Logical Investigations on Separation Logics

Day 5: Decision Procedures

Stéphane Demri (CNRS) & Morgan Deters (NYU)

ESSLLI 2015, Barcelona, August 2015
Plan of the talk

▶ Yesterday’s lecture:
 ▶ Undecidability proofs by reduction from data logics.
 ▶ Non-elementarity proof by reduction from propositional interval temporal logic.
 ▶ A modal logic of heap.
Plan of the talk

▶ Yesterday’s lecture:
 ◀ Undecidability proofs by reduction from data logics.
 ◀ Non-elementarity proof by reduction from propositional interval temporal logic.
 ◀ A modal logic of heap.

▶ SMT framework and translations

▶ Expressiveness of kSL0 and $PSPACE$ upper bound.

▶ Translations into first-order logic and QBF.
Direct vs. translation approach

- Direct approach: specialised proof systems leading to fine-tuned tools.
 - Example: tableaux systems for modal logics. See e.g. [Gasquet et al., 2014]

- Translation approach: reduction to logics with well-established provers.
 - Example: translation into first-order logic. See e.g. [Ohlbach et al., 2001]
Similar dichotomy with separation logics

- Direct approach:
 - Tableaux calculus for 2SL0. [Galmiche & Mery, JLC 10]
 - A proof system for the fragment SF. [Berdine & Calcagno & O’Hearn, FSTTCS’04]
 - Model-checking by abstraction. [Calcagno & Yang & O’Hearn, FSTTCS’01]
 - Graph-based (semantical) methods. [Cook et al., CONCUR’11]
 [Enea & Saveluc & Sighireanu, ESOP’13]

- Translation approach:
 - Translation into FO or propositional calculus. [Lozes, SPACE’04; Calcagno & Gardner & Hague, FOSSACS’05]
 - Translation into theories handled by SMT solvers. See e.g. [Navarro P´erez & Rybalchenko, APLAS’13]
Similar dichotomy with separation logics

- Direct approach:
 - Tableaux calculus for 2SL0. [Galmiche & Mery, JLC 10]
 - A proof system for the fragment SF. [Berdine & Calcagno & O’Hearn, FSTTCS’04]
 - Model-checking by abstraction. [Calcagno & Yang & O’Hearn, FSTTCS’01]
 - Graph-based (semantical) methods. [Cook et al., CONCUR’11]
 [Enea & Saveluc & Sighireanu, ESOP’13]

- Translation approach:
 - Translation into FO or propositional calculus. [Lozes, SPACE’04; Calcagno & Gardner & Hague, FOSSACS’05]
 - Translation into theories handled by SMT solvers. See e.g. [Navarro Pérez & Rybalchenko, APLAS’13]
Translation into a Reachability Logic
A robust framework: using SMT solvers

- Convergence of SAT and theory reasoning: Satisfiability Modulo Theories (SMT).

- Mature and robust tools: CVC4, MathSAT, Yices, Z3, etc.

- SMT solvers at the heart of verification tools.

- Pointer logic is one of the new theories being developed.

- Recent works using SMT solvers for separation logic.
 - E.g., translating SLL into the logic of graph reachability and stratified sets. [Piskac & Wies & Zufferey, CAV’13]
 - Tool Asterix [Navarro Pérez & A. Rybalchenko, APLAS’13]

- Ability to combine separation logics with other theories.
Satisfiability modulo theories

Problem: given a (quantifier-free) formula \(\varphi \) and a combination of theories \(T_1 \cup \ldots \cup T_n \), is there a variable assignment that satisfies \(\varphi \)?

Example:

\[
 x = y + 1 \land z < x \land f(x) = f(y + z)
\]

A selection of theories supported by SMT solvers:

- Linear integer arithmetic LIA.
- Theory of equality over uninterpreted functions (EUF).
- Bit vectors (BV).
- Arrays (A).
Techniques for deciding SMT

- Use efficient SAT solvers for the Boolean skeleton of formulae and theory solvers for deciding conjunctions of literals.

- Decision procedure for combination of theories $\mathcal{T}_1 \cup \ldots \cup \mathcal{T}_n$ from the respective procedure for each \mathcal{T}_i.

 See e.g. [Nelson & Oppen, ACM 79]

- Handling quantifiers via axiom instantiation.
GRASS as a combination of two theories

- The logic GRASS combines
 1. a theory T_G of reachability in function graphs,
 2. a theory T_S of stratified sets.

- ...but extension with set comprehensions that define sets of locations in terms of properties stated in the logic.

- The exact definition fits well the notion of memory states and allows to get NP-completeness by using the state of the art of results in SMT technology.

- Reduction from separation logic SLL\Box into quantifier-free GRASS.
Syntactic objects

\[T ::= \ x \mid f(T) \]

\[A ::= \ T = T \mid T \xrightarrow{T} T \]

\[R ::= \ A \mid \neg R \mid R \land R \]

\[S ::= \ x \mid \emptyset \mid S \setminus S \mid S \cup S \mid S \cap S \mid \{x.R\} \]

proviso: \(x \) does not occur below \(f \) in \(R \)

\[B ::= \ S = S \mid T \in S \]

\[\varphi ::= \ A \mid B \mid \neg \varphi \mid \varphi \land \varphi \]

\[f(f(x_1)) \in \{x. (x = x_1)\} \cap \{x'. (x' \xrightarrow{x_2} x_3)\} \]
GRASS-models

\[\mathcal{A} = (\mathcal{L}, \mathfrak{h}) \]

1. \(\mathcal{L} \) is a non-empty set.

