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Abstract. In a data word or a data tree each position carries a label
from a finite alphabet and a data value from some infinite domain. These
models have been considered in the realm of semistructured data, timed
automata and extended temporal logics.

This paper survey several know results on automata and logics ma-
nipulating data words and data trees, the focus being on their relative
expressive power and decidability.

1 Introduction

In many areas there is a need for good abstract models manipulating explicitly
data values. We mention two of them here.

In program verification one has to decide statically whether a program satisfies
some given specification. Programs may contain several procedures calling each
other recursively. Procedures may have parameters and data could be exchanged
via the parameters. In program verification, variables over unbounded domains
such as integers, arrays, parameters etc. are usually abstracted to finite range
domains and configuration graphs of pushdown automata have been used quite
successfully in order to model recursive dependencies between procedures. It is
then possible to check properties expressed by temporal logics such as LTL or
CTL. The modelization using a finite domain has some obvious limitations but
it is hard to avoid while remaining decidable. One notable exception is [8] where
procedures can have one parameter whose value can range over the integers and
the procedures can perform limited arithmetic on that parameter.

In the database context also, most theoretical work on XML and its query
languages models XML documents by labeled ordered unranked trees, where
the labels are from a finite set. Attribute values are usually ignored. This has
basically two reasons, which are not independent. First, the modeling allows to
apply automata based techniques, as automata operate on trees of this kind.
Second, extending the model by attribute values (data values) quickly leads to
languages with undecidable static analysis (see, for instance [1,4,18,27]). Never-
theless, there are examples of decidable static reasoning tasks involving attribute
values.

One of them is validation of schema design. A schema contains a struc-
tural part and integrity constraints such as keys and inclusion constraints. In
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a semistructured model such as XML the structural part is mainly a mecha-
nism for assigning types to nodes of the document tree. It is then natural to ask
whether a specification is consistent and whether a set of integrity constraints is
minimal or not (implication problem). Decidable cases were proposed for XML
schemas in [2].

Another one is query optimization and checking whether one query is in-
cluded into or equivalent to another one. Each of these inclusion tests could
be relativized by the presence of a schema. In the context of XML and one
of its most popular language XPath several decidable fragments were proposed
in [27,4,18,6].

Each of the papers cited above propose a decidable framework where data
values are explicitly manipulated. In each of them the decidability was obtained
using a non-trivial ad-hoc argument. It is natural to wonder whether there exists
a general decidable suitable theoretical framework which could be used to infer
all this kind of results. This framework is yet to be discovered and this paper is
a modest attempt to gather known results in this direction. We tried to group
here interesting models of automata and logical frameworks which could be used
in order to code some of the problems mentioned above.

To make this survey finite size we have restricted our attention to an approach
that, in our opinion, deserves more attention from the theoretical community. All
over this survey we model data values using an infinite domain (like the integers).
Moreover our structures have a very simple shape as they are either finite strings
or finite trees. More precisely we are given two alphabets over strings and trees,
one which is finite and can be used to code names and constants appearing in
the programs, in the schemas, or in the queries, and another one which is infinite
and which can be used to code data values. We call such structures data words
or data trees.

We present several models of automata and several logics which are evaluated
on data words and data trees. We focus on their relative expressive power and
on decidability.

When dealing with an infinite domain, like the integers for instance, the al-
lowed arithmetic is a central issue in order to obtain decidability. We avoid
this problem here by allowing only the simplest arithmetical operation which is
equality test: The only operation that can be performed in our infinite domain
is checking whether to values are equal. We will see that this is already enough
to make the story interesting.

We have modified slightly several known concepts so that we could present
each of them within a uniform framework in order to compare them. We hope
that the reader familiar with one of them will not be too much disturbed by
this.

This survey contains no proof at all. Those can be found in the references
provided all over the paper. We wish we had time to include more references,
especially in the verification context.
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2 Some Notations

In this paper we consider two kinds of model: data words and data trees. Let Σ
be a finite alphabet of labels and D an infinite set of data values.

A data word w = w1 · · ·wn is a finite sequence over Σ × D, i.e., each wi is of
the form (ai, di) with ai ∈ Σ and di ∈ D. A data word language is a set of data
words.

A data tree t is a finite unranked, ordered tree where each node is of the form
(ai, di) with ai ∈ Σ and di ∈ D. As above a data tree language is a set of data
trees.

