_3(\text{DL})$ can easily internalize the instructions of Minsky machines.

- S has n instructions, the nth one halts.

- x_1 and x_2 encode counter values, x_3 encodes the instruction ordinal.

- S does not halt iff formula below is satisfiable:

$$\left(\bigwedge_{i \in [1, n]} \psi_i \right) \land x_1 = 0 \land x_2 = 0 \land x_3 = 1$$
Internalizing instructions from Minsky machines

- For “i: increment counter j and goto i’”

\[\psi_i \overset{\text{def}}{=} G(x_3 = i \Rightarrow (Xx_3 = i') \land (x_j + 1 = Xx_j) \land (x_{3-j} = Xx_{3-j})). \]

- For “i: if counter j equals zero then goto i’ else (decrement counter j; goto i’’):”

\[G(x_3 = i \Rightarrow ((x_j = 0 \Rightarrow (Xx_3 = i') \land (x_j = Xx_j) \land (x_{3-j} = Xx_{3-j})) \land (x_j \neq 0 \Rightarrow (Xx_3 = i'') \land (x_j - 1 = Xx_j) \land (x_{3-j} = Xx_{3-j})))) \]

- Satisfiability problem for $\text{CLTL}^1_2(\text{DL})$ is undecidable too.
LTL with Registers (a.k.a. Freeze LTL)
• A register can store a counter value and equality tests are performed between registers and counters.

\[j_r \varphi \overset{\text{def}}{=} \exists y_r \ (y_r = x_j \land \varphi) ;\]
\[j_r \overset{\text{def}}{=} y_r = x_j. \]

• Generalized disjunction

\[\bigvee_{i \geq 1} x_1 = x_i^i x_2 \]

\[\downarrow_1 x_F \uparrow_1^2 \]

\[\mathcal{G}(\downarrow^1 y \mathcal{G} \neg \uparrow_1^1) : \text{first counter has distinct values at distinct positions.} \]
Freeze operator

- Freeze quantifier in hybrid logics.

 \[\downarrow x \varphi: \varphi \text{ holds true in the variant model where } x \text{ is true only at the current state/world.} \]

 [Goranko 94; Blackburn & Seligman, JOLLI 95]

- Freeze quantifier in real-time logics.

 \[x \cdot \varphi(x) \text{ binds the variable } x \text{ to the current time } t. \]

 [Alur & Henzinger, JACM 94]

- Predicate \(\lambda \)-abstraction [Fitting, JLC 02].

 \[\langle x \cdot Fp(x) \rangle(c): \text{ current value of constant } c \text{ satisfies the predicate } p. \]

In LTL with registers, FO quantification is restricted to \(\downarrow \) and \(\uparrow \).
LTL with registers

- For $n \geq 1$, LTL$^\downarrow[n]$ formulae:

 $$
 \varphi ::= q \mid \uparrow_r^j \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \cup \varphi \mid \mathbf{X} \varphi \mid \downarrow_r^j \varphi
 $$

 where $q \in Q$, $j \in \{1, \ldots, n\}$ and $r \in \mathbb{N}^+$.

- Register valuation f: finite partial map from \mathbb{N}^+ to \mathbb{N}.

- Models: element of $(Q \times \mathbb{N}^n)\omega$ with finite $Q \subseteq Q$.

- Satisfiability relation:

 $$
 \rho, i \models_f \uparrow_r^j \iff r \in \text{dom}(f) \text{ and } f(r) = \vec{x}_i(j)
 $$

 $$
 \rho, i \models_f \downarrow_r^j \varphi \iff \rho, i \models_f[r \mapsto \vec{x}_i(j)] \varphi
 $$
Helpful properties

- **Nonce property:**
 \[G(\downarrow_1 XG \neg \uparrow_1)\]

- **There is a value of counter 1 such that infinitely often counter 2 takes that value iff infinitely often counter 3 takes that value:**
 \[F \downarrow_1 (GF \uparrow_2 \iff GF \uparrow_3)\]

- **Value of counter 1 is repeated on counter 2 but not on counter 3:**
 \[\downarrow_1 (F \uparrow_2 \land G \neg \uparrow_3)\]
Complexity of satisfiability problems

- Infinitary satisfiability problem for LTL$\downarrow[1]$ restricted to x and F and to a single register is undecidable.