2. \(\mathfrak{h} \) is a map \(\mathcal{L} \to \mathcal{L} \) satisfying the conditions below.
 - For all \(l \in \mathcal{L} \), the set \(\{ l' \mid (l, l') \in \mathfrak{h}^* \} \) is finite.
 - For all \(l \in \mathcal{L} \), the set \(\{ l' \mid (l', l) \in \mathfrak{h}^* \} \) is finite.

\[j^x_k A_f \overset{\text{def}}{=} f(x) \quad [f(T)]_{A_f} \overset{\text{def}}{=} h([T]_{A_f}) \]

(the variable assignment \(f \) plays the role of a store)

\[[X]_{A_f} \overset{\text{def}}{=} f(X) \]
\[[\emptyset]_{A_f} \overset{\text{def}}{=} \emptyset \]
\[[S_1 \circ S_2]_{A_f} \overset{\text{def}}{=} [S_1]_{A_f} \circ [S_2]_{A_f} \quad (\circ \in \{ \setminus, \cup, \cap \}) \]
\[[\{ x. R \}]_{A_f} \overset{\text{def}}{=} \{ l \mid A \models_{f[x \mapsto l]} R \} \]

where \(\models \) is defined next.
Satisfaction relation

\[\mathcal{A} \models_f T_1 = T_2 \quad \text{iff} \quad [T_1]_{\mathcal{A},f} = [T_2]_{\mathcal{A},f} \]

\[\mathcal{A} \models_f T_1 \xrightarrow{T_2} T_3 \quad \text{iff} \quad ([T_1]_{\mathcal{A},f}, [T_3]_{\mathcal{A},f}) \in \mathcal{R}^* \text{ where} \]
\[\mathcal{R} = \{(l, h(l)) \mid l \in \mathcal{L}, l \neq [T_2]_{\mathcal{A},f}\} \]

\[\mathcal{A} \models_f S_1 = S_2 \quad \text{iff} \quad [S_1]_{\mathcal{A}} = [S_2]_{\mathcal{A}} \]

\[\mathcal{A} \models_f T \in S \quad \text{iff} \quad [T]_{\mathcal{A},f} \in [S]_{\mathcal{A},f} \]

\[\mathcal{A} \models_f \neg \varphi \quad \text{iff} \quad \text{not } \mathcal{A} \models_f \varphi \]

\[\mathcal{A} \models_f \varphi_1 \land \varphi_2 \quad \text{iff} \quad \mathcal{A} \models_f \varphi_1 \text{ and } \mathcal{A} \models_f \varphi_2. \]
NP-completeness of the satisfiability for GRASS

- Translation from GRASS into the logical theory \mathcal{T}_{GS}, the disjoint combination of
 1. a theory \mathcal{T}_G of reachability in function graphs,
 2. a theory \mathcal{T}_S of stratified sets.

- NP-completeness of the theory \mathcal{T}_G [Totla & Wies, POPL’13].

- NP-completeness of \mathcal{T}_{GS} by using
 1. the standard Nelson-Oppen combination of decision procedures for \mathcal{T}_G and \mathcal{T}_S,
 2. the method for stratified sets from [Zarba, 2004].

- Translation by elimination of set comprehensions (introduction of set variables) and by finite instantiation of universal quantifiers.
 [Piskac & Wies & Zufferey, CAV’13; Bansal et al., CAV’15]
Separation logic SLL\(\mathbb{B}\)

\[\varphi_s ::= (x_i = x_j) \mid \neg (x_i = x_j) \mid x_i \mapsto x_j \mid \text{sreach}(x_i, x_j) \mid \varphi_s \varphi_s \]

SLL\(\mathbb{B}\) formulae: Boolean combinations of \(\varphi_s\)’s.
Separation logic SLL\(\mathcal{B}\)

\(\varphi_s \ ::= \ (x_i = x_j) \ | \ \neg(x_i = x_j) \ | \ x_i \mapsto x_j \ | \ \text{sreach}(x_i, x_j) \ | \ \varphi_s \ast \varphi_s\)

SLL\(\mathcal{B}\) formulae: Boolean combinations of \(\varphi_s\)'s.

\[\mathcal{A} \models^x f \ x_i = x_j \text{ iff } f(x_i) = f(x_j) \text{ and } f(X) = \emptyset\]
\[\mathcal{A} \models^{\neg} f \neg(x_i = x_j) \text{ iff } f(x_i) \neq f(x_j) \text{ and } f(X) = \emptyset\]
Separation logic SLL

\(\varphi_s ::= (x_i = x_j) \mid \neg(x_i = x_j) \mid x_i \mapsto x_j \mid \text{sreach}(x_i, x_j) \mid \varphi_s \ast \varphi_s \)

