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Theorem 3 (Kruskal) If ≥F is a wqo, then ! is a wqo on T (F .

Proof:
By contradiction, assume that the set of counter-example sequences

E = {{ui}i∈N | ∀i < j.ui # !uj}

is not empty.
We construct a minimal sequence as follows: E0 = E , ui is a minimal

(w.r.t. size) term such that there is a sequence u0, . . . , ui, . . . in Ei and Ei+1

is the set of sequences in Ei, that start with u0, . . . , ui.
The sequence {ui}i∈N belongs to E : for every i < j, there is a sequence

u0, . . . , uj , vj+1, . . . in Ei+1 ⊆ E hence ui # !uj.
Next, we extract from {ui}i∈N a subsequence {uni}i∈N such that the

root symbols fni of uni are increasing; this is possible since ≥F is a wqo and
thanks to the proposition 5.

Now, consider the set D of strict subterms of {uni}i∈N. We claim that !
is a wqo on D. Indeed, consider an infinite sequence {vj}j∈N of terms in D.
If there are two identical terms in the sequence, then there is i < j such that
vi!vj . Otherwise, v0 is a strict subterm of some um0

. We extract from vj the
subsequence vkj of terms that are not subterms of u0, . . . , um0

. This is possi-
ble since there are only finitely many subterms of u0, . . . , um0

, while there are
infinitely many distinct terms in vj. The sequence u0, . . . , um0−1, vk0 , vk1 . . .

is not in E , since |vk0 | < |um0
| and by minimality of the counter-example

{ui}i∈N. Then either there are two indices ki < kj such that vki ! vkj or
else there is an index j < m0 and an index ! such that uj ! vk! . But, in
the latter case, since vk! is a subterm of some um,m > m0, we would have
uj ! um with j < m, which is not possible.

To summarize, in any case, there are j < k such that vj ! vk: ! is a wqo
on D.

By Higman’s lemma (lemma 3), !w
! is a wqo on D∗. Consider now

the sequence of words {wi}i∈N in D∗ defined by wi = s1 · · · smi if uni =
fni(s1, . . . , smi) (i.e., the concatenation of immediate subterms of uni). Since
!w

! is a wqo, there are two indices i < j such that wi !
w
! wj. Then, by

definition of ! and since the sequence fni is increasing, this implies uni!unj .
This is a contradiction since {ui}i∈N is supposed to belong to E .

Hence E is empty.
"

In many applications below, we consider a finite set F , in which case the
wqo on F does not matter (any reflexive and transitive relation on F is a
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wqo, for instance the equality) and is therefore not precised.

3.4 Simplification (quasi)-orderings

Definition 11 A simplification (quasi-)ordering is a (quasi-)ordering ≤ on
T (F ,X) such that

1. If s is a strict subterm of t, then s < t.

2. (Stability) for every terms t, u and every substitution σ, if t < u then
tσ < uσ (and if t & u, then tσ & uσ)

3. (Monotonicity) For every t1, . . . , tn, u1, . . . , um, if t1 ≤ u1, . . . , tn ≤
un, then f(t1, . . . , tn) ≤ f(u1, . . . , un) and, if ti < ui for some i, then
f(t1, . . . , tn) < f(u1, . . . , un).

Proposition 11 If F is finite, then simplification orderings are well-founded
on T (F ,X).

Proof:
Let ≤ be a simplification ordering on T (F ,X) where F is finite.

Let x0 ∈ X and T = T (F , x0). Let s0 ∈ T .
First observe that, thanks to the first and last properties of simplification

orderings, any simplification ordering contains the embedding (that extends
the equality on F). In particular ≤ contains !

Now, if t0 > t1 > . . . is an infinite strictly decreasing sequence in
T (F ,X), let ui be the term obtained from ti by replacing every variable
of ti with s0. By stability, u0 > u1 > . . . is a strictly decreasing sequence in
T .

