Theorem 3 (Kruskal) If $\geq_{\mathcal{F}}$ is a wqo, then \unlhd is a wqo on $T(\mathcal{F}$.

Proof:

By contradiction, assume that the set of counter-example sequences

$$
\mathcal{E}=\left\{\left\{u_{i}\right\}_{i \in \mathbb{N}} \mid \forall i<j . u_{i} \nexists u_{j}\right\}
$$

is not empty.
We construct a minimal sequence as follows: $\mathcal{E}_{0}=\mathcal{E}, u_{i}$ is a minimal (w.r.t. size) term such that there is a sequence $u_{0}, \ldots, u_{i}, \ldots$ in \mathcal{E}_{i} and \mathcal{E}_{i+1} is the set of sequences in \mathcal{E}_{i}, that start with u_{0}, \ldots, u_{i}.

The sequence $\left\{u_{i}\right\}_{i \in \mathbb{N}}$ belongs to \mathcal{E} : for every $i<j$, there is a sequence $u_{0}, \ldots, u_{j}, v_{j+1}, \ldots$ in $\mathcal{E}_{i+1} \subseteq \mathcal{E}$ hence $u_{i} \nexists u_{j}$.

Next, we extract from $\left\{u_{i}\right\}_{i \in \mathbb{N}}$ a subsequence $\left\{u_{n_{i}}\right\}_{i \in \mathbb{N}}$ such that the root symbols $f_{n_{i}}$ of $u_{n_{i}}$ are increasing; this is possible since $\geq_{\mathcal{F}}$ is a wqo and thanks to the proposition 5 .

Now, consider the set \mathcal{D} of strict subterms of $\left\{u_{n_{i}}\right\}_{i \in \mathbb{N}}$. We claim that \unlhd is a wqo on \mathcal{D}. Indeed, consider an infinite sequence $\left\{v_{j}\right\}_{j \in \mathbb{N}}$ of terms in \mathcal{D}. If there are two identical terms in the sequence, then there is $i<j$ such that $v_{i} \unlhd v_{j}$. Otherwise, v_{0} is a strict subterm of some $u_{m_{0}}$. We extract from v_{j} the subsequence $v_{k_{j}}$ of terms that are not subterms of $u_{0}, \ldots, u_{m_{0}}$. This is possible since there are only finitely many subterms of $u_{0}, \ldots, u_{m_{0}}$, while there are infinitely many distinct terms in v_{j}. The sequence $u_{0}, \ldots, u_{m_{0}-1}, v_{k_{0}}, v_{k_{1}} \ldots$ is not in \mathcal{E}, since $\left|v_{k_{0}}\right|<\left|u_{m_{0}}\right|$ and by minimality of the counter-example $\left\{u_{i}\right\}_{i \in \mathbb{N}}$. Then either there are two indices $k_{i}<k_{j}$ such that $v_{k_{i}} \unlhd v_{k_{j}}$ or else there is an index $j<m_{0}$ and an index ℓ such that $u_{j} \unlhd v_{k_{\ell}}$. But, in the latter case, since $v_{k_{\ell}}$ is a subterm of some $u_{m}, m>m_{0}$, we would have $u_{j} \unlhd u_{m}$ with $j<m$, which is not possible.

To summarize, in any case, there are $j<k$ such that $v_{j} \unlhd v_{k}: \unlhd$ is a wqo on \mathcal{D}.

By Higman's lemma (lemma 3), \unlhd_{\unlhd}^{w} is a wqo on \mathcal{D}^{*}. Consider now the sequence of words $\left\{w_{i}\right\}_{i \in \mathbb{N}}$ in \mathcal{D}^{*} defined by $w_{i}=s_{1} \cdots s_{m_{i}}$ if $u_{n_{i}}=$ $f_{n_{i}}\left(s_{1}, \ldots, s_{m_{i}}\right)$ (i.e., the concatenation of immediate subterms of $\left.u_{n_{i}}\right)$. Since \unlhd_{\unlhd}^{w} is a wqo, there are two indices $i<j$ such that $w_{i} \unlhd_{\unlhd}^{w} w_{j}$. Then, by definition of \unlhd and since the sequence $f_{n_{i}}$ is increasing, this implies $u_{n_{i}} \unlhd u_{n_{j}}$. This is a contradiction since $\left\{u_{i}\right\}_{i \in \mathbb{N}}$ is supposed to belong to \mathcal{E}.

Hence \mathcal{E} is empty.

In many applications below, we consider a finite set \mathcal{F}, in which case the wqo on \mathcal{F} does not matter (any reflexive and transitive relation on \mathcal{F} is a
wqo, for instance the equality) and is therefore not precised.

3.4 Simplification (quasi)-orderings

Definition 11 A simplification (quasi-)ordering is a (quasi-)ordering \leq on $T(\mathcal{F}, X)$ such that

1. If s is a strict subterm of t, then $s<t$.
2. (Stability) for every terms t, u and every substitution σ, if $t<u$ then $t \sigma<u \sigma($ and if $t \simeq u$, then $t \sigma \simeq u \sigma)$
3. (Monotonicity) For every $t_{1}, \ldots, t_{n}, u_{1}, \ldots, u_{m}$, if $t_{1} \leq u_{1}, \ldots, t_{n} \leq$ u_{n}, then $f\left(t_{1}, \ldots, t_{n}\right) \leq f\left(u_{1}, \ldots, u_{n}\right)$ and, if $t_{i}<u_{i}$ for some i, then $f\left(t_{1}, \ldots, t_{n}\right)<f\left(u_{1}, \ldots, u_{n}\right)$.