SLL formulae: Boolean combinations of \(\varphi_s \)'s.

\[\begin{align*}
\mathcal{A} |\models^X_{f} x_i = x_j & \quad \text{iff} \quad f(x_i) = f(x_j) \text{ and } f(X) = \emptyset \\
\mathcal{A} |\models^X_{f} \neg(x_i = x_j) & \quad \text{iff} \quad f(x_i) \neq f(x_j) \text{ and } f(X) = \emptyset \\
\mathcal{A} |\models^X_{f} x_i \mapsto x_j & \quad \text{iff} \quad h(f(x_i)) = f(x_j) \text{ and } f(X) = \{f(x_i)\} \\
\mathcal{A} |\models^X_{f} \varphi_s^1 \ast \varphi_s^2 & \quad \text{iff} \quad \text{there are } X_1, X_2 \text{ s.t. } f(X) = X_1 \uplus X_2, \\
& \quad \mathcal{A} |\models^X_{f[x \mapsto X_1]} \varphi_s^1 \text{ and } \mathcal{A} |\models^X_{f[x \mapsto X_2]} \varphi_s^2 \\
\mathcal{A} |\models^X_{f} \text{sreach}(x_i, x_j) & \quad \text{iff} \quad \text{either } f(x_i) = f(x_j) \text{ and } f(X) = \emptyset, \text{ or} \\
& \quad \text{there is } n \geq 1 \text{ such that } h^n(f(x_i)) = f(x_j) \text{ and } f(X) = \{f(x_i), h(f(x_i)), \ldots, h^{n-1}(f(x_i))\} \end{align*} \]
Properties

- Footprint of \(\varphi \): \(f(x) \) when \(A \models^x_i \varphi \).

- Let \(f, f' \) be assignments that differ at most for \(x \). If \(A \models^x_i \varphi_s \) and \(A \models^x_i \varphi_s \) then \(f = f' \) and \(f(x) \) is finite.

- \((s, h)\) is encoded \((\mathbb{N}, h', f, x)\) where
 1. \((\mathbb{N}, h')\) is a GRASS-model,
 2. \(s \) and \(f \) agree on the program variables and \(f(x) = \text{dom}(h) \),
 3. \(h' \) restricted to \(f(x) \) is equal to \(h \).
GRASS-FO

- GRASS-FO = GRASS + existential quantification.

- $\mathcal{A} \models_{f} \exists Y \varphi$ iff there is $X \subseteq L$ such that $\mathcal{A} \models_{f}[Y \mapsto X] \varphi$.

- Let φ_1 and φ_2 be GRASS-FO formulae so that Y_1 is not free in φ_2 and Y_2 is not free in φ_1. Then, $(\exists Y_1 \varphi_1) \circ (\exists Y_2 \varphi_2)$ is logically equivalent to $\exists Y_1, Y_2 (\varphi_1 \circ \varphi_2)$ with $\circ \in \{\land, \lor\}$. Classically, the quantifiers can be pushed outside.

- Given a GRASS-FO formula of the form $\exists Y \varphi$, we have φ is satisfiable iff $\exists Y \varphi$ is satisfiable.
Translation from SLLB to GRASS-FO

<table>
<thead>
<tr>
<th>Atomic formula φ</th>
<th>ψ_1</th>
<th>$\psi_2(Y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_i = x_j$</td>
<td>$x_i = x_j$</td>
<td>$Y = \emptyset$</td>
</tr>
<tr>
<td>$x_i \neq x_j$</td>
<td>$x_i \neq x_j$</td>
<td>$Y = \emptyset$</td>
</tr>
<tr>
<td>$x_i \mapsto x_j$</td>
<td>$f(x_i) = x_j$</td>
<td>$Y = {y. (x_i = y)}$</td>
</tr>
<tr>
<td>$\text{sreach}(x_i, x_j)$</td>
<td>$x_i \xrightarrow{x_j} x_j$</td>
<td>$Y = {x. (x_i \xrightarrow{x_j} x) \land x \neq x_j}$</td>
</tr>
</tbody>
</table>

- tr is homomorphic for \land and \lor.

- For $\text{sign} \in \{\neg, \varepsilon\}$:

\[
tr(\text{sign}(\varphi_1^1 \ast \cdots \ast \varphi_n^s)) \overset{\text{def}}{=} \exists Y_1 \cdots Y_n \text{ sign } ((\psi_1^1 \land \cdots \land \psi_i^n \land \bigwedge_{i \neq i'} Y_i \cap Y_{i'} = \emptyset) \land \\
((\psi_2^1(Y_1) \land \cdots \land \psi_2^n(Y_n) \land X = Y_1 \cup \cdots \cup Y_n),
\]
Time to wrap-up

- $tr(\neg(\varphi_1 \ast \cdots \ast \varphi_n))$ is logically equivalent to the negation of $tr(\varphi_1 \ast \cdots \ast \varphi_n)$ even though both translations involve existential quantifications.

