Theorem 3 (Kruskal) If $\geq_{\mathcal{F}}$ is a wqo, then \trianglelefteq is a wqo on $T(\mathcal{F})$.

Proof:

By contradiction, assume that the set of counter-example sequences

$$\mathcal{E} = \{\{u_i\}_{i \in \mathbb{N}} \mid \forall i < j.u_i \not \simeq u_j\}$$

is not empty.

We construct a minimal sequence as follows: $\mathcal{E}_0 = \mathcal{E}$, u_i is a minimal (w.r.t. size) term such that there is a sequence u_0, \ldots, u_i, \ldots in \mathcal{E}_i and \mathcal{E}_{i+1} is the set of sequences in \mathcal{E}_i , that start with u_0, \ldots, u_i .

The sequence $\{u_i\}_{i \in \mathbb{N}}$ belongs to \mathcal{E} : for every i < j, there is a sequence $u_0, \ldots, u_j, v_{j+1}, \ldots$ in $\mathcal{E}_{i+1} \subseteq \mathcal{E}$ hence $u_i \not \supseteq u_j$.

Next, we extract from $\{u_i\}_{i\in\mathbb{N}}$ a subsequence $\{u_{n_i}\}_{i\in\mathbb{N}}$ such that the root symbols f_{n_i} of u_{n_i} are increasing; this is possible since $\geq_{\mathcal{F}}$ is a wqo and thanks to the proposition 5.

Now, consider the set \mathcal{D} of strict subterms of $\{u_{n_i}\}_{i\in\mathbb{N}}$. We claim that \trianglelefteq is a wqo on \mathcal{D} . Indeed, consider an infinite sequence $\{v_j\}_{j\in\mathbb{N}}$ of terms in \mathcal{D} . If there are two identical terms in the sequence, then there is i < j such that $v_i \trianglelefteq v_j$. Otherwise, v_0 is a strict subterm of some u_{m_0} . We extract from v_j the subsequence v_{k_j} of terms that are not subterms of u_0, \ldots, u_{m_0} . This is possible since there are only finitely many subterms of u_0, \ldots, u_{m_0} , while there are infinitely many distinct terms in v_j . The sequence $u_0, \ldots, u_{m_0-1}, v_{k_0}, v_{k_1} \ldots$ is not in \mathcal{E} , since $|v_{k_0}| < |u_{m_0}|$ and by minimality of the counter-example $\{u_i\}_{i\in\mathbb{N}}$. Then either there are two indices $k_i < k_j$ such that $v_{k_i} \trianglelefteq v_{k_j}$ or else there is an index $j < m_0$ and an index ℓ such that $u_j \trianglelefteq v_{k_\ell}$. But, in the latter case, since v_{k_ℓ} is a subterm of some $u_m, m > m_0$, we would have $u_j \trianglelefteq u_m$ with j < m, which is not possible.

To summarize, in any case, there are j < k such that $v_j \leq v_k$: \leq is a wqo on \mathcal{D} .

By Higman's lemma (lemma 3), $\trianglelefteq_{\trianglelefteq}^w$ is a wqo on \mathcal{D}^* . Consider now the sequence of words $\{w_i\}_{i\in\mathbb{N}}$ in \mathcal{D}^* defined by $w_i = s_1 \cdots s_{m_i}$ if $u_{n_i} = f_{n_i}(s_1, \ldots, s_{m_i})$ (i.e., the concatenation of immediate subterms of u_{n_i}). Since $\trianglelefteq_{\trianglelefteq}^w$ is a wqo, there are two indices i < j such that $w_i \trianglelefteq_{\trianglelefteq}^w w_j$. Then, by definition of \trianglelefteq and since the sequence f_{n_i} is increasing, this implies $u_{n_i} \trianglelefteq u_{n_j}$. This is a contradiction since $\{u_i\}_{i\in\mathbb{N}}$ is supposed to belong to \mathcal{E} .

Hence \mathcal{E} is empty.

In many applications below, we consider a finite set \mathcal{F} , in which case the wqo on \mathcal{F} does not matter (any reflexive and transitive relation on \mathcal{F} is a

wqo, for instance the equality) and is therefore not precised.

3.4 Simplification (quasi)-orderings

Definition 11 A simplification (quasi-)ordering is a (quasi-)ordering \leq on $T(\mathcal{F}, X)$ such that

- 1. If s is a strict subterm of t, then s < t.
- 2. (Stability) for every terms t, u and every substitution σ , if t < u then $t\sigma < u\sigma$ (and if $t \simeq u$, then $t\sigma \simeq u\sigma$)
- 3. (Monotonicity) For every $t_1, \ldots, t_n, u_1, \ldots, u_m$, if $t_1 \leq u_1, \ldots, t_n \leq u_n$, then $f(t_1, \ldots, t_n) \leq f(u_1, \ldots, u_n)$ and, if $t_i < u_i$ for some i, then $f(t_1, \ldots, t_n) < f(u_1, \ldots, u_n)$.

Proposition 11 If \mathcal{F} is finite, then simplification orderings are well-founded on $T(\mathcal{F}, X)$.

Proof:

Let \leq be a simplification ordering on $T(\mathcal{F}, X)$ where \mathcal{F} is finite.

Let $x_0 \in \mathcal{X}$ and $\mathcal{T} = T(\mathcal{F}, x_0)$. Let $s_0 \in \mathcal{T}$.

