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Theorem 3 (Kruskal) If >r is a wqo, then < is a wqo on T(F.

Proof:
By contradiction, assume that the set of counter-example sequences

€ = {uitien | Vi <jui Aus}

is not empty.
We construct a minimal sequence as follows: & = &, u; is a minimal

(w.r.t. size) term such that there is a sequence ug, ..., u;,... in & and &1
is the set of sequences in &;, that start with ug, ..., u;.

The sequence {u; };en belongs to &: for every i < j, there is a sequence
UQ, - - - s Ujy Vi1, - - - 10 E1 € € hence u; Auy.

Next, we extract from {u;}ieny a subsequence {un, }ien such that the
root symbols f,, of u,, are increasing; this is possible since > r is a wqo and
thanks to the proposition 5.

Now, consider the set D of strict subterms of {uy, }ien. We claim that <
is a wqo on D. Indeed, consider an infinite sequence {v;};en of terms in D.
If there are two identical terms in the sequence, then there is ¢ < j such that
v;<dv;. Otherwise, vy is a strict subterm of some u,,,. We extract from v; the

subsequence vg; of terms that are not subterms of ug, . .., Um,. This is possi-
ble since there are only finitely many subterms of u, . . . , %y, while there are
infinitely many distinct terms in v;. The sequence ug, . .., Umg—1, Vkg, Vk; - - -

is not in &, since |vg,| < |um,| and by minimality of the counter-example
{u;}ien. Then either there are two indices k; < k; such that vy, < Uk; Or
else there is an index j < mg and an index /¢ such that u; < vg,. But, in
the latter case, since vy, is a subterm of some wu,,, m > mg, we would have
uj Juy,, with j < m, which is not possible.

To summarize, in any case, there are j < k such that v; Jv,: <Jis a wqo
on D.

By Higman’s lemma (lemma 3), <% is a wqo on D*. Consider now
the sequence of words {w;}ien in D* defined by w; = s1--- Sm; if up, =
fni (51, Sm,;) (i-e., the concatenation of immediate subterms of u,,). Since
<Y is a wqo, there are two indices ¢ < j such that w; <4 w;. Then, by
definition of < and since the sequence fn, 1s increasing, this implies Up, Ly
This is a contradiction since {u;};en is supposed to belong to £.

Hence £ is empty.

O

In many applications below, we consider a finite set F, in which case the
wqo on F does not matter (any reflexive and transitive relation on F is a
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wqo, for instance the equality) and is therefore not precised.

3.4 Simplification (quasi)-orderings

Definition 11 A simplification (quasi-)ordering is a (quasi-)ordering < on
T(F,X) such that

1. If s is a strict subterm of t, then s < t.

2. (Stability) for every terms t,u and every substitution o, if t < u then
to <wuo (and if t ~ u, then to ~ uo)

3. (Monotonicity) For every ty,...,tn, U1, ... U, if t1 <up, ..., t, <
Un, then f(t1,...,tn) < f(ui,...,uy,) and, if t; < u; for some i, then
f(tl,. .. ,tn) < f(ul,. .. ,un).

Proposition 11 If F is finite, then simplification orderings are well-founded
on T(F,X).

Proof:
Let < be a simplification ordering on T'(F, X) where F is finite.

Let 29 € X and T = T(F,xp). Let sg € T.

First observe that, thanks to the first and last properties of simplification
orderings, any simplification ordering contains the embedding (that extends
the equality on F). In particular < contains <

Now, if tg > t; > ... is an infinite strictly decreasing sequence in
T(F,X), let u; be the term obtained from ¢; by replacing every variable
of t; with sg. By stability, ug > uy > ... is a strictly decreasing sequence in
T.

On the other hand, FU{zo} is finite, hence, thanks to Kruskal theorem,
<'is a wgo on 7. Therefore there are two indices ¢ < j such that u; < wu;.
This contradicts the fact that < contains <. O

3.5 Recursive path orderings

Definition 12 Let F be a set of function symbols, >r be a wgo on F
and status is a mapping from F into {lex, mul}. The recursive path (quasi-
Jordering >,p, that extends > 5 and status is defined on T'(F,X) as follows:

S=f(s1y--+58n) = g(t1, ... tm) =t
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iff one of the following conditions is satisfied:

~

. (subterm): Ji. s; >ppo t

NS

. (precedence): f >F g and Vi. s >ppo t;

3. (multiset): f ~r g and status(f) = status(g) = mul and
{{s1, -, s} ) {ty, .t }}

. (lexicographic): f ~x g and status(f) = status(g) = lex and

B

Vi. s >rpo t;

and
(S1,- -0 80) 200 (b1, )

When s is a variable, s >,po t iff s =t.
When t is a variable, s >ypo t iff t € Var(s).

In this definition 2%% and zlgf) are respectively the multiset and the
lexicographic extension of the recursive path ordering.

This definition is effective: all recursive calls to >,,, (or its multi-
set/lexicographic extensions) are on pairs of terms whose total size is strictly
smaller.

Also note that we considered in this definition a lexicographic compar-
ison from left to right. It is also possible to add other status, comparing
lexicographically a permutation of the subterms (for instance from right to
left). We did not include this possibility, for simplicity.

Lemma 4 If s >y, g(t1,...,tn), then, for every i, s >ypo ti.

Proof:
We proceed by induction on the sum of the sizes of s, ¢, distinguishing be-
tween the cases in the proof of s >,,, t:

Subterm: If s; >,,, t for some j, then, by induction hypothesis, s; >, t;
for all 4, hence s >, t; for all 7. Suppose t; >,,, s. Then t; > s; by
induction hypothesis, which is a contradiction. Hence s >,p, t;.

Precedence or Lexicographic: s >,,, t; by definition
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Multiset: by definition of the multiset extension, for every i there is a
J such that s; >, t;, hence s >,,, t;. Assume by contradiction
that ¢; >,5, s. By induction hypothesis, for every j, t; >ppo 55. A

contradiction.
O
Lemma 5 If s >,,,t by Subterm or Precedence, then s >po t.
Proof:
(Sketch): by contradiction, using lemma 4. O

Let =, be the least symmetric and reflexive relation such that, if
f ~car g and there is a permulation 7 such that s; =, br(1)s -+ > Sn =mul
tr(n), then f(s1,...,8) =mu g(t1,- -, tn).

Lemma 6 s >,,,t and t >,po 5 iff s = t.

Proof:
(Sketch): by induction, using lemma 5. O

Lemma 7 >,,, is reflexive.

Lemma 8 Ift is a strict subterm of s, then s >,p, t.

Proof:
(Sketch): use lemmas 4 and 6. O

Lemma 9 >,,, is transitive.

Proof:
(Sketch): We use an induction on the sum of the sizes of the three terms
and rely on lemma 4 for instance. (]

Lemma 10 >,,, is a quasi-ordering. If >F is a total ordering, then >,p,
is a total ordering on T (F).
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Proof:

(Sketch). For the first part, we use lemma 10 and lemma 7. For the second
part, we reason by contradiction, considering a minimal (w.r.t. size) pair of
incomparable terms. O

Lemma 11 >,,, is monotonic (in the sense of definition 11).

Proof:
(Sketch): use the cases 3 and 4 in the definition of >,p,. O

Lemma 12 >,,, is stable by substitution.

Proof:
(Sketch): by induction on the sum of the sizes of s,t, we prove § >,p, t =
80 >ppo tO. O

Theorem 4 >,,, is a simplification ordering. In particular it is well-founded.