- $T(\varphi) \overset{\text{def}}{=} tr(\varphi) + \text{removal of all } '\exists \ Y_1 \cdots \ Y_n'.

\[
T((x_1 \mapsto x_2) \land x_1 = x_3) = \\
(f(x_1) = x_2 \land Y_1 = \{y. (x_1 = y)\} \land X = Y_1) \land \\
(x_1 = x_3 \land Y_2 = \emptyset \land X = Y_2)
\]
Time to wrap-up

- $tr(\neg(\varphi_1^s \ast \cdots \ast \varphi_n^s))$ is logically equivalent to the negation of $tr(\varphi_1^s \ast \cdots \ast \varphi_n^s)$ even though both translations involve existential quantifications.

- $T(\varphi) \overset{\text{def}}{=} tr(\varphi) + \text{removal of all } \exists Y_1 \cdots Y_n$.

- $T((x_1 \mapsto x_2) \land x_1 = x_3) =$
 $\left(f(x_1) = x_2 \land Y_1 = \{y.(x_1 = y)\} \land X = Y_1 \right) \land$
 $\left(x_1 = x_3 \land Y_2 = \emptyset \land X = Y_2 \right)$

- φ be an SLLB formula in NNF. Then $A \models_{f}^{X} \varphi$ iff $A \models_{f} tr(\varphi)$.

- The satisfiability, validity and entailment problems for SLLB are in NP.
 [Piskac & Wies & Zufferey, CAV’13]

- Implementation and benchmarks following that reduction.
 [Piskac & Wies & Zufferey, TACAS’14]
Expressiveness and PSPACE upper bound
Roadmap

▶ To characterise the expressive power of 1SL0 by introducing the essential properties that can be stated.

▶ To design a symbolic model-checking algorithm by abstracting memory states.

▶ Polynomial-space satisfiability and model-checking problems for 1SL0 and polynomial-time fragments with q fixed program variables.

▶ Translation into QBF by simulating nondeterministic step in the algorithm by propositional quantifications.
Sets of test formulae

- The set $\text{Test}(q, \alpha)$ contains the following formulae:
 1. $x_i = x_j, x_i \leftrightarrow x_j$ with $i, j \in [1, q]$.
 2. $\text{alloc}(x_i)$ with $i \in [1, q]; \text{size} \geq \beta$ with $\beta \in [0, \alpha]$.

- $\text{alloc}(x_i)$ and $\text{size} \geq \beta$ understood as atomic formulae.
Sets of test formulae

- The set $\text{Test}(q, \alpha)$ contains the following formulae:
 1. $x_i = x_j, x_i \leftrightarrow x_j$ with $i, j \in [1, q]$.
 2. $\text{alloc}(x_i)$ with $i \in [1, q]; \text{size} \geq \beta$ with $\beta \in [0, \alpha]$.

- $\text{alloc}(x_i)$ and $\text{size} \geq \beta$ understood as atomic formulae.

- $\text{size}_{\overline{q}} \geq \beta$:
 \[
 \bigvee_{X \subseteq \{x_1, \ldots, x_q\}} \bigwedge_{x \in X} \text{alloc}(x) \wedge \ldots
 \]
 \[
 \ldots \bigwedge_{x \in \{x_1, \ldots, x_q\} \setminus X} \neg \text{alloc}(x) \wedge \text{size} \geq (\text{card}(X) + \beta).
 \]

- $\text{Test}'(q, \alpha) \overset{\text{def}}{=} \text{Test}(q, \alpha)[\text{size}_{\overline{q}} \geq \beta/\text{size} \geq \beta]$.
Playing with test formulae

- \((s, h)\) and \(h \subseteq h'\).

- For all \(\psi \in \text{Test}'(q, \alpha)\), \((s, h) \models \psi\) implies \((s, h') \models \psi\).
Playing with test formulae

- \((s, h)\) and \(h \sqsubseteq h'\).

- For all \(\psi \in \text{Test}'(q, \alpha)\), \((s, h) \models \psi\) implies \((s, h') \models \psi\).

- \((s, h) \approx_q (s', h')\) iff the memory states agree on the formulae in \(\text{Test}'(q, \alpha)\).

- We use \(\text{size}_q \geq \beta\) instead of \(\text{size} \geq \beta\).
Playing with test formulae

- \((s, h)\) and \(h \subseteq h'\).

- For all \(\psi \in \text{Test}'(q, \alpha), (s, h) \models \psi\) implies \((s, h') \models \psi\).

- \((s, h) \approx^q (s', h')\) iff the memory states agree on the formulae in \(\text{Test}'(q, \alpha)\).

- We use \(\text{size}_q \geq \beta\) instead of \(\text{size} \geq \beta\).
Distributivity Lemma

- $\alpha = \alpha_1 + \alpha_2$ and $(s, h) \approx_q (s', h')$.

- If $h = h_1 \cup h_2$, then there are h_1', h_2' such that
 - $h' = h_1' \cup h_2'$,
 - $(s, h_1) \approx_{\alpha_1} (s', h_1')$,
 - $(s, h_2) \approx_{\alpha_2} (s', h_2')$.
Proof (1/3)

> Since \((s, h) \approx^q_{\alpha} (s', h')\), for all \(i \in [1, q]\), \(s(x_i) \in \text{dom}(h)\) iff \(s'(x_i) \in \text{dom}(h')\).