Given a node x of a data tree or a position x of a data word, we denote
respectively by x.d and x.l the data value of D and the label of Σ associated
to x. The idea is that the alphabet Σ is accessed directly, while data values can
only be tested for equality. This amounts to considering words and trees over the
finite alphabet Σ endowed with an equivalence relation on the set of positions.
With this in mind, given a data word or a data tree w, we will call class of
w a set of positions/nodes of w having the same data value. Finally, given a
data word w (or a data tree t), the string projection of w (the tree projection of
t), denoted by str(w) (tree(t)), is the word (tree) constructed from w (t) by
keeping only the label in Σ and projecting out all the data values.

For each integer n ∈ N we note [n] the set of all integers from 1 to n. Given
a data word w we denote its length by |w|.

3 Automata

In this section we present several models of automata over data words and data
trees. We present them in details in the word case and only briefly discuss the
extension to trees.

3.1 Register Automata

Register automata are finite state machines equiped with a finite number of
registers. These registers can be used to store temporarily values from D. When
processing a string, an automaton compares the data value of the current position
with values in the registers; based on this comparison, the current state and the
label of the position it can decide on its action. We stress that the only allowed
operation on registers (apart from assignment) is a comparison with the symbol
currently being processed. The possible actions are storing the current data value
in some register and specifying the new state. This model has been introduced
in [20] and was later studied more extensively in [28]. We give here an equivalent
formalism that fits with data words.

Definition 3.1. A k-register automaton A is a tuple (Q, q0, F, τ0, T ) where

– Q is a finite set of states; q0 ∈ Q is the initial state; F ⊆ Q is the set of
final states;
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– τ0 : {1, . . . , k} → D is the initial register assignment; and,
– T is a finite set of transitions of the forms (q, a, E) → q′ or (q, a, E) → (q′, i).

Here, i ∈ {1, . . . , k}, q, q′ ∈ Q, a ∈ Σ and E ⊆ {1, . . . , k}.
Given a data word w, a configuration of A on w is a tuple [j, q, τ ] where 0 ≤
j ≤ |w| is the current position in the word, q ∈ Q is the current state, and
τ : {1, . . . , k} → D is the current register assignment. The initial configuration
is γ0 := [1, q0, τ0]. A configuration [j, q, τ ] with q ∈ F is accepting. Given γ =
[j, q, τ ], the transition (p, a, E) → β applies to γ iff p = q, wj .l = a and E =
{l | wj .d = τ(l)} is the set of registers having the same data value as the current
position.

A configuration γ′ = [j′, q′, τ ′] is a successor of a configuration γ = [j, q, τ ] iff
there is a transition (q, a, E) → q′ that applies to γ, τ ′ = τ , and j′ = j + 1; or
there is a transition (q, a, E) → (q′, i) that applies to γ, j′ = j + 1, and τ ′ is
obtained from τ by setting τ ′(i) to wj .d. Based on this, reachable configuration
and acceptance of a data word is defined in the standard way. We denote by
L(A) the language of data words accepted by the register automata A.

Example 3.2. There exists a 1-register automata which checks whether the input
data words contains two positions labeled with a with the same data value (a
is not a key): it non-deterministically moves to the first position labeled with
a with a duplicated data value, stores the data value in its register and then
checks that this value appears again under another position labeled with a.

The complement of this language, all node labeled with a have different data
values, which would be useful for key integrity constraints in the database context
is not expressible with register automata. To prove this, one can show that for
each data word accepted by a given register automata, there exists another
accepted data word that have the same string projection but uses a number of
data values depending only on the automaton (see [20] for more details).

This shows that register automata are not closed under complementation.
They are also not closed under determinization as the first example cannot be
achieved with a deterministic register automata.

The main result for register automata is that emptiness is decidable.

Theorem 3.3. [20] Emptiness of register automata is decidable.

In term of complexity the problem is PSpace-complete [14]. Without labels it
was shown to be NP-complete in [30]. As illustrated with the examples above,
register automata are quite limited in expressive power. This limitation can also
be formalized with the following proposition which should be contrasted with
the similar one in the case of data automata presented later (Proposition 3.14).

Proposition 3.4. [20,9] Given a language L of data words accepted by a register
automata the language of strings str(L) is regular.

There exist many obvious extensions of register automata. For instance one could
add alternation or 2-wayness. Unfortunately those extensions are undecidable.
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Theorem 3.5. 1. Universality of register automata is undecidable [28].
2. Emptiness of 1-register 2-way automata is undecidable [12].

An immediate corollary of Theorem 3.5 is:

Corollary 3.6. [28] Inclusion and equivalence of register automata is undecid-
able.

