Introduction to Temporal Logics with Concrete Domains

Stéphane Demri demri@lmf.cnrs.fr

Étiolles, June 2023

(E \approx "there Exists a path", GF \approx "infinitely often")

 $x_1 < Xx_2$: "current value of x_1 is smaller than the value of x_2 at the neXt position".

Introductory Example

Is E
$$\underbrace{\mathsf{G}(x_1 = \mathsf{X}x_1 \land x_3 = \mathsf{X}x_3 \land x_1 < x_2 < \mathsf{X}x_2 < x_3)}_{= \phi}$$
 satisfiable?

•
$$\begin{pmatrix} 1\\ \frac{i+1}{i+2}\\ 0 \end{pmatrix}_{i \in \mathbb{N}} \models \phi \text{ with } (\mathbb{Q}, <).$$

• $\begin{pmatrix} b\\ a^{i+1}\\ \varepsilon \end{pmatrix}_{i \in \mathbb{N}} \models \phi \text{ with } \{a, b\}^* \text{ and lexico. ordering.}$

• No model for $(\mathbb{N}, <)$.

Linear-Time Temporal Logic LTL in a Nutshell

Specifying Properties on ω -sequences

- Linear-time temporal logic LTL. [Pnueli, FOCS'77]
- LTL models ρ are ω -sequences of propositional valuations of the form $\rho : \mathbb{N} \to \mathcal{P}(PROP)$.

• LTL formulae:

 $\phi, \psi ::= \pmb{p} \ \mid \ \neg \phi \ \mid \ \phi \wedge \psi \ \mid \ \phi \vee \psi \ \mid \ \mathsf{X} \phi \ \mid \ \phi \mathsf{U} \psi$

• $X\phi$ states that the next position satisfies ϕ :

Linear-Time Temporal Operators

• $\phi U \psi$ states that ϕ is true until ψ is true.

• $F\phi$ states that some future position satisfies ϕ .

(G ϕ states that ϕ is always satisfied.)

Satisfaction Relation

•
$$\rho, i \models p \Leftrightarrow p \in \rho(i),$$

•
$$\rho, i \models \neg \phi \Leftrightarrow \rho, i \not\models \phi$$
,

•
$$\rho, i \models \phi_1 \land \phi_2 \stackrel{\text{\tiny def}}{\Leftrightarrow} \rho, i \models \phi_1 \text{ and } \rho, i \models \phi_2,$$

•
$$\rho, i \models \mathsf{X}\phi \iff \rho, i+1 \models \phi$$
,

• $\rho, i \models \phi_1 \cup \phi_2 \stackrel{\text{def}}{\Leftrightarrow}$ there is $j \ge i$ such that $\rho, j \models \phi_2$ and $\rho, k \models \phi_1$ for all $i \le k < j$.

$$\mathsf{F}\phi \stackrel{\text{\tiny def}}{=} \top \mathsf{U}\phi \qquad \mathsf{G}\phi \stackrel{\text{\tiny def}}{=} \neg \mathsf{F}\neg\phi \qquad \phi \mathsf{R}\psi \stackrel{\text{\tiny def}}{=} \neg (\neg \phi \mathsf{U}\neg \psi)$$

Examples

- ϕ holds infinitely often: GF ϕ .
- Liveness: $G(messageSent \Rightarrow F messageReceived)$.
- Total correctness.

 $(\texttt{init} \land \texttt{precondition}) \Rightarrow \mathsf{F}(\texttt{end} \land \texttt{postcondition})$

• Strong fairness.

 $\mathsf{GF} \text{ processEnabled} \Rightarrow \mathsf{GF} \text{ processExecuted}$

Decision Problems

- Satisfiability problem for LTL.
 Input: LTL formula φ.
 Question: Is there any model ρ such that ρ, 0 ⊨ φ?
- Existential model-checking problem for LTL.
 Input: A finite transition system S = (S, R, v), s ∈ S and an LTL formula φ.
 Question: Is there any infinite run ρ from s such that ρ, 0 ⊨ φ?

Büchi Automata on Infinite Words

Büchi automata accepts ω-sequences in Σ^ω with acceptance condition *F*.

Generalised Büchi automata accepts ω-sequences in Σ^ω with acceptance condition F₁, F₂,..., F_k.

Büchi Automaton For $G(p_1 \Leftrightarrow Xp_2)$

Letters are subsets of $\{p_1, p_2\}$.

A Selection of Nice Properties

• Nonemptiness problem for Büchi automata is NLOGSPACE-complete.

[Emerson & Lei, SCP 1987; Vardi & Wolper, IC 1994]

- Büchi automata and monadic second-order logic MSO recognize the same class of ω -languages. [Büchi, 1962]
- MSO is interpreted over ρ : N → Σ using variable assignments V : (VAR₁ → N) + (VAR₂ → P(N)).