> Let \(C_q(s, h)\) be the cardinal of the set

\[\text{dom}(h) \setminus \{s(x_1), \ldots, s(x_q)\} \]

We have \(C_q(s, h) = C_q(s, h_1) + C_q(s, h_2)\).

> Since \((s, h) \approx^q_{\alpha} (s', h')\), \(\min(\alpha, C_q(s, h)) = \min(\alpha, C_q(s', h'))\).
Proof (2/3)

- If $s(x_i) \in \text{dom}(h_1)$, then $s'(x_i) \in \text{dom}(h'_1)$ by definition.

- If $s(x_i) \in \text{dom}(h_2)$, then $s'(x_i) \in \text{dom}(h'_2)$ by definition.

- **Case** $c_q(s, h) \leq \alpha$.

 - Since $(s, h) \approx_q^\alpha (s', h')$, we have $c_q(s', h') = c_q(s, h) \leq \alpha$ too.

 - $\beta_1 \overset{\text{def}}{=} c_q(s, h_1)$.

 - Since $c_q(s', h') = c_q(s, h)$, and $\beta_1 \leq c_q(s', h')$, there are β_1 locations l_1, \ldots, l_{β_1} in $\text{dom}(h') \setminus \{s'(x_1), \ldots, s'(x_q)\}$.

 - Then $\{l_1, \ldots, l_{\beta_1}\} \subseteq \text{dom}(h'_1)$ by definition.
Proof (3/3)

- **Case** $c_q(s, h) > \alpha$, $c_q(s, h_1) < \alpha_1$ and $c_q(s, h_2) > \alpha_2$.
 - $\beta_1 \overset{\text{def}}{=} c_q(s, h_1)$.
 - Since $\min(\alpha, c_q(s, h)) = \min(\alpha, c_q(s', h')) = \alpha$, $\beta_1 \leq \alpha$ and $\beta_1 \leq \min(\alpha, c_q(s', h'))$, let $l_1 < \cdots < l_{\beta_1}$ be the β_1 smallest locations in $\text{dom}(h') \setminus \{s'(x_1), \ldots, s'(x_q)\}$.
 - Then $\{l_1, \ldots, l_{\beta_1}\} \subseteq \text{dom}(h'_1)$ by definition.

- The two missing cases are similar and the constructed subheaps satisfy the stated properties.
Compositionality Lemma

\[\alpha \in \mathbb{N} \text{ and } (s, h) \approx^q_{\alpha} (s', h'). \]

For any heap \(h_1 \perp h \), there is a \(h'_1 \perp h' \) such that

1. \((s, h_1) \approx^q_{\alpha} (s', h'_1)\).

2. \((s, h \uplus h_1) \approx^q_{\alpha} (s', h' \uplus h'_1)\).

3. \(\maxval(s', h'_1) \leq \maxval(s', h') + \alpha. \)

\((\maxval(s, h) \overset{\text{def}}{=} \max(\text{ran}(s) \cup \text{dom}(h) \cup \text{ran}(h))) \)

If we give up the condition 3, the condition 1 can be strengthened by \(\text{card}(\text{dom}(h_1)) = \text{card}(\text{dom}(h'_1)) \).
Memory size

\[
\text{msize}(x_i \leftrightarrow x_{i'}) \overset{\text{def}}{=} 1 \\
\text{msize}(x_i = x_{i'}) \overset{\text{def}}{=} 0 \\
\text{msize(\text{emp})} \overset{\text{def}}{=} 1 \\
\text{msize}(\neg \psi) \overset{\text{def}}{=} \text{msize}(\psi) \\
\text{msize}(\psi_1 \land \psi_2) \overset{\text{def}}{=} \text{max}(\text{msize}(\psi_1), \text{msize}(\psi_2)) \\
\text{msize}(\psi_1 \ast \psi_2) \overset{\text{def}}{=} \text{msize}(\psi_1) + \text{msize}(\psi_2) \\
\text{msize}(\psi_1 \Rightarrow \psi_2) \overset{\text{def}}{=} \text{max}(\text{msize}(\psi_1), \text{msize}(\psi_2))
\]
Memory size as a refinement of the formula size

- $\text{msize}(\text{size} = 3) = 4$ with $\text{size} = 3$ equal to

$$((\neg\text{emp})\ast(\neg\text{emp})\ast(\neg\text{emp})) \land \neg((\neg\text{emp})\ast(\neg\text{emp})\ast(\neg\text{emp})\ast(\neg\text{emp}))$$

- For every φ in $1SL0$, $\text{msize}(\varphi)$ is smaller than the size of φ, assuming that formulae are encoded as trees.
\(\varphi \) is blind over \(\text{Test}'(q, \alpha) \)

- \(\varphi \) built over \(x_1, \ldots, x_q \).

- \(\text{msize}(\varphi) \leq \alpha \) and \((s, h) \approx_{\alpha}^q (s', h') \).

- Then, we have \((s, h) \models \varphi \) iff \((s', h') \models \varphi \).