On the other hand, F ∪{x0} is finite, hence, thanks to Kruskal theorem,
! is a wqo on T . Therefore there are two indices i < j such that ui ! uj .
This contradicts the fact that ≤ contains !. "

3.5 Recursive path orderings

Definition 12 Let F be a set of function symbols, ≥F be a wqo on F
and status is a mapping from F into {lex,mul}. The recursive path (quasi-
)ordering ≥rpo that extends ≥F and status is defined on T (F ,X) as follows:

s ≡ f(s1, . . . , sn) ≥ g(t1, . . . , tm) ≡ t
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iff one of the following conditions is satisfied:

1. (subterm): ∃i. si ≥rpo t

2. (precedence): f >F g and ∀i. s >rpo ti

3. (multiset): f &F g and status(f) = status(g) = mul and

{{s1, . . . , sn}}+
mul
rpo {{t1, . . . , tm}}

4. (lexicographic): f &F g and status(f) = status(g) = lex and

∀i. s >rpo ti

and

(s1, . . . , sn)+
lex
rpo(t1, . . . , tm)

When s is a variable, s ≥rpo t iff s = t.
When t is a variable, s ≥rpo t iff t ∈ Var(s).

In this definition +mul
rpo and +lex

rpo are respectively the multiset and the
lexicographic extension of the recursive path ordering.

This definition is effective: all recursive calls to ≥rpo (or its multi-
set/lexicographic extensions) are on pairs of terms whose total size is strictly
smaller.

Also note that we considered in this definition a lexicographic compar-
ison from left to right. It is also possible to add other status, comparing
lexicographically a permutation of the subterms (for instance from right to
left). We did not include this possibility, for simplicity.

Lemma 4 If s ≥rpo g(t1, . . . , tn), then, for every i, s >rpo ti.

Proof:
We proceed by induction on the sum of the sizes of s, t, distinguishing be-
tween the cases in the proof of s ≥rpo t:

Subterm: If sj ≥rpo t for some j, then, by induction hypothesis, sj >rpo ti
for all i, hence s ≥rpo ti for all i. Suppose ti ≥rpo s. Then ti > sj by
induction hypothesis, which is a contradiction. Hence s >rpo ti.

Precedence or Lexicographic: s >rpo ti by definition
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Multiset: by definition of the multiset extension, for every i there is a
j such that sj ≥rpo ti, hence s ≥rpo ti. Assume by contradiction
that ti ≥rpo s. By induction hypothesis, for every j, ti >rpo sj. A
contradiction.

"

Lemma 5 If s ≥rpo t by Subterm or Precedence, then s >rpo t.

Proof:
(Sketch): by contradiction, using lemma 4. "

Let =mul be the least symmetric and reflexive relation such that, if
f &calF g and there is a permulation π such that s1 =mul tπ(1), . . . , sn =mul

tπ(n), then f(s1, . . . , sn) =mul g(t1, . . . , tn).

Lemma 6 s ≥rpo t and t ≥rpo s iff s =mul t.

Proof:
(Sketch): by induction, using lemma 5. "

Lemma 7 ≥rpo is reflexive.

Lemma 8 If t is a strict subterm of s, then s >rpo t.

Proof:
(Sketch): use lemmas 4 and 6. "

Lemma 9 ≥rpo is transitive.

Proof:
(Sketch): We use an induction on the sum of the sizes of the three terms
and rely on lemma 4 for instance. "

Lemma 10 ≥rpo is a quasi-ordering. If ≥F is a total ordering, then ≥rpo

is a total ordering on T (F).
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Proof:
(Sketch). For the first part, we use lemma 10 and lemma 7. For the second
part, we reason by contradiction, considering a minimal (w.r.t. size) pair of
incomparable terms. "

Lemma 11 ≥rpo is monotonic (in the sense of definition 11).

Proof:
(Sketch): use the cases 3 and 4 in the definition of ≥rpo. "

Lemma 12 ≥rpo is stable by substitution.

Proof:
(Sketch): by induction on the sum of the sizes of s, t, we prove s >rpo t ⇒
sσ >rpo tσ. "

Theorem 4 ≥rpo is a simplification ordering. In particular it is well-founded.