- Finitary satisfiability problem for LTL$\downarrow[1]$ restricted to a single register is decidable but nonprimitive recursive. [Demri & Lazić, TOCL 09].

- Finitary satisfiability problem for LTL$\downarrow[1]$ restricted to a single register and to F is nonprimitive recursive too.

- Finitary satisfiability problem for LTL$\downarrow[1]$ restricted to F and to two registers is undecidable. [Figueira & Segoufin, MFCS’09]

- Nonprimitive recursiveness uses [Schnoebelen, IPL 02].
Gainy counter automata

- Gainy counter automata: standard counter automaton
 \((Q, n, \delta)\) s.t. for \(q \in Q\) and \(i \in [1, n]\), \(q \xrightarrow{\text{inc}(i)} q \in \delta\)

- Alternative one-step relation: \((q, \vec{x}) \xrightarrow{t} g (q', \vec{x}')\) iff there are \(\vec{y}, \vec{y}'\) in \(\mathbb{N}^n\) s.t.
 \[
 \vec{x} \preceq \vec{y} \quad (q, \vec{y}) \xrightarrow{t} (q', \vec{y}') \quad (\text{exact step}) \quad \vec{y}' \preceq \vec{x}'
 \]

- Gains can occur in a lazy way: decrement on zero has no effect.
• Control state reachability problem is decidable.

• Control state repeated reachability problem is undecidable (see Day 5).

• Reduction of the latter problem to satisfiability problem for $\text{LTL}^{\downarrow}[1]$ restricted to X and F and to a single register.
Simulating Gainy CA

- Gainy CA S with initial configuration $(q_0, \bar{0})$.
- For $t \in \delta$, $\Sigma(t)$ denotes the instruction labelling it in
 $\Sigma = \{\text{inc}(i), \text{dec}(i), \text{zero}(i) : i \in [1, n]\}$.
- Let us build φ in $\text{LTL}^\downarrow[1]$ s.t. φ is satisfiable iff $(S, (q_0, \bar{0}))$
 has an infinite run with q_f occurring infinitely often.
- φ is satisfiable only in models in which each position is
 labelled by a transition and by a value in \mathbb{N}.
- Each increment or decrement is associated to a unique value.
- Infinite models of φ are of the form

 $t_0 \quad t_1 \quad t_2 \quad t_3 \quad \ldots$

 $d_0 \quad d_1 \quad d_2 \quad d_3 \quad \ldots$

 with $t_i \in \delta$ (finite alphabet) and $d_i \in \mathbb{N}$ (infinite domain).
Simulating Gainy CA (II)

- Let us explain how the run from \((q_0, \vec{0})\) below is encoded.

\[
(q_0, \vec{x}_0) \xrightarrow{a_0} (q_1, \vec{x}_1) \xrightarrow{a_1} \cdots \xrightarrow{a_{K-1}} (q_K, \vec{x}_K) \cdots
\]

- Projection of the model over \(\delta\) is

\[
t_0\ t_1\ t_2\ \cdots = q_0 \xrightarrow{a_0} q_1,\ q_1 \xrightarrow{a_1} q_2, \cdots
\]

and \(q_f\) is repeated infinitely often.

- Initial state is \(q_0\):

\[
\bigvee_t \ t \quad t=q_0 \xrightarrow{a}\ q
\]

- The sequence of transitions respects \(S\):

\[
G(\bigwedge_{t=q \xrightarrow{a} q' \in \delta} (t \Rightarrow X \bigvee t'))
\]

\[
t'=q' \xrightarrow{a} q''
\]
Simulating Gainy CA (III)

- Control state q_f is visited infinitely often:

$$\mathsf{GF} \bigvee t$$

$$t=q^a \rightarrow q_f$$

- Below, \downarrow [resp. \uparrow] denotes \downarrow_1 [resp. \uparrow_1].