There are several variants that weaken or strengthen the model of register au-
tomata as presented above without affecting much the results. We only briefly
mention two of them. One possible extension is to allow the automata to store a
non-deterministically chosen value from D in one of the register. With this ex-
tension the language of data words such that the data value of the last position
of the word is different from all the other positions can be accepted. Without
it the language is not accepted by a register automata. This model was studied
in [11,22] and is a little bit more robust than the one presented here. In the
model presented above the automata knows the equality type of the current
data value with all the registers. One possible weakening of the model is to allow
only an equality test of the current data value with a fix register. That is the
transitions are of the form (q, a, i) −→ q′ or (q, a, i) −→ (q′, j). This setting
was studied in [32]. The language of data words such that the first two data
values are distinct can no longer be accepted [21]. On the other hand this model
has equivalent regular expressions [21]. Another notable property of this weaker
model is that inclusion becomes decidable [32]. To conclude this discussion one
should mention that the model of the register automata as presented above have
algebraic characterizations, see [9,17] for more details.

Trees. To extend this model to binary trees the technical difficulty is to specify
how registers are splited (for the top-down variants) or merged (for the bottom-
up variant). In the top-down case the natural solution is to propagate the content
of the registers to the children of the current node. In the bottom-up case a
function can be included into the specification of the transitions of the automata
which specify, for each register, whether the new value should come from some
register of the left child or from some register of the right one. It is possible to
do this so that the family obtained is decidable and robust in the sense that the
bottom-up variant correspond to the top-down variant. This model has all the
properties of register automata over data words: emptiness is decidable and the
tree projection is regular. We refer to [21] for more details.

3.2 Pebble Automata

Another model of automata uses pebbles instead of registers. The automata
can drop and lift pebbles on any position in the string and eventually compare
the current value with the ones marked by the pebbles. To ensure a “regular”
behavior, the use of pebbles is restricted by a stack discipline. That is, pebbles
are numbered from 1 to k and pebble i + 1 can only be placed when pebble i
is present on the string. A transition depends on the current state, the current
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label, the pebbles placed on the current position of the head, and the equality
type of the current data value with the data values under the placed pebbles. The
transition relation specifies change of state, and possibly whether the last pebble
is removed or a new pebble is placed. In the following more formal definition we
follow [28] and assume that the head of the automata is always the last pebble.
This does not make much difference in term of expressive power, at least in the
2-way case which is the most natural for this model, but simplifies a lot the
notations:

Definition 3.7. A k-pebble automaton A is a tuple (Q, q0, F, T ) where

– Q is a finite set of states; q0 ∈ Q is the initial state; F ⊆ Q is the set of final
states; and,

– T is a finite set of transitions of the form α → β, where
• α is of the form (q, a, i, P, V, q), where i ∈ {1, . . . , k}, a ∈ Σ, P, V ⊆
{1, . . . , i − 1}, and

• β is of the form (q, d) with q ∈ Q and d is either drop of lift.

Given a data word w, a configuration of A on w is of the form γ = [q, j, θ]
where i is the current position in w, q ∈ Q the current state, j ∈ {1, . . . , k} the
number of pebbles already dropped, and θ : {1, . . . , j} → [|w|] the positions of
the pebbles. Note that the current position always correspond to θ(j). We call θ
a pebble assignment. The initial configuration is γ0 := [q0, 1, θ0], with θ0(1) = 1.
A configuration [q, j, θ] with q ∈ F is accepting.

A transition (p, a, i, P, V, p) → β applies to a configuration γ = [q, j, θ], if

1. i = j, p = q,
2. V = {l < j | wθ(l).d = wθ(j).d} is the set of pebbles placed on a position

which has the same data value than the current position.
3. P = {l < j | θ(l) = θ(j)} is the set of pebbles placed at the current position,

and
4. wj = a.

Intuitively, (p, a, i, P, V ) → β applies to a configuration if pebble i is the current
head, p is the current state, V is the set of pebbles that see the same data value
as the top pebble, P is the set of pebbles that sit at the same position as the
top pebble, and the current label seen by the top pebble is a.

A configuration [q′, j′, θ′] is a successor of a configuration γ = [q, j, θ] if there
is a transition α → (p, d) that applies to γ such that q′ = p and θ′(i) = θ(i), for
all i < j, and

– if d=drop, then j′ = j + 1, θ′(j) = θ(j) = θ′(j + 1),
– if d=lift, then j′ = i − 1.

Note that this implies that when a pebble is lifted, the computation resumes at
the position of the previous pebble.