- Proof by structural induction, sufficient to establish one direction.

- The base case with atomic formulae and the cases with Boolean connectives in the induction step are by an easy verification.
Proof for the case $\psi = \psi_1 \ast \psi_2$ (1/2)

- Suppose that
 \[\text{msize}(\psi_1 \ast \psi_2) = \max(\text{msize}(\psi_1), \text{msize}(\psi_2)) \leq \alpha \]
 and
 \[(s, h) \models \psi_1 \ast \psi_2. \]

- Let us prove that
 \[(s', h') \models \psi_1 \ast \psi_2. \]

- Let \(h'_1 \perp h' \) such that
 \[(s', h'_1) \models \psi_1. \]

- By the Compositionality Lemma, there is \(h_1 \perp h \) such that
 \[(s, h_1) \approx^q_{\alpha} (s', h'_1) \]
 and
 \[(s, h \uplus h_1) \approx^q_{\alpha} (s', h' \uplus h'_1). \]
Proof for the case $\psi = \psi_1 \ast \psi_2$ (2/2)

- By (IH), $(s, h_1) \models \psi_1$.

- Since $(s, h) \models \psi_1 \ast \psi_2$, this implies that $(s, h \oplus h_1) \models \psi_2$.

- By (IH), we conclude that $(s', h' \oplus h'_1) \models \psi_2$.

- Since h'_1 is an arbitrary disjoint heap from h', we obtain $(s', h') \models \psi_1 \ast \psi_2$.

Expressive power

- φ built over the variables in x_1, \ldots, x_q.

- φ is equivalent to a Boolean combination of test formulae from $\text{Test}(q, q + \text{msize}(\varphi))$.

\[
\begin{align*}
\text{LIT}(s, h) & \overset{\text{def}}{=} \{ \chi \in \text{Test}'(q, \alpha) \mid (s, h) \models \chi \} \cup \\
& \{ \neg \chi \mid (s, h) \not\models \chi \text{ with } \chi \in \text{Test}'(q, \alpha) \}
\end{align*}
\]

- $\psi' \overset{\text{def}}{=} \bigvee (\bigwedge_{(s, h) \models \varphi} \psi)$

- ψ' admits an equivalent (finite) formula φ' since $\text{LIT}(s, h)$ can take only a finite amount of values.

- $\text{size}_q \geq \beta$ with $\beta \leq \alpha$ is equivalent to a Boolean combination of test formulae from $\text{Test}(q, q + \alpha)$.
Small heap property

Let φ be a satisfiable 1SL0 formula built over x_1, \ldots, x_q.

There is a memory state (s, h) such that

\[(s, h) \models \varphi \text{ and } \text{maxval}(s, h) \leq q + \text{msize}(\varphi).\]
Symbolic memory state \(sms = (P, A, H, n) \) over \((q, \alpha) \)

- \(P \) is a partition of \(\{x_1, \ldots, x_q\} \).
- \(A \subseteq P \).
- \(H \) is a functional relation on \(P \) such that \(\text{dom}(H) = A \).
- \(n \in [0, \alpha] \).
Abstraction

\[\text{Symb}[s, h] \text{ over } (q, \alpha) \text{ is equal to } (P, A, H, n) \]

\[n = \min(\alpha, \text{card(dom}(h) \setminus \{s(x_i) \mid i \in [1, q]\})) \).

\[P \text{ is a partition of } \{x_1, \ldots, x_q\} \text{ so that for all } x, x', \text{ we have } s(x) = s(x') \text{ iff } x \text{ and } x' \text{ belong to the same set in } P. \]

\[A = \{X \in P \mid \text{ there is } x \in X, s(x) \in \text{dom}(h)\}. \]

\[X \sim X' \text{ iff there are } x \in X \text{ and } x' \in X' \text{ such that } h(s(x)) = s(x'). \]

\[\text{Main property: } (s, h) \approx^q_{\alpha} (s', h') \text{ iff } \text{Symb}[s, h] = \text{Symb}[s', h']. \]
Symbolic separating conjunction

- \(*_s(sms, sms_1, sms_2)\) whenever there exist a store \(s\) and disjoint heaps \(h_1\) and \(h_2\) such that
 - \(\text{Symb}[s, h_1 \cup h_2] = sms\).
 - \(\text{Symb}[s, h_1] = sms_1\).
 - \(\text{Symb}[s, h_2] = sms_2\).

- \(*_s(sms, sms_1, sms_2)\) is easy to verify.
 - \(P = P_1 = P_2\).
 - \(A = A_1 \cup A_2, A_1 \cap A_2 = \emptyset\) and \(H = H_1 \cup H_2\).
 - \(n = \min(\alpha, n_1 + n_2)\).
Model-checking algorithm

- Memory states are replaced by symbolic memory states.

- Algorithm is similar to nondeterministic procedures for modal logics, see e.g. [Ladner, SIAM 77].