MSO Semantics

$$\phi := \mathsf{a}(x) \mid x < y \mid Y(x) \mid (\phi \land \phi) \mid \neg \phi \mid \exists x.\phi \mid \exists Y.\phi$$

$$\begin{split} \rho &\models_{\mathcal{V}} \mathsf{a}(x) \quad \text{iff} \quad \rho(\mathcal{V}(x)) = \mathsf{a} \\ \rho &\models_{\mathcal{V}} \mathbf{Y}(x) \quad \text{iff} \quad \mathcal{V}(x) \in \mathcal{V}(\mathbf{Y}) \\ \rho &\models_{\mathcal{V}} \phi \land \psi \quad \text{iff} \quad \rho \models_{\mathcal{V}} \phi \text{ and } \rho \models_{\mathcal{V}} \psi \\ \rho &\models_{\mathcal{V}} \exists x.\phi \quad \text{iff} \quad \text{there is } n \in \mathbb{N} \text{ s.t. } \rho \models_{\mathcal{V}[x \mapsto n]} \phi \\ \rho &\models_{\mathcal{V}} \exists \mathbf{Y}.\phi \quad \text{iff} \quad \text{there is } \mathcal{X}^{\dagger} \subseteq \mathbb{N} \text{ s.t. } \rho \models_{\mathcal{V}[Y \mapsto \mathcal{X}^{\dagger}]} \phi \end{split}$$

 First-order logic FO over Σ^ω obtained by removing second-order variables in VAR₂.

Automata-Based Approach

- In general, to reduce logical problems to decision problems on automata. See e.g. [Büchi, 1962; Vardi & Wolper, IC 1994]
- Given an LTL formula φ over {p₁,..., p_n}, design a Büchi automaton B_φ over Σ = P({p₁,..., p_n}) s.t. for all ρ : N → Σ, we have ρ, 0 ⊨ φ iff ρ ∈ L(B_φ).
- Model-checking problem admits a similar reduction by checking L(B_{S,s}) ∩ L(B_φ) ≠ Ø.

Preliminary Definitions

- φ in negation normal form (using release R dual of U), negation in front of propositional variables only.
- Closure set $cl(\phi)$ is the smallest set
 - containing ϕ and closed under subformulae,
 - $\phi_1 U \phi_2 \in cl(\phi) \text{ implies } X(\phi_1 U \phi_2) \in cl(\phi),$
 - $\phi_1 \mathsf{R}\phi_2 \in cl(\phi) \text{ implies } \mathsf{X}(\phi_1 \mathsf{R}\phi_2) \in cl(\phi).$
- $\mathcal{X} \subseteq cl(\phi)$ is propositionally consistent iff
 - (for no propositional variable p, we have $\{p, \neg p\} \subseteq \mathcal{X}$,)
 - if $\phi_1 \lor \phi_2 \in \mathcal{X}$, then $\{\phi_1, \phi_2\} \cap \mathcal{X} \neq \emptyset$,
 - if $\phi_1 \land \phi_2 \in \mathcal{X}$, then $\{\phi_1, \phi_2\} \subseteq \mathcal{X}$,
 - $\text{ if } \phi_1 \mathsf{U} \phi_2 \in \mathcal{X} \text{, then } \{\phi_1, \mathsf{X}(\phi_1 \mathsf{U} \phi_2)\} \subseteq \mathcal{X} \text{ or } \phi_2 \in \mathcal{X} \text{,}$
 - if $\phi_1 R \phi_2 \in \mathcal{X}$, then $\{\phi_1, X(\phi_1 R \phi_2)\} \cap \mathcal{X} \neq \emptyset$ and $\phi_2 \in \mathcal{X}$.

A Construction of \mathbb{B}_{ϕ}

- $\mathbb{B}_{\phi} = (Q, \Sigma, Q_{\text{in}}, \delta, F_1, \dots, F_k).$
- Q is the set of propositionally consistent subsets of $cl(\phi)$.

•
$$\Sigma = \mathcal{P}(\{p_1, \ldots, p_n\}); Q_{in} = \{\mathcal{X} \in Q \mid \phi \in \mathcal{X}\}.$$

• $\mathcal{X} \xrightarrow{a} \mathcal{X}' \in \delta$ iff the conditions below hold. - $p \in \mathcal{X}$ implies $p \in a$; $\neg p \in \mathcal{X}$ implies $p \notin a$, - for all $X\psi \in \mathcal{X}$, we have $\psi \in \mathcal{X}'$.

$$\{p, \neg q, p \cup q, X(p \cup q)\} \xrightarrow{\{p, r\}} \{q, p \cup q\}$$

• If the U-formulae in ϕ are $\phi_1 U \psi_1, \ldots, \phi_k U \psi_k$,

$$F_i = \{ \mathcal{X} \mid \psi_i \in \mathcal{X} \text{ or } \phi_i \mathsf{U} \psi_i \notin \mathcal{X} \}.$$

About \mathbb{B}_{ϕ}

- The location \mathcal{X} is understood as an obligation for the remaining of the ω -word to satisfy all the formulae in \mathcal{X} .
- Many other constructions exist See e.g. [Gastin & Oddoux, CAV'01]
- card(Q) is exponential in the size of ϕ .
- Nonemptiness of L(B_φ) can be checked in polynomial space in the size of φ.