Example 3.8. The languages of data words such that all nodes labeled with a
have different data values is accepted by a 2-pebble automata as follows. At each
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position labeled with a the automata drops pebble 1 and then check that the
data value never occurs under a position labeled with a to the right of the pebble.
When this is done it comes back to pebble 1 and move to the next position.

Register automata and pebble automata are likely to be incomparable in expres-
sive power. The example above can be expressed by a pebble automata but not
by a register automata. On the other hand, pebble automata have a stack disci-
pline constraint on the use of pebbles while register automata can update their
register in an arbitrary order. Based on this, examples of languages expressible
with register automata but not with pebble automata are easy to construct but
we are not aware of any formal proof of this fact.

Strictly speaking the model presented above is not really 1-way as when it
lifts a pebble the automata proceed at the position of previous pebble. It is also
immediate to extends this model in order to make it 2-way. The advantage of
this definition is that the model is robust:

Theorem 3.9. [28] Pebble automata are determinizable and the 2-way variant
has the same expressive power than its 1-way variant.

But unfortunately the model is too strong in expressive power. In the result
below, recall that with our definition the head of the automata counts as 1
pebble. Therefore in a sense the result is optimal.

Theorem 3.10. [28,12] Emptiness of 2-pebble automata over data words is un-
decidable.

Trees. The most natural way to extend this model to trees is to consider tree
walking automata with pebbles on trees. This model extend the 2-way variant
of pebble automata as presented here in a natural way with moves allowing to
“walk” the tree in all possible directions (up, down, left right). Of course, this
model remains undecidable.

3.3 Data Automata

This model was introduced in [6,7]. It extends the model of register automata,
remains decidable and has better connections with logic. Data automata runs
on data words in two passes. During the first one a letter-to-letter transducers
is run. This transducers does not have access to the data values and change
the label of each position. During the second pass, an automata is run on each
sequence of letters having the same data value, in other words, on each class.

A data automaton D = (A,B) consists of

– a non-deterministic letter-to-letter string transducer A (the base automaton)
with input alphabet Σ, for some output alphabet Γ (letter-to-letter means
that each transition reads and writes exactly one symbol), and

– a non-deterministic string automaton B (the class automaton) with input
alphabet Γ .
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A data word w = w1 · · ·wn is accepted by D if there is an accepting run of A
on the string projection of w, yielding an output string b1 · · · bn, such that, for
each class {x1, . . . , xk} ⊆ {1, . . . , n}, x1 < · · · < xk, the class automaton accepts
bx1 , . . . , bxk

.

Example 3.11. The language of data words such that all positions labeled with
a have different data values can be accepted by a data automaton as follows.
The base automaton does nothing and only copy its input. The class automata
accepts only words containing only one a.

The complement of the above language, the set of all data words containing
two positions labeled with a with the same data value, is done as follows. The
base automata non-deterministically selects two positions labeled with a and
output 1 on each of them and 0 everywhere else. The class automata checks
that each class contains either no 1 or exactly 2.

The language of data words such that there exists two positions labeled with a
and having the same data value but with no positions labeled with b (no matter
what the data value is) in between is accepted by a data automaton. The base
automata outputs 0 on all positions excepts two, labeled with a, that it selects
non-deterministically and on which it outputs 1. It also checks that between the
two selected positions no b occurs. The class automata checks that each class
contains either no 1 or exactly 2.

It is not clear how to do the complement of this language using a data au-
tomata. This suggest that data automata are not closed under complementation
but we are not aware of any formal proof of this result. It will follow from the re-
sults of Section 4 that if they would be closed under complementation then they
would not be effectively closed under complementation, by this we mean that
there would be no algorithm computing the complement of a data automata.

By just looking at the definitions it is not immediate that data automata extends
the model of register automata presented in Section 3.1. But it is indeed the case.

Proposition 3.12. [5] For each register automata there exists a data automaton
accepting the same language.

The main result on data automata is that emptiness remains decidable. We will
use this fact to show decidability of several logics in Section 4.

Theorem 3.13. [7] Emptiness of data automata is decidable.

In order to better understand the expressive power of data automata we show
that the string projection of languages accepted by data automata correspond to
languages accepted to multicounter automata. Recall that for register automata
the string projection remains regular (Proposition 3.4).

We first briefly review the definition of multicounter automata. An ε-free
multicounter automaton is a finite automaton extended by a finite set C =
{1, . . . , n} of counters. It can be described as a tuple (Q, Σ, C, δ, qI , F ). The set
of states Q, finite alphabet Σ, initial state qI ∈ Q and final states F ⊆ Q are
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as in a usual finite automaton. The transition relation δ is a finite subset of
Q × Σ × (dec∗(i) inc∗(i))i∈C × Q.