First observe that, thanks to the first and last properties of simplification orderings, any simplification ordering contains the embedding (that extends the equality on \mathcal{F}). In particular \leq contains \leq

Now, if $t_0 > t_1 > \ldots$ is an infinite strictly decreasing sequence in $T(\mathcal{F}, X)$, let u_i be the term obtained from t_i by replacing every variable of t_i with s_0 . By stability, $u_0 > u_1 > \ldots$ is a strictly decreasing sequence in \mathcal{T} .

On the other hand, $\mathcal{F} \cup \{x_0\}$ is finite, hence, thanks to Kruskal theorem, \leq is a wqo on \mathcal{T} . Therefore there are two indices i < j such that $u_i \leq u_j$. This contradicts the fact that \leq contains \leq .

3.5 Recursive path orderings

Definition 12 Let \mathcal{F} be a set of function symbols, $\geq_{\mathcal{F}}$ be a wop on \mathcal{F} and status is a mapping from \mathcal{F} into {lex, mul}. The recursive path (quasi-)ordering \geq_{rpo} that extends $\geq_{\mathcal{F}}$ and status is defined on $T(\mathcal{F}, X)$ as follows:

$$s \equiv f(s_1, \ldots, s_n) \ge g(t_1, \ldots, t_m) \equiv t$$

18

iff one of the following conditions is satisfied:

- 1. (subterm): $\exists i. s_i \geq_{rpo} t$
- 2. (precedence): $f >_{\mathcal{F}} g$ and $\forall i. s >_{rpo} t_i$
- 3. (multiset): $f \simeq_{\mathcal{F}} g$ and status(f) = status(g) = mul and

$$\{\{s_1,\ldots,s_n\}\} \ge mul_{rpo} \{\{t_1,\ldots,t_m\}\}$$

4. (lexicographic): $f \simeq_{\mathcal{F}} g$ and status(f) = status(g) = lex and

$$\forall i. \ s >_{rpo} t_i$$

and

$$(s_1,\ldots,s_n) \underline{\gg}_{rpo}^{lex}(t_1,\ldots,t_m)$$

When s is a variable, $s \ge_{rpo} t$ iff s = t. When t is a variable, $s \ge_{rpo} t$ iff $t \in Var(s)$.

In this definition \geq_{rpo}^{mul} and \geq_{rpo}^{lex} are respectively the multiset and the lexicographic extension of the recursive path ordering.

This definition is effective: all recursive calls to \geq_{rpo} (or its multiset/lexicographic extensions) are on pairs of terms whose total size is strictly smaller.

Also note that we considered in this definition a lexicographic comparison from left to right. It is also possible to add other status, comparing lexicographically a permutation of the subterms (for instance from right to left). We did not include this possibility, for simplicity.

Lemma 4 If $s \ge_{rpo} g(t_1, \ldots, t_n)$, then, for every $i, s >_{rpo} t_i$.

Proof:

We proceed by induction on the sum of the sizes of s, t, distinguishing between the cases in the proof of $s \ge_{rpo} t$:

Subterm: If $s_j \ge_{rpo} t$ for some j, then, by induction hypothesis, $s_j >_{rpo} t_i$ for all i, hence $s \ge_{rpo} t_i$ for all i. Suppose $t_i \ge_{rpo} s$. Then $t_i > s_j$ by induction hypothesis, which is a contradiction. Hence $s >_{rpo} t_i$.

Precedence or Lexicographic: $s >_{rpo} t_i$ by definition

Multiset: by definition of the multiset extension, for every *i* there is a j such that $s_j \geq_{rpo} t_i$, hence $s \geq_{rpo} t_i$. Assume by contradiction that $t_i \geq_{rpo} s$. By induction hypothesis, for every j, $t_i >_{rpo} s_j$. A contradiction.

Lemma 5 If $s \ge_{rpo} t$ by Subterm or Precedence, then $s >_{rpo} t$.

Proof:

(Sketch): by contradiction, using lemma 4.

Let $=_{mul}$ be the least symmetric and reflexive relation such that, if $f \simeq_{calF} g$ and there is a permulation π such that $s_1 =_{mul} t_{\pi(1)}, \ldots, s_n =_{mul} t_{\pi(n)}$, then $f(s_1, \ldots, s_n) =_{mul} g(t_1, \ldots, t_n)$.

Lemma 6 $s \ge_{rpo} t$ and $t \ge_{rpo} s$ iff $s =_{mul} t$.

Proof:

(Sketch): by induction, using lemma 5.

Lemma 7 \geq_{rpo} is reflexive.

Lemma 8 If t is a strict subterm of s, then $s >_{rpo} t$.

Proof:

(Sketch): use lemmas 4 and 6.

Lemma 9 \geq_{rpo} is transitive.

Proof:

(Sketch): We use an induction on the sum of the sizes of the three terms and rely on lemma 4 for instance. $\hfill \Box$

Lemma 10 \geq_{rpo} is a quasi-ordering. If $\geq_{\mathcal{F}}$ is a total ordering, then \geq_{rpo} is a total ordering on $T(\mathcal{F})$.

Proof:

(Sketch). For the first part, we use lemma 10 and lemma 7. For the second part, we reason by contradiction, considering a minimal (w.r.t. size) pair of incomparable terms. $\hfill \Box$

Lemma 11 \geq_{rpo} is monotonic (in the sense of definition 11).

Proof:

(Sketch): use the cases 3 and 4 in the definition of \geq_{rpo} .

Lemma 12 \geq_{rpo} is stable by substitution.

Proof:

(Sketch): by induction on the sum of the sizes of s, t, we prove $s >_{rpo} t \Rightarrow s\sigma >_{rpo} t\sigma$.

Theorem 4 \geq_{rpo} is a simplification ordering. In particular it is well-founded.