Time to Wrap Up

• Satisfiability problem for LTL is PSPACE-complete.

[Sistla & Clarke, JACM 85]

- Model-checking problem for LTL is PSPACE-complete. [Sistla & Clarke, JACM 85]
- LTL has good expressive power.
 - LTL expressively equivalent to FO. [Kamp, PhD 1968]
 - Other characterisations in [Diekert & Gastin, Chapter 2008]

Beyond plain LTL

• Branching-time temporal logics.

• Enriched operational models (counter machines, timed automata, pushdown systems).

• More linear-time temporal connectives, LTL games, ...

LTL with Concrete Domains

Concrete Domains in TCS

- Constraint satisfaction problems (CSP).
- Satisfiability Modulo Theory (SMT) solvers. String theories, arithmetical theories, array theories, etc. See e.g. [Barrett & Tinelli, Handbook 2018]
- Description logics with concrete domains. [Baader & Hanschke, IJCAI'91, Lutz, PhD 2002]
- Temporal logics with arithmetical constraints.
 See e.g. [Bouajjani et al., LiCS 95; Comon & Cortier, CSL'00]
- Verification of database-driven systems. [Deutsch et al., SIGMOD 2014; Felli et al., AAAI'22]

A Fundamental Model: Data Words (term coined by [Bouyer & Petit & Thérien, CONCUR'01])

• Timed word

[Alur & Dill, TCS 1994]

а	b	С	а	а	b
0	0.3	1	2.3	3.5	3.51

Runs from counter machines

- Abstract data words [Bouyer & Petit & Thérien, IC 03]
- Extension to trees, e.g. data trees for XML documents [Bojańczyk et al., PODS'06; Jurdzinski & Lazić, LiCS'07]

Concrete Domains

- Concrete domain D = (D, R₁, R₂,...): fixed non-empty domain with a family of relations.
- ($\mathbb{N}, <, +1$), ($\mathbb{Q}, <, =$), ($\mathbb{N}, <, =$), ($\{0, 1\}^*, \preceq_{\mathsf{pre}}, \preceq_{\mathsf{suf}}$).
- Concrete domain RCC8 with space regions in R² contains topological relations between spatial regions.

See e.g. [Wolter & Zakharyaschev, KR'00]

Constraints

- Terms are built from variables x.
- Constraint Θ: Boolean combination of atomic constraints of the form R(t₁,...,t_d).

$$(x_1=x_2+x_3)\vee(x_1>x_4)$$

• Constraints are interpreted on valuations $\mathfrak v$ that assign elements from $\mathbb D$ to the terms and

$$\mathfrak{v}\models R(\mathtt{t}_1,\ldots,\mathtt{t}_d) ext{ iff } (\mathfrak{v}(\mathtt{t}_1),\ldots,\mathfrak{v}(\mathtt{t}_d))\in R^\mathcal{D}.$$

 A constraint Θ over D is satisfiable ⇔^{def} there is a valuation v such that v ⊨ Θ.

Linear Models in $(\mathbb{D}^{\beta})^{\omega}$

 $\mathfrak{v}_i: \{x_1,\ldots,x_\beta\} \to \mathbb{D}.$

LTL(\mathcal{D}): LTL with Concrete Domain \mathcal{D}

$$\phi ::= R(t_1, \ldots, t_d) \mid \phi \land \phi \mid \neg \phi \mid \mathsf{X}\phi \mid \phi \mathsf{U}\phi$$

- The t_i's are terms of the form X^jx and 'Xx' refers to the next value of x.
- LTL(\mathcal{D}) model $\rho : \mathbb{N} \times \text{VAR} \to \mathbb{D}$.