The idea is that in each step, the automaton can change its state and modify
the counters, by incrementing or decrementing them, according to the current
state and the current letter on the input. In a step, the automaton can apply to
each counter i ∈ C a sequence of decrements, followed by a sequence of incre-
ments. Whenever it tries to decrement a counter of value zero the computation
stops. Besides this, the transition of a multicounter automaton does not depend
on the value of the counters. In particular, it cannot test whether a counter
is exactly zero (otherwise the model would be undecidable). Nevertheless, by
decrementing a counter k times and incrementing it again afterward it can test
whether the value of that counter is at least k.

A configuration of such an automaton is a tuple c = (q, (ci)i∈C) ∈ Q × N
n,

where q is the current state and ci is the value of the counter i. A transition

(q, a, (decki(i)incli(i))i∈C , q′) ∈ δ

can be applied if the current state is q, the current letter is a and for every
counter i ∈ C, the value ci is at least ki. The successor configuration is d =
(q′, (c(i)− ki + li)i∈C). A run over a word w is a sequence of configurations that
is consistent with the transition function δ. The acceptance condition is given
by a subset R of the counters C and the final states. A run is accepting if it
starts in the state qI with all counters empty and ends in a configuration where
all counters in R are empty and the state is final.

Emptiness of multicounter automata is known to be decidable [26,23].

Proposition 3.14. [7]

• If L is a language of data words accepted by a data automata then str(L) a
language of strings accepted by a multicounter automata.

• If L is a language of strings accepted by a multicounter automata then there
exists a language L′ of data words accepted by a data automata such that
h(str(L′)) = L, where h is an erasing morphism.

The constructions of Proposition 3.14 are constructive (the time complexity
requires a tower of 3 exponentials in the first case and is only polynomial in
the second case) and thus Proposition 3.14 implies Theorem 3.13. Therefore the
emptiness problem of data automata is elementary equivalent to the emptiness
problem of multicounter automata which is not yet known to be elementary
(the best known lower-bound being ExpSpace [24] and the best known upper-
bound being non-elementary [26,23]). The precise complexity of Theorem 3.13
is therefore still an open issue.

Trees. This model can be extended to unranked ordered trees as follows. Both
the base automaton and the class automaton are bottom-up tree automaton. The
base automata works as in the word case and reassigns a label to each node. Each
class can now be viewed as an unranked ordered tree by contracting the initial
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tree edges which contains a node not in the class. The class automata is then run
on the resulting trees. Unfortunately decidability of data tree automata remains
an open issue. Data tree automata still have some connection with multicounter
tree automata. It is not clear yet whether the first part of Proposition 3.14
holds or not, but the second one does hold. Therefore showing decidability of
data automata would implies showing decidability of multicounter tree automata
which has eluded all efforts so far (see [13] and the references therein).

3.4 Other Generalizations

We have consider so far only automata for data words or data trees that are based
on the classical notion of finite state automata. It is also possible to consider
more powerful devices for manipulating data words such as pushdown automata.

Historically the first models of pushdown automata over infinite alphabet
were presented in [3] and [19]. Those models extend the notions of Context-Free
grammars and of pushdown automata in the obvious way by allowing infinitely
many rules and infinitely many transition functions, one for each letter in D.
Hence the models are not even finitely presented and decidability does not make
much sense. In term of expressive power, with some technical constraints on
the pushdown automata models (see [19]), both the context-free grammars and
pushdown automata defines the same class of languages.

The most robust decidable notion so far was given in [11] using ideas similar to
register automata. We describe it next. Intuitively the automata has k registers
and makes its choices given, the current state, the label of the current node, and
the equality type of the current data value with the values present in the registers.
The possible actions are: change the current state, update some of the registers
with the current data value, push the values stored into some registers into the
stack together with some finite content, pop the top of the stack. Moreover,
in order to have a robust model with an equivalent context-free grammar, the
model allows ε transition which can store into one of the registers a new, non-
deterministically chosen, data value.

Definition 3.15. A k-register pushdown automaton A is a tuple (Q, q0, F, Γ, τ0,
T ) where

– Q is a finite set of states; q0 ∈ Q is the initial state; F ⊆ Q is the set of
final states;

– Γ is a finite set of labels for stack symbols;
– τ0 : {1, . . . , k} → D is the initial register assignment; and,
– T is a finite set of transitions of the form (q, a, E, γ) → (q′, i, s) or (q, ε, E, γ)

→ (q′, i).
Here, i ∈ {1, . . . , k}, q, q′ ∈ Q, a ∈ Σ, γ ∈ Γ , s ∈ (Γ × {1, . . . , k})∗ and
E ⊆ {�, 1, . . . , k}.