- \(MC(sms, \varphi) = \top \) iff there is \((s, h)\) such that \(Symb[s, h] = sms \) and \((s, h) \models \varphi.\)
MC(sms, \psi)

1. if \psi is atomic then return AMC(sms, \psi);

2. if \psi = \neg \psi_1 then return not MC(sms, \psi_1);

3. if \psi = \psi_1 \land \psi_2 then return (MC(sms, \psi_1) and MC(sms, \psi_2));

4. if \psi = \psi_1 \ast \psi_2 then return \top iff there are sms_1 and sms_2 such that \ast_s(sms, sms_1, sms_2) and MC(sms_1, \psi_1) = MC(sms_2, \psi_2) = \top;

5. if \psi = \psi_1 \ast \psi_2 then return \bot iff for some sms' and sms'' such that \ast_s(sms'', sms', sms), MC(sms', \psi_1) = \top and MC(sms'', \psi_2) = \bot;
AMC\((\text{sms}, \psi)\)

1. **if** \(\psi\) **is** \(\text{emp}\) **then** return \(\top\) **iff** \(A = \emptyset\) and \(n = 0\);

2. **if** \(\psi\) **is** \(x_i = x_j\) **then** return \(\top\) **iff** \(x_i, x_j \in X\), for some \(X \in P\);

3. **if** \(\psi\) **is** \(x_i \rightarrow x_j\) **then** return \(\top\) **iff** \((X, X') \in H\) where \(x_i \in X \in P\) and \(x_j \in X' \in P\);
PSpace upper bound

- Model-checking and satisfiability problems for 1SL0 are in PSpace. [Calcagno & Yang & O’Hearn, FSTTCS’01]

- For satisfiability, guess \(\text{sms} \) over \((q, \text{msize} (\varphi))\) and check whether \(\text{MC}(\text{sms}, \varphi) = \top \).

- \(\text{MC}(\text{sms}, \varphi) \) runs in space \(O(d(q + \log(\alpha))) \) where \(d \) is the depth of syntactic tree for \(\varphi \).

- For model-checking, \((s, h) \models \varphi \) iff \(\text{MC}(\text{Symb} [s, h], \varphi) = \top \) with \(\alpha = \text{msize}(\varphi) \).

- PSpace upper bound even when the formulae are encoded as DAGs.
By-products

- Computing a Boolean combination of atomic formulae from \(\text{Test}(q, q + \text{msize}(\varphi)) \) equivalent to \(\varphi \) can be done in polynomial space.

\[
\bigvee \{ (\bigwedge \psi) \mid \text{MC}(\text{Symb}[s, h], \varphi) = \top \text{ and } \maxval(s, h) \leq q + \alpha \}
\]
By-products

- Computing a Boolean combination of atomic formulae from $\text{Test}(q, q + \text{msize}(\varphi))$ equivalent to φ can be done in polynomial space.

\[\bigvee \{ (\bigwedge \psi) \mid \text{MC}(\text{Symb}[s, h], \varphi) = \top \text{ and } \maxval(s, h) \leq q + \alpha \} \]

- The satisfiability problem for 1SL0 restricted to formulae with at most q program variables is in PTIME.

- The number of symbolic memory states over $(q, \text{msize}(\varphi))$ is polynomial in the size of φ.
By-products

- Computing a Boolean combination of atomic formulae from $\text{Test}(q, q + m\text{size}(\varphi))$ equivalent to φ can be done in polynomial space.

$$\bigvee\{(\bigwedge_{\psi \in \text{LIT}(s, h)} \psi) \mid \text{MC}(Symb[s, h], \varphi) = \top \text{ and } \maxval(s, h) \leq q + \alpha\}$$

- The satisfiability problem for 1SL0 restricted to formulae with at most q program variables is in PTIME.

- The number of symbolic memory states over $(q, m\text{size}(\varphi))$ is polynomial in the size of φ.

- Dynamic programming with $A[\text{sms}, \psi] \in \{\text{unknown}, \top, \bot\}$ to compute $\text{MC}(\text{sms}, \varphi)$.
Translation into QBF
Now, let us encode symbolic memory states!!

- Atomic propositions encoding \((P, A, H, n)\):
 - \(EQ(i, j)\) \(i, j \in [1, q]\)
 - \(A(i)\) \(i \in [1, q]\)
 - \(H(i, j)\) \(i, j \in [1, q]\)
 - \(N(\beta)\) \(\beta \in [0, \alpha]\)

- \(\text{Symb}[v]\): unique symbolic memory state (if it is defined) encoded by the propositional valuation \(v\).

- Typically, \(\text{Symb}[v]\) is undefined when \(v(EQ(1, 1)) = \bot\).
Encoding symbolic separation

There is $SMS(x)$ built over x such that for all v, we have $v \models SMS(x)$ iff there is sms such that $\text{Symb}[v] = sms$.

There is $*_{p}(x, x', x'')$ such that for all v, we have $v \models *_{p}(x, x', x'')$ iff there are sms, sms' and sms'' such that $*_{s}(sms, sms', sms'')$ and $\text{Symb}[v] = (sms, sms', sms'')$.