Satisfaction relation

•
$$\rho(i, \mathsf{X}^{j}x) \stackrel{\text{\tiny def}}{=} \rho(i+j, x).$$

•
$$\rho, i \models R(t_1, \dots, t_d) \stackrel{\text{\tiny def}}{\Leftrightarrow} (\rho(i, t_1), \dots, \rho(i, t_d)) \in R^{\mathcal{D}}$$

•
$$\rho, i \models \mathsf{X}\phi \ \stackrel{\text{\tiny def}}{\Leftrightarrow} \ \rho, i + 1 \models \phi$$

<i>x</i> ₁	0	<u>3</u> 8	$\frac{1}{9}$	3	
<i>x</i> ₂	$\frac{1}{2}$	0	<u>3</u> 4	2	$\dots \qquad \qquad$
<i>X</i> 3	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	1	$= F(x_2 < AAx_3)$
<i>x</i> ₄	1	2	3	4	

Simple Properties

• "Infinitely often x is a prefix of the next value for y"

$$GF(x \leq_{pre} Xy)$$

• "The value for x is strictly decreasing"

• "The value for x is equal to some future value of y"

$$\mathsf{G}(x^{\mathit{new}} = \mathsf{X}x^{\mathit{new}}) \land x = x^{\mathit{new}} \land \mathsf{F}(x^{\mathit{new}} = y)$$

Back to (Constraint) Automata

 $3 \longrightarrow 2 \longrightarrow 28 \longrightarrow 29 \longrightarrow 28 \longrightarrow 35 \longrightarrow 36 \dots$

Definition

- \mathcal{D} -automaton $\mathbb{A} = (Q, \beta, Q_{in}, \delta, F)$ with β variables:
 - -Q is a non-empty finite set of locations,
 - Set $Q_{in} \subseteq Q$ of initial states; set $F \subseteq Q$ of accepting states,
 - δ is a finite subset of $Q \times Bool(\mathcal{D}, \beta) \times Q$, where $Bool(\mathcal{D}, \beta)$ is the set of \mathcal{D} -constraints over $\{x_1, \ldots, x_\beta\} \cup \{Xx_1, \ldots, Xx_\beta\}.$
- $\mathfrak{v}_0\mathfrak{v}_1\cdots\in \mathrm{L}(\mathbb{A}) \stackrel{\text{\tiny def}}{\Leftrightarrow}$ there is $q_0\stackrel{\Theta_0}{\to}q_1\stackrel{\Theta_1}{\to}\cdots$ such that
 - $q_0 \in Q_{\text{in}}$ and some $q \in F$ occurs ∞ -often in $q_0q_1q_2\cdots$.
 - for all $i \in \mathbb{N}$, $q_i \xrightarrow{\Theta_i} q_{i+1} \in \delta$ and $\mathfrak{v}_i, \mathfrak{v}_{i+1} \models \Theta_i$.

Decision Problems

- Nonemptiness problem for *D*-automata.
 Instance: A *D*-automaton A.
 Question: Is L(A) ≠ Ø?
- Satisfiability problem for LTL(D):
 Instance: A LTL(D) formula φ.
 Question: Is there a model ρ such that ρ, 0 ⊨ φ?
- Existential model-checking problem for LTL(D):
 Instance: A D-automaton A and a LTL(D) formula φ.
 Question: is there a model ρ such that ρ, 0 ⊨ φ and ρ ∈ L(A)?
- Satisfiability for LTL(N, =, +1) is undecidable.
 Flat Presburger LTL is decidable. [Comon & Cortier, CSL'00]

Symbolic Models

- $Atoms(\mathcal{D}, \beta)$: set of atomic constraints built over $\{x_1, \ldots, x_\beta\}$ and $\{Xx_1, \ldots, Xx_\beta\}$.
- $\mathcal{X} \subseteq Atoms(\mathcal{D}, \beta)$ is understood as the constraint $(\bigwedge_{\theta \in \mathcal{X}} \theta) \land (\bigwedge_{\theta \in (Atoms(\mathcal{D}, \beta) \setminus \mathcal{X})} \neg \theta).$
- Symbolic model $w : \mathbb{N} \to \mathcal{P}(Atoms(\mathcal{D}, \beta)).$

• w is \mathcal{D} -satisfiable $\stackrel{\text{def}}{\Leftrightarrow}$ there is $\rho : \mathbb{N} \times \{x_1, \dots, x_\beta\} \to \mathbb{D}$ such that for all $i, \{\theta \in Atoms(\mathcal{D}, \beta) \mid \rho, i \models \theta\} = w(i)$.

•
$$\rho, i \models x = Xy$$
 iff $\rho(i, x) = \rho(i + 1, y)$.

A Selection of Problems

- $L(\mathbb{A}) \neq \emptyset$ iff for some $w : \mathbb{N} \to \mathcal{P}(Atoms(\mathcal{D}, \beta))$,
 - w is \mathcal{D} -satisfiable and,
 - there is an accepting run $q_0 \xrightarrow{\Theta_0} q_1 \xrightarrow{\Theta_1} \cdots$ such that for all $i \in \mathbb{N}$, we have $w(i) \models \Theta_i$.