Given a stack symbol s we denote by s.l and s.d respectively the label in Γ and
the data value in D of s. Given a data word w, a configuration of A on w is
a tuple [j, q, τ, μ] where 1 ≤ j ≤ |w| is the current position in the data words,



Automata and Logics for Words and Trees over an Infinite Alphabet 51

q ∈ Q is the current state, τ : {1, . . . , k} → D is the current register assignment,
and μ ∈ (γ × D)∗ is the current stack content. The initial configuration is
ν0 := [1, q0, τ0, ε]. A configuration [j, q, τ, μ] with q ∈ F is accepting. Given
ν = [j, q, τ, μ] with top stack symbol s, the transition (p, a, E, γ) → β applies to
ν iff p = q, wj .l = a, s.l = γ, and E = {l | wj .d = τ(l)} ∪ S with S is empty if
wj .d �= s.d and is {�} otherwise.

A configuration ν′ = [j′, q′, τ ′, μ′] is a successor of a configuration ν = [j, q, τ, μ]
iff there is a transition (q, a, E, γ) → (q′, i, s) that applies to ν, τ ′(l) = τ(l) for
all l �= i, τ ′(i) = wj .d, j′ = j + 1 and μ′ is μ with the top of the stack removed
and replaced by (a1, di1 ) · · · (am, dim) where s = (a1, i1) · · · (am, im) and dl is
the current value of register l; or there is a transition (q, a, E, γ) → (q′, i) that
applies to ν, j′ = j, μ = μ′, and τ ′ is obtained from τ by setting τ ′(i) to some
arbitrary value of D. Based on this, reachable configuration and acceptance of
a data word is defined in the standard way.

Note that we allow ε transitions which can introduce non-deterministically a
new symbol in some register. This make the model more robust.

Example 3.16. The language of data words such that the data values form a
sequence wwR where wR is the reverse sequence of w is accepted by a register
data automata in the obvious way by first pushing the data values into the stack
and then poping them one by one.

The language of data words such that all positions labeled with a have different
data values is not accepted by a register pushdown automata. This uses argument
similar than for register automata. See [11] for more details and more example.

This model of register pushdown automata extends in a natural way the classical
notion of pushdown automata. It can be shown that the good properties of
Context-Free languages can be extended to this model. In particular we have:

Theorem 3.17. [11] Emptiness of register pushdown automata is decidable.

This model is also robust and has an equivalent presentation in term of Context-
Free grammar that we don’t present here. The interested reader will find in [11]
more details and more properties of the model. We conclude with a characteriza-
tion of the projection languages defined by register pushdown automata similar
to Proposition 3.4.

Proposition 3.18. If L is a language accepted by a register pushdown automata
then str(L) is Context-Free.

4 Logics

The previous section was concerned with finding decidable automata for manip-
ulating words and trees containing data values. In this section we are looking
for declarative decidable tools such as logics.

Data words and data trees can be seen as models for a logical formula.
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In the case of data words, the universe of the model is the set of positions in
the word and we have the following built-in predicates: x ∼ y, x < y, x = y + 1,
and a predicate a(x) for every a ∈ Σ. The interpretation of a(x) is that the label
in position x is a. The order < and successor +1 are interpreted in the usual way.
Two positions satisfy x ∼ y if they have the same data value. Given a formula
φ over this signature, we write L(φ) for the set of data words that satisfy the
formula φ. A formula satisfied by some data word is satisfiable.

In the case of data trees, the universe of the structure is the set of nodes of
the tree with the following predicates available:

– For each possible label a ∈ Σ, there is a unary predicate a(x), which is true
for all nodes that have the label a.

– The binary predicate x ∼ y holds for two nodes if they have the same data
value.

– The binary predicate E→(x, y) holds for two nodes if x and y have the same
parent node and y is the immediate successor of x in the order of children
of that node.

– The binary predicate E↓(x, y) holds if y is a child of x.
– The binary predicates E⇒ and E⇓ are the transitive closures of E→ and E↓,

respectively.

For both words and trees, we write FO(∼, <, +1) for first-order logic over a
signature containing all the predicates mentioned above for the corresponding
context. We also write FO(∼, +1) when the predicates E⇒ and E⇓ -in the case
of trees- and without < -in the case of words are missing.

A logic L is said to be decidable over a class M of models if, given a sentence
ϕ ∈ L, it is decidable whether there exists a model M ∈ M such that M |= ϕ.