- For $a \in \Sigma$, a is also used as a shortcut for

$$\bigvee t$$

$$t=q^b \rightarrow q' \in \delta, \ a=b$$

- For $i, j \in [1, n]$, there are no two positions for increments having the same value:

$$\mathsf{G}(\mathsf{inc}(i) \Rightarrow \neg (\downarrow \mathsf{XF}(\uparrow \wedge \mathsf{inc}(j))))$$

- For $i, j \in [1, n]$, there are no two positions for decrements having the same value:

$$\mathsf{G}(\mathsf{dec}(i) \Rightarrow \neg (\downarrow \mathsf{XF}(\uparrow \wedge \mathsf{dec}(j))))$$
Simulating Gainy CA (IV)

- For each zero-test on i at position K, each increment on i before position K has a corresponding decrement on i before K.

- The two next conditions are formulated in such a way to avoid using the until operator \mathcal{U}.

- $I \sim K$: data value at position I is equal to data value at position K.

- For $i \in [1, n]$ and $J > I$, if $\Sigma(t_i) = \text{inc}(i)$ and $\Sigma(t_J) = \text{zero}(i)$, then there is no $K > J$ such that $\Sigma(t_K) = \text{dec}(i)$ and $I \sim K$:

$$G(\text{inc}(i) \Rightarrow \downarrow \neg (F(\text{zero}(i) \land (F(\uparrow \land \text{dec}(i)))))))$$
Simulating Gainy CA (V)

- For \(i \in [1, n] \) and \(J > I \), if \(\Sigma(t_I) = \text{inc}(i) \) and \(\Sigma(t_J) = \text{zero}(i) \), then there is no \(K > J \) such that \(\Sigma(t_K) = \text{dec}(i) \) and \(I \sim K \):

\[
G(\text{inc}(i) \Rightarrow \downarrow \neg (F(\text{zero}(i) \land (F(\uparrow \land \text{dec}(i)))))
\]

- For \(i \in [1, n] \), if there are \(J > I \) such that \(\Sigma(t_I) = \text{inc}(i) \) and \(\Sigma(t_J) = \text{zero}(i) \), then there is \(K > I \) such that \(\Sigma(t_K) = \text{dec}(i) \) and \(I \sim K \).

\[
G((\text{inc}(i) \land F \text{zero}(i)) \Rightarrow \downarrow (F(\text{dec}(i) \land \uparrow)))
\]

- \(\varphi \) is satisfiable iff \((S, (q_0, \vec{0})) \) has an infinite run such that \(q_f \) occurs infinitely often.
Related formalisms

• Register automata
 • Register automata [Kaminski & Francez, TCS 94]
 • Data automata [Bouyer & Petit & Thérien, IC 03]
 • See the survey [Segoufin, CSL 06]

• First-order languages [Bojańczyk et al., LICS 06]

• Temporal logics
 • Real-time logic TPTL [Alur & Henzinger, JACM 94]
 • LTL with freeze [D. & Lazić & Nowak, TIME 05]

• Many other formalisms
 • Rewriting systems with data [Bouajjani et al., FCT 07]
 • Hybrid logics [Schwentick & Weber, STACS 07]
 • . . .
Conclusion

• Today’s lecture:
 • Standard LTL
 • Logic $\text{LTL}^\text{CS}(\text{PrA})$ for counter systems
 • Presburger LTL
 • LTL with registers

• Tomorrow’s lecture:
 • VASS and FO2 over data words
 • Relationships between VASS, VAS and Petri nets
 • Coverability graphs in a nutshell
 • Covering problem in EXPSPACE