•
$$\mathbf{w}(i) \models \Theta_i \stackrel{\text{def}}{\Leftrightarrow} (\bigwedge_{\theta \in \mathbf{w}(i)} \theta) \land (\bigwedge_{\theta \in (Atoms(\mathcal{D},\beta) \setminus \mathbf{w}(i))} \neg \theta) \Rightarrow \Theta_i \text{ is valid.}$$

- Given D, how to characterise the class of D-satisfiable symbolic models? ({x > Xx}^ω not N-satisfiable)
- Can the class of *D*-satisfiable symbolic models be expressed with a given formalism?

(e.g. with Büchi automata)

Automata-Based Approach Still Applies!

• In the presence of equality, renaming technique allows us to restrict to x's and Xx's.

$$x < \mathsf{XX}y \mapsto \mathsf{G}(y_1 = \mathsf{X}y_0 \land y_2 = \mathsf{X}y_1) \land x < y_2$$

• Given $\phi \in LTL(\mathcal{D})$, there is a \mathcal{D} -automaton \mathbb{A}_{ϕ} such that

$$\mathrm{L}(\mathbb{A}_{\phi}) = \{ \rho : \mathbb{N} \times \{ x_1, \dots, x_{\beta} \} \to \mathbb{D} \mid \rho, \mathbf{0} \models \phi \}$$

Automata Construction

- φ in negation normal form (using R), negation only in atomic constraints in Bool(D, β).
- Closure set $cl(\phi)$ and propositionally consistent sets defined as for LTL.

•
$$\mathbb{A}_{\phi} = (Q, \beta, Q_{\text{in}}, \delta, F_1, \dots, F_k).$$

 Q is the set of propositionally consistent subsets of cl(φ), Q_{in} = {X ∈ Q | φ ∈ X} and the F_i's are defined as for LTL formulae.

•
$$\mathcal{X} \xrightarrow{\Theta} \mathcal{X}' \in \delta$$
 iff Θ is equal to $(\bigwedge_{\Theta' \in \mathcal{X}} \Theta')$ and for all $X\psi \in \mathcal{X}$, we have $\psi \in \mathcal{X}'$.

 $\{x < Xy, \neg(z=0), X(x < XyU\neg(z=0))\} \xrightarrow{x < Xy \land \neg(z=0)} \{\neg(z=0), x < XyU\neg(z=0)\}$

Three Ways for Deciding $\operatorname{LTL}(\mathcal{D})$

Dense and Open ($\mathbb{Q}, <, =$): the Easy Way

- Symbolic model w is Q-satisfiable iff for all i ∈ N, (LocalSat) (Λ_{θ∈w(i)} θ) ∧ (Λ_{θ∈(Atoms(D,β)\w(i))} ¬θ) is satisfiable, (OneShift) {Xx₁,...,Xx_β} in w(i) and {x₁,...,x_β} in w(i + 1) coincide.
- The set of \mathbb{Q} -satisfiable symbolic models is ω -regular.
- $SAT(LTL(\mathbb{Q}, <, =))$ is PSPACE-complete.

[Balbiani & Condotta, FroCoS'02]

• SAT(LTL(RCC8)) is PSPACE-complete too.

[Balbiani & Condotta, FroCoS'02]

How to Handle Non- ω -Regularity?

- Given (N, <, =), the set SatSMod(N) of N-satisfiable symbolic models is not ω-regular. (forthcoming hints)
- Option 1: Go beyond Büchi automata (equivalently extend MSO with new features).
- Option 2: Perform an analysis on accepting runs for ℕ-constraint automata.
- Option 3: Stick to Büchi automata but use adequate approximations.

What's Next?

- Characterisation of \mathcal{D} -satisfiable symbolic models for $\mathcal{D} = (\mathbb{N}, <, =).$
- EHD approach with MSO extensions. (Option 1)
- Analysis of runs in constraint N-automata. (Option 2)
- Approximation condition (Approx) for (ℕ, <, =) with ultimately periodic symbolic models. (Option 3)
- If time permits, global constraints on data values.

Characterisation for $(\mathbb{N}, <, =)$

- Symbolic model w : N → P(Atoms(N, β)) understood as an infinite labelled graph on N × {x₁,..., x_β}.
- A simple non N-satisfiable symbolic model.

- Strict length of the finite path π : slen $(\pi) \stackrel{\text{def}}{=}$ number of edges labelled by <.
- Strict length of (*i*, *x*):

 $\operatorname{slen}((i, x)) \stackrel{\text{\tiny def}}{=} \sup \left\{ \operatorname{slen}(\pi) : \text{ finite path } \pi \text{ leading to } (i, x) \right\}$

\mathbb{N} -Satisfiable Symbolic Models

• Symbolic model w is ℕ-satisfiable iff

(LocalSat)
$$(\bigwedge_{\theta \in w(i)} \theta) \land (\bigwedge_{\theta \in (Atoms(\mathcal{D},\beta) \setminus w(i))} \neg \theta)$$
 is satisfiable for all *i*,

(OneShift)
$$\{Xx_1, \ldots, Xx_\beta\}$$
 in $w(i)$ and $\{x_1, \ldots, x_\beta\}$ in $w(i+1)$ coincide for all i ,

(FiniteSLength) any node has a finite strict length.