4.1 First-Order logics

Example 4.1. The language of data words such that all positions labeled with
a have different data values can be expressed in FO(∼, <, +1) by ∀x, y (a(x) ∧
a(y) ∧ x �= y) −→ x �∼ y.

The complement of the above language, the set of all data words containing
two positions labeled with a having the same data value, is thus ∃x, y a(x) ∧
a(y) ∧ x �= y ∧ x ∼ y.

The language of data words where each position labeled with a has a data
value which also appears under a position labeled with b (inclusion dependency)
is expressed in FO(∼, <, +1) by ∀x∃y a(x) −→ (b(y) ∧ x ∼ y).

Let L be the language of data words such that (i) any two positions labeled
with a have a distinct data value, (ii) any two positions labeled with b have a
distinct data value and (iii) the sequence of data values of the positions labeled
a is exactly the same as the sequence of data values labeled with b. L can be
expressed in FO(∼, <, +1) as follows. First we use sentences as given in the
first three examples in order to express (i), (ii) and the fact that each data value
appears exactly twice under two positions, one labeled a and one labeled b. Then
the following sentence shows that the sequences are the same: ∀x, y, z (a(x) ∧
a(y) ∧ x < y ∧ b(z) ∧ x ∼ z) −→ (∃x b(x) ∧ x ∼ y ∧ z < x).
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The relative expressive power of register and pebble automata with logics has
been studied in [28] over data words. In term of expressive power, FO(∼, <, +1)
is not comparable with register automata and it is strictly included into pebble
automata.

As FO(∼, <, +1) is a fragment of pebble automata it is natural to wonder
whether it forms a decidable fragment. We write FOk for formulas using at most
k variables (possibly reusing them at will). In the examples above note that
the first three are definable in FO2(∼, <, +1) while the third one requires three
variables. This last example can be pushed a little bit in order to code PCP.
Therefore we have:

Theorem 4.2. [7] FO3(∼, <, +1) is not decidable over data words.

However the two-variable fragment of FO(∼, <, +1), which turns out to be often
sufficient for our needs, especially in the database context, is decidable.

Theorem 4.3. [7] FO2(∼, <, +1) is decidable over data words.

Theorem 4.3 follows from the fact that any data word language definable by
a formula of FO2(∼, <, +1) is accepted by a data word automata described in
Section 3. Actually we can show a stronger result than this. Consider the new
binary predicate �1 which holds true at position x and y if the positions de-
noted by x and y have the same data value and y is the successor of x in their
class. Note that this predicate is not expressible in FO2(∼, <, +1). Consider
now the logic EMSO2(∼,<,+1,�1) which extends FO2(∼,<,+1,�1) by existen-
tial monadic second-order predicates quantification in front of FO2(∼,<,+1,�1)
formulas.

Theorem 4.4. [7] For any data word language L the following are equivalent.

1. L is definable in EMSO2(∼,<,+1,�1),
2. L is accepted by a data word automata.

Moreover the translations between EMSO2(∼,<,+1,�1) formulas and data word
automata are effective.

This immediately yields:

Corollary 4.5. EMSO2(∼,<,+1,�1) is decidable over data words.

Again the precise complexity is not known as it more or less correspond to
deciding emptiness of multicounter automata.

Note that adding a little bit more of arithmetic, like assuming that D is
linearly order and that the logic contains an extra binary predicate checking
for this order among data values, yields undecidability even for the 2-variables
fragment of FO [7].
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Trees. The step from data words to data trees seems non trivial and we don’t
yet know whether Theorem 4.4 holds in the data tree case. In particular we
don’t know whether languages definable in FO2(∼, <, +1) are always accepted
by a data tree automata. On the other hand FO2(∼, <, +1) is expressive enough
to simulate multicounter tree automata therefore satisfiability of FO2(∼, <, +1)
over data trees is likely to be a difficult problem.

On the other hand we can show:

Theorem 4.6. [6] FO2(∼, +1), and therefore EMSO2(∼, +1), is decidable over
data trees.

The proof of Theorem 4.6 is quite involved and does not use automata but
rather some kind of puzzles. It is shown, using this puzzles, that any satisfiable
sentences of FO2(∼, +1) has a tame model and that deciding whether a sentence
has a tame model is decidable. The complexity obtained this way is 3NExpTime
which is possibly not optimal.

4.2 LTL with Freeze Quantifier

This logic was studied in the context of data words in [14,15]. Roughly speaking
it extends the linear temporal logic LTL with a freeze operator which binds the
data value of the current position in the data words to a register for later use.