Examples of conjuncts in $*_{p}(x, x', x'')$:

1. x, x' and x'' encode a symbolic memory state:
 \[
 SMS(x) \land SMS(x') \land SMS(x'').
 \]

2. Encoding of ‘$P = P_1 = P_2$’:
 \[
 \bigwedge_{i,j \in [1,q]} (EQ(i, j) \iff EQ'(i, j)) \land (EQ'(i, j) \iff EQ''(i, j)).
 \]

3. Encoding of ‘$n = \max(\alpha, n_1 + n_2)$’:
 \[
 \bigwedge_{\beta, \beta' \in [0, \alpha]} (N'(\beta) \land N''(\beta')) \Rightarrow N(\min(\alpha, \beta + \beta')).
 \]
Principles for simulating the model-checking algorithm

- Quantifications in the model-checking algorithm are substituted by corresponding quantifications in QBF.

- Alternatively, the quantifications in the semantics are internalised in QBF.

- ...but the small heap property is used.

- Translation is performed in logarithmic space.
\[
tr(\text{emp}, X) \overset{\text{def}}{=} N(0) \land \neg A(1) \land \cdots \land \neg A(q)
\]
\[
tr(x_i \leftarrow x_j, X) \overset{\text{def}}{=} H(i, j)
\]
\[
tr(x_i = x_j, X) \overset{\text{def}}{=} EQ(i, j)
\]
\[
tr(\psi_1 \ast \psi_2, X) \overset{\text{def}}{=} \exists X', X'' \ast_p (X, X', X'') \land tr(\psi_1, X') \land tr(\psi_2, X'')
\]
\[
tr(\psi_1 \ast\ast \psi_2, X) \overset{\text{def}}{=} \forall X'', (\exists X' \ast_p (X'', X, X')) \Rightarrow \\
(\exists X' \ast_p (X'', X, X') \land (tr(\psi_1, X') \Rightarrow tr(\psi_2, X'')))
\]

(\exists \{p_1, \ldots, p_m\} \psi \text{ is a shortcut for } \exists p_1, \ldots, \exists p_m \psi)
Translation into FO regained!

- $\exists x \; SMS(x) \land tr(\varphi, x)$ is QBF satisfiable iff there is sms over (q, α) such that $MC(sms, \varphi) = T$.

- Separation logic 1SL0 can be decided by QBF solvers. See e.g. [Lonsing & Biere, JS 10]
Translation into FO regained!

- $\exists X \ SMS(X) \land tr(\varphi, X)$ is QBF satisfiable iff there is sms over (q, α) such that $\text{MC(sms, } \varphi) = T$.

- Separation logic 1SL0 can be decided by QBF solvers. See e.g. [Lonsing & Biere, JS 10]

- Translation into FO restricted to equality predicate: [Calcagno & Gardner & Hague, FOSSACS'05]

$$
\exists x_0, x_1 \ (x_0 \neq x_1) \land tr'(\chi)
$$

$$
tr'(\exists p \ \psi) \overset{\text{def}}{=} \exists x_p \ (x_p = x_0 \lor x_p = x_1) \land tr'(\psi)
$$

x_p is a fresh variable

$$
tr'(\forall p \ \psi) \overset{\text{def}}{=} \forall x_p \ (x_p = x_0 \lor x_p = x_1) \Rightarrow tr'(\psi)
$$

x_p is a fresh variable

$$
tr'(p) \overset{\text{def}}{=} (x_p = x_1)
$$
Concluding remarks for Day 5

Today’s lecture:

- Translation of SLLB into the logic GRASS.
- Expressiveness of 1SL0.
- PSPACE algorithm.
- Translation into QBF and FO.

We have illustrated two proof techniques:

1. How to possibly tame the magic wand operator.
2. Translation into first-order logics.
$1SL \equiv 1DSOL \equiv 1WSOL \equiv 1SL(\neg \cdot)$, undec.

$1SL2$, undec.

$1SL \equiv 1DSOL$, undec.

$1SL_1$, PSPACE-C

$1SL_0$, PSPACE-C

$1SL_2(\cdot) \equiv 1DSOL$, undec.

$1SL(\cdot)$, dec., non-elem.

$1SL_2(\neg \cdot)$, non-elem.

$1SL_2(\cdot)$, non-elem.

$1SL_k = 1SL$ restricted to k quantified variables
Further topics

- Program verification using separation logics
 See e.g. [Calcagno et al., NFM’15]
Further topics

- Program verification using separation logics
 See e.g. [Calcagno et al., NFM’15]

- Reasoning tasks with inductive predicates
 See e.g. [Brotherston et al. CSL-LICS’14]
Further topics

- Program verification using separation logics
 See e.g. [Calcagno et al., NFM’15]

- Reasoning tasks with inductive predicates
 See e.g. [Brotherston et al. CSL-LICS’14]

- Computational complexity of more fragments
 See e.g. [Haase et al., CONCUR’11]
A few current trends

- Even more translations into SMT solvers.
 See e.g. [Navarro Pérez & Rybalchenko, APLAS’13]
A few current trends

- Even more translations into SMT solvers.
 See e.g. [Navarro Pérez & Rybalchenko, APLAS’13]

- Reasoning about data.
 See e.g. [Enea et al., ESOP’13]
Slides and lecture notes

http://www.lsv.fr/~demri/esslli15-course.html