[Cerans, ICALP'94; Demri & D'Souza, IC 07;Carapelle & Kartzow & Lohrey, CONCUR'13; Exibard & Filiot & Khalimov, STACS'21]

The EHD Approach

- The set of N-satisfiable symbolic models is not ω-regular but can it be captured by decidable extensions of MSO?
- Starting point of the EHD approach with the bounding quantifier B. [Carapelle & Kartzow & Lohrey, CONCUR'13]
- $\rho : \mathbb{N} \to \Sigma, \ \mathcal{V} : (\text{VAR}_1 \to \mathbb{N}) + (\text{VAR}_2 \to \mathcal{P}(\mathbb{N})).$
- $\rho \models_{\mathcal{V}} \mathsf{B}Y.\phi \Leftrightarrow^{\mathsf{def}}$ there is bound $b \in \mathbb{N}$ such that whenever $\rho \models_{\mathcal{V}[Y \mapsto \mathcal{X}^{\dagger}]} \phi$ for some finite set $\mathcal{X}^{\dagger} \subseteq \mathbb{N}$, $\mathsf{card}(\mathcal{X}^{\dagger}) \leq b$. [Bojańczyk, CSL'04]
- B well-designed to express (StrictSLength).
 (Idea: "for any node n, any path labelled by (< ∪ =)⁺ leading to n has a bounded number of edges

Decidable \mathbf{MSO} Extensions with B

- Satisfiability MSO+B is undecidable over ω-words. [Bojańczyk & Parys & Toruńczyk, STACS'16]
- Satisfiability WMSO+B is decidable over infinite trees of finite branching degree. [Bojańczyk & Toruńczyk, STACS'12]
- Boolean combinations of MSO and WMSO+B (BMW) is decidable over infinite trees of finite branching degree. [Carapelle & Kartzow & Lohrey, JCSS 2016]
- Negation-closed D with EHD(BMW)-property. Satisfiability problem for CTL*(D) is decidable. [Carapelle & Kartzow & Lohrey, JCSS 2016] (tree model property + decidability of BMW)

EHD Approach: Two Conditions

- D negation-closed if complements of relations definable by positive existential first-order formulae over D. (¬(x = n) ⇔ ∃ y (y = n) ∧ ((x < y) ∨ (y < x)))
- 2) EHD(BMW) property for symbolic models. There is ϕ_{SAT} in BMW for ω -words such that w is N-satisfiable iff w $\models \phi_{SAT}$.
 - EHD = "the Existence of a Homomorphism is Definable".
 - 2) EHD(BMW) property (complete version).
 For every finite subsignature τ, one can compute φ_τ such that for every countable τ-structure S, there is an homomorphism from S to D iff S ⊨ φ_τ.

 $\approx \mathcal{D}\text{-satisfiability}$

New Decidability Results

- $(\mathbb{Z}, <, =, (=_n)_{n \in \mathbb{Z}})$ has the EHD(BMW)-property.
- The satisfability problem for CTL*(Z, <, =, (=_n)_{n∈Z}) is decidable. [Carapelle & Kartzow & Lohrey, JCSS 2016]

 Concept satisfiability w.r.t. general TBoxes for description logic ALCF^P(Z, <, =, (=_n)_{n∈Z}) is decidable. [Carapelle & Turhan, ECAl'16]

\mathbb{N} -automata

- EHD powerful for decidability, unsatisfactory for complexity!
- Concrete domains D = (D, <, P₁, ..., P_I, =_{∂1}, ..., =_{∂m}), where (D, <) is a linear ordering and the P_i's are unary relations. [Segoufin & Toruńczyk, STACS'11]
- Existence of accepting runs characterised by existence of extensible lassos.

$$\lambda^{\omega}$$

N-Automata: Extensible Lassos

A has an accepting run iff there are finite runs π, λ s.t. **1** $\pi = (q_I, \vec{x_0}) \xrightarrow{*} (q_F, \vec{x})$ and $\lambda = (q_F, \vec{x}) \xrightarrow{+} (q_F, \vec{y})$

2 "type(\vec{x}) = type(\vec{y})", $\vec{x} \leq \vec{y}$ and $dv(\vec{x}) \leq dv(\vec{y})$.

$$0^{\frac{7}{2}}7^{\frac{2}{2}}9^{\frac{6}{1}}15 \quad \operatorname{dv}(\begin{pmatrix}15\\9\\7\end{pmatrix}) = \begin{pmatrix}7\\2\\6\end{pmatrix}$$

 \vec{x} \vec{y} Conditions (2) and (3) allow us to repeat infinitely λ .