We consider the temporal operators X for Next, X−1 for Previous, F for
Sometime in the future, F−1 for sometime in the past, U for Until,
U−1 for Previous. As usual we regard G as an abbreviation for ¬F¬. We
define LTL↓

n using the following grammar:
S ::= � | a | ↓r S | S ∧ S | ¬S | O(S...S) | ↑r

where r ∈ [1, n], a ∈ Σ and O is a temporal operator in {X, X−1, F, F−1, U, U−1}.
We only consider well-formed formulas where ↑r is only used in the scope of

a ↓r. When we want to use only a subset O of the temporal operators then we
write LTL↓

n(O).
The semantic is classical for the Boolean and temporal operators. The formula

a holds at any position whose label is a. The formula ↓r S stores the data value
of the current position in the register r and then checks for S starting at the
current position. The formula ↑r checks that the data values stored in the register
r equals the data value of the current position.

Example 4.7. The language of data words containing two positions labeled with
a having the same data value, can be expressed in LTL↓

1 by F (a∧ ↓1 XF (a∧ ↑1)).
The complement of the above language, data words such that all positions

labeled with a have different data values, is thus ¬F (a∧ ↓1 XF (a∧ ↑1)).
The language of data words where each position labeled with a has a data

value which also appears under a position labeled with b (inclusion dependency)
is expressed in LTL↓

1 by G(a −→ (↓1 (F (b∧ ↑1) ∨ F−1(b∧ ↑1)))).
The language of data words such that any two distinct positions labeled with

a and having the same data value have a b in between can be expressed in LTL↓
1

by: G
(
(a∧ ↓1 F (a∧ ↑1)) −→ (¬(a∧ ↑1)Ub)

)
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Theorem 4.8. [14,15]

1. LTL↓
1(X, U) is decidable over data words.

2. LTL↓
2(X, F ) is undecidable over data words.

3. LTL↓
1(X, F, F−1) is undecidable over data words.

The logics LTL↓
1(X, U) and FO2(∼, <, +1) are incomparable. Indeed the third

example above (inclusion dependency) is expressible in FO2(∼, <, +1) but not
in LTL↓ without past temporal operators. On the other hand the last example
above is expressible in LTL↓

1(X, U) but not in FO2(∼, <, +1) (and most likely
this property is also not expressible using a data automaton).

There exists a fragment of LTL↓
1 which correspond to FO2(∼, <, +1). A LTL↓

1

formula is said to be simple if any temporal operator is immediately preceded by
a ↓1 and there are no occurrences of ↓1 operators. Then simple-LTL↓

1(X, X−1, X2

F, X−2F−1) has exactly the same expressive power than FO2(∼, <, +1). This
fact was first mentioned in [14]. The translations in both directions are effective
and use the same ideas as in [16].

Trees. The extension of this ideas to trees, using languages like CTL, remains
to be done.

5 Conclusion

We have presented several models of decidable automata and logics over data
words and data trees. The logical approach has the advantage of compositionality
and has many other interesting closure properties which makes it easier for
coding problems into it. The complexities obtained for logics are usually quite
high which makes them quite unsuited for practical applications. However it is
possible to obtain lower complexities by imposing some extra constraints, see for
instance [6,7].

Several of the results presented in this paper were extended to infinite data
words. This is useful in the context of verification in order to code infinite com-
putations. For instance Theorem 4.3 have been extended over infinite data words
in [7].

The tree case is usually a lot more difficult than the word case. If several
decidability results were obtained over data trees, like for register automata or
FO2(∼, +1), many decidability questions remains open, like the decidability of
FO2(∼, <, +1).

The decidability result of EMSO2(∼, +1) over data trees presented in Theo-
rem 4.6 was used in a database context in [6] in order to show decidability of the
inclusion problem of certain fragments of XPath in the presence of DTDs. It was
also used to show decidability of validation of DTDs in the presence of unary
key and foreign key constraints [6]. Those two results were obtained via different
coding of the problems into data trees and EMSO2(∼, +1). This builds on the
fact that any regular tree language (and therefore the structural part of DTDs)
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can be expressed in EMSO2(∼, +1) (without using the predicate ∼) and XPath
1.0 is also intimately related with first-order logics with two variables [25].

Altogether we hope that we have convinced the reader that there is a need
for more decidable automata models and more decidable logics over data words
and data trees. This is a challenging topic which has a lot of applications, in
particular in database and in program verification.

Acknowledgment. We thanks Miko�laj Bojańczik, Anca Muscholl, and Thomas
Schwentick for all the interesting discussions we had while writing this paper.
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