3 For all $j \in [1, k]$ such that $\vec{x}[j] = \vec{y}[j]$, there is no j' such that $\vec{x}[j'] < \vec{y}[j']$ and $\vec{x}[j'] < \vec{x}[j]$.

N-Automata: Lasso Detection in PSpace

- Existence of finite runs π , λ can be checked in PSPACE.
- The non-emptiness problem for (N, <)-automata is PSPACE-complete. [Segoufin & Toruńczyk, STACS'11]
- A similar method used in [Kartzow & Weidner, arXiv 2015].
- PSPACE-completeness with the concrete domains

•
$$\mathcal{D}_{\mathbb{Q}^*} = (\mathbb{Q}^*; \leq_{\mathsf{pre}}, \leq_{\mathsf{lex}}, =_{\mathfrak{d}_1}, \dots, =_{\mathfrak{d}_m}).$$

• $\mathcal{D}_{[1,\alpha]^*} = ([1,\alpha]^*; \leq_{\mathsf{pre}}, \leq_{\mathsf{lex}}, =_{\mathfrak{d}_1}, \dots, =_{\mathfrak{d}_m}), \alpha \ge 2.$
[Kartzow & Weidner, arXiv 2015]

Ultimately Periodic Models

• A symbolic model w is ultimately periodic iff w of the form

$$\mathtt{w}(0)\cdots \mathtt{w}(\mathit{I}-1)\cdot ig(\mathtt{w}(\mathit{I})\cdots \mathtt{w}(\mathit{I}+\mathit{J})ig)^{\omega}$$

- Characterisation for ℕ-satisfiable ultimately periodic models might be simpler than the general case.
- Reminder: L(A) ≠ Ø iff ∃ w : N → P(Atoms(N, β)),
 1) w is N-satisfiable and,
 - 2) there is an accepting run $q_0 \xrightarrow{\Theta_0} q_1 \xrightarrow{\Theta_1} \cdots$ such that for all $i \in \mathbb{N}$, we have $w(i) \models \Theta_i$ (Büchi automaton \mathbb{B}_2).

Forthcoming Features of (Approx)

lf

- Condition (Approx) is ω -regular (Büchi automaton \mathbb{B}_1).
- For all ultimately periodic symbolic models w,
 w is ℕ-satisfiable iff w satisfies (Approx).
- Symbolic models built from $(\mathbb{N}^{\beta})^{\omega}$ satisfy (Approx).

Then

$$L(\mathbb{B}_1) \cap L(\mathbb{B}_2) \neq \emptyset$$
 iff $L(\mathbb{A}) \neq \emptyset$.

Condition (Approx)

Symbolic model w satisfies the condition (Approx) iff (LocalSat) and (OneShift).

- **2** There is no infinite $(j_1, z_1) \xrightarrow{a_1} (j_2, z_2) \xrightarrow{a_2} (j_3, z_3) \cdots$ s.t. $\{a_1, a_2, \ldots\} \subseteq \{=, >\}$ and infinitely often a_j 's equals >.
- **3** There do not exist nodes $\star\star$ and $\dagger\dagger$ such that

with infinite amount of $\stackrel{>}{\rightarrow}$ from $\star\star$ on top path and finite amount of $\stackrel{>}{\rightarrow}$ from $\dagger\dagger$ on bottom path

 $(\mathsf{LocalSat}) \land (\mathsf{OneShift}) \land (\mathsf{FiniteSLength}) \Rightarrow (\mathsf{Approx})$

Properties of (Approx)

- Ultimately periodic symbolic model w. Equivalence btw.
 - w is ℕ-satisfiable.
 - w satisfies (Approx).

[Demri & D'Souza, IC 2007; Exibard & Filiot & Reynier, STACS'21]

- The class of symbolic models satisfying (Approx) is ω -regular.
- By-products:
 - Non-emptiness problem for \mathbb{N} -automata is in PSPACE.
 - Satisfiability problem for $LTL(\mathbb{N}, <, =)$ is in PSPACE.
- Results apply to $(\mathbb{Z},<,=)$ with adequate adaptations.

SatSMod(\mathbb{N}) is Not ω -Regular

Non ℕ-satisfiable symbolic model w^{*} satisfying (Approx).

- Ad absurdum, suppose $\mathsf{SatSMod}(\mathbb{N})$ is ω -regular.
- $\overline{\mathsf{SatSMod}(\mathbb{N})} \cap (\mathsf{Approx})$ is ω -regular and contains w^* .
- SatSMod(N) ∩ (Approx) contains an ultimately periodic symbolic model w[†] satisfying (Approx).
- So, w^{\dagger} is \mathbb{N} -satisfiable, contradiction.

Global Constraints on Data Values

Global Constraints

• So far, constraints have a local scope.

Global constraints have unbounded scope.

"The variable x never takes twice the same value."

$$\mathbb{G}(\neg(x=\langle op
angle x))$$

LTL with Registers

- ↓_{r=x} φ states that freezing the value of x in the register r makes true the formula φ.
- Registers in $RVAR = \{r, s, t, ...\}.$
- $LTL^{\downarrow}(\mathcal{D})$ formulae:

 $\phi ::= R(\mathtt{t}_1, \ldots, \mathtt{t}_d) \mid \phi \land \phi \mid \neg \phi \mid \uparrow_{\mathtt{r}=\mathtt{y}} \mid \downarrow_{\mathtt{r}=\mathtt{x}} \phi \mid \mathsf{X}\phi \mid \phi \mathsf{U}\phi,$

• Environment $env : RVAR \to \mathbb{D}, \rho : \mathbb{N} \times VAR \to \mathbb{D}.$

•
$$\rho, i \models_{env} \downarrow_{\mathbf{r}=x} \phi \stackrel{\text{def}}{\Leftrightarrow} \rho, i \models_{env[\mathbf{r} \mapsto \rho(i,x)]} \phi.$$

- $\rho, i \models_{env} \uparrow_{\mathbf{r}=y} \stackrel{\text{def}}{\Leftrightarrow} env(\mathbf{r}) = \rho(i, y).$
- We use \uparrow_y and \downarrow_x when there is a single register.
- All values for x at distinct positions are distinct:

$$\mathsf{G}(\downarrow_x \mathsf{XG} \neg \uparrow_x)$$

Similar Storing Mechanisms

• Freeze quantifier in hybrid logics.

[Goranko 94; Blackburn & Seligman, JOLLI 95]

- Freeze quantifier in real-time logics. [Alur & Henzinger, JACM 94] $y \cdot \phi(y)$ binds the variable y to the current time t.
- Past LTL with Now operator (forgettable past). [Laroussinie & Markey & Schnoebelen, LiCS'02]

Complexity of Satisfiability Problems

 Satisfiability for LTL[↓](N, =) restricted to one register and to the temporal operator F is undecidable.

[Figueira & Segoufin, MFCS'09]

- Satisfiability for LTL[↓](N,=) restricted to one register and all occurrences of U are under an even number of negations is EXPSPACE-complete. [Lazić, FSTTCS'11]
- More results about FO over (infinite) data words.

[Bojańczyk et al., LiCS 06]

Repeating Values as a Storing Mechanism

• LTL^{$\langle \top \rangle$}(\mathcal{D}): extension of LTL(\mathcal{D}) with $x = \langle \top \rangle y$.

•
$$x = \langle \top \rangle y \approx \downarrow_{r=x} XF \uparrow_{r=y}$$
.

 Satisfiability problem for LTL^(T)(N, <, =) is undecidable. [Carapelle, PhD 2015]

Repeating Values with $(\mathbb{N}, =)$ • LTL⁽⁾ $(\mathbb{N}, =)$: extension of LTL $(\mathbb{N}, =)$ with $x = \langle \phi \rangle y$ and $x \neq \langle \phi \rangle y$.

•
$$x = \langle \phi \rangle y \approx \downarrow_{\mathbf{r}=x} \mathsf{XF} (\uparrow_{\mathbf{r}=y} \land \phi).$$

- Satisfiability for LTL⁽⁾(ℕ, =) is 2EXPSPACE-complete. [Demri & Figueira & Praveen, LMCS 2016]
- Lower bound by reduction from control-state reachability for chained systems.

Conclusion

Recapitulation

- Introduction to LTL with concrete domain \mathcal{D} and to constraint \mathcal{D} -automata.
- Presentation of several methods for handling classes of satisfiable symbolic models that are not ω -regular.
 - **1** Extending MSO while preserving decidability: EHD approach.
 - 2 Analysis of runs for *D*-automata (for linear domains or string domains).
 - Overapproximation using standard Büchi automata over finite alphabets.
- Brief introduction to global constraints including the freeze operator and its restrictions for repeating values.

Other Extensions

Tree-like extensions, description logics.
 [Bozzelli & Gascon, LPAR'06; Figueira, ToCL 2012; Labai et al., KR'20]

- More concrete domains such as string domains. [Kartzow & Weidner, arXiv 2015; Peteler & Quaas, MFCS'22] (N. Dumange –LMF– works on regularity constraints)
- Beyond satisfiability: model-checking, synthesis etc.. [Gascon, M4M'09; Bollig et al., LMCS 2019] [Exibard et al., STACS'21; Bhaskar & Praveen, TIME'22]
- Relationships with counter machines, register automata, constraint automata, etc.

[Segoufin, CSL'06; Kartzow & Weidner, arXiv 2015]