Proposition 11 If \mathcal{F} is finite, then simplification orderings are well-founded on $T(\mathcal{F}, X)$.

Proof:

Let \leq be a simplification ordering on $T(\mathcal{F}, X)$ where \mathcal{F} is finite.
Let $x_{0} \in \mathcal{X}$ and $\mathcal{T}=T\left(\mathcal{F}, x_{0}\right)$. Let $s_{0} \in \mathcal{T}$.
First observe that, thanks to the first and last properties of simplification orderings, any simplification ordering contains the embedding (that extends the equality on \mathcal{F}). In particular \leq contains \unlhd

Now, if $t_{0}>t_{1}>\ldots$ is an infinite strictly decreasing sequence in $T(\mathcal{F}, X)$, let u_{i} be the term obtained from t_{i} by replacing every variable of t_{i} with s_{0}. By stability, $u_{0}>u_{1}>\ldots$ is a strictly decreasing sequence in \mathcal{T}.

On the other hand, $\mathcal{F} \cup\left\{x_{0}\right\}$ is finite, hence, thanks to Kruskal theorem, \unlhd is a wqo on \mathcal{T}. Therefore there are two indices $i<j$ such that $u_{i} \unlhd u_{j}$. This contradicts the fact that \leq contains \unlhd.

3.5 Recursive path orderings

Definition 12 Let \mathcal{F} be a set of function symbols, $\geq_{\mathcal{F}}$ be a wqo on \mathcal{F} and status is a mapping from \mathcal{F} into $\{l e x, m u l\}$. The recursive path (quasi)ordering $\geq_{\text {rpo }}$ that extends $\geq_{\mathcal{F}}$ and status is defined on $T(\mathcal{F}, X)$ as follows:

$$
s \equiv f\left(s_{1}, \ldots, s_{n}\right) \geq g\left(t_{1}, \ldots, t_{m}\right) \equiv t
$$

iff one of the following conditions is satisfied:

1. (subterm): $\exists i . s_{i} \geq_{r p o} t$
2. (precedence): $f>_{\mathcal{F}} g$ and $\forall i . s>_{r p o} t_{i}$
3. (multiset): $f \simeq_{\mathcal{F}} g$ and $\operatorname{status}(f)=\operatorname{status}(g)=m u l$ and

$$
\left\{\left\{s_{1}, \ldots, s_{n}\right\}\right\} \geqq_{r p o}^{\text {mul }}\left\{\left\{t_{1}, \ldots, t_{m}\right\}\right\}
$$

4. (lexicographic): $f \simeq_{\mathcal{F}} g$ and $\operatorname{status}(f)=\operatorname{status}(g)=$ lex and

$$
\forall i . s>_{r p o} t_{i}
$$

and

$$
\left(s_{1}, \ldots, s_{n}\right)>_{r p o}^{l e x}\left(t_{1}, \ldots, t_{m}\right)
$$

When s is a variable, $s \geq_{\text {rpo }} t$ iff $s=t$.
When t is a variable, $s \geq_{\text {rpo }} t$ iff $t \in \operatorname{Var}(s)$.
In this definition $\geqq_{r p o}^{m u l}$ and $\geqq_{r p o}^{l e x}$ are respectively the multiset and the lexicographic extension of the recursive path ordering.

This definition is effective: all recursive calls to $\geq_{r p o}$ (or its multiset/lexicographic extensions) are on pairs of terms whose total size is strictly smaller.

Also note that we considered in this definition a lexicographic comparison from left to right. It is also possible to add other status, comparing lexicographically a permutation of the subterms (for instance from right to left). We did not include this possibility, for simplicity.

Lemma 4 If $s \geq_{r p o} g\left(t_{1}, \ldots, t_{n}\right)$, then, for every $i, s>_{r p o} t_{i}$.

Proof:

We proceed by induction on the sum of the sizes of s, t, distinguishing between the cases in the proof of $s \geq_{r p o} t$:

Subterm: If $s_{j} \geq_{r p o} t$ for some j, then, by induction hypothesis, $s_{j}>_{r p o} t_{i}$ for all i, hence $s \geq_{r p o} t_{i}$ for all i. Suppose $t_{i} \geq_{r p o} s$. Then $t_{i}>s_{j}$ by induction hypothesis, which is a contradiction. Hence $s>_{\text {rpo }} t_{i}$.

Precedence or Lexicographic: $s>_{r p o} t_{i}$ by definition

Multiset: by definition of the multiset extension, for every i there is a j such that $s_{j} \geq_{r p o} t_{i}$, hence $s \geq_{r p o} t_{i}$. Assume by contradiction that $t_{i} \geq_{r p o} s$. By induction hypothesis, for every $j, t_{i}>_{r p o} s_{j}$. A contradiction.

Lemma 5 If $s \geq_{\text {rpo }} t$ by Subterm or Precedence, then $s>_{r p o} t$.

Proof:

(Sketch): by contradiction, using lemma 4.
Let $={ }_{m u l}$ be the least symmetric and reflexive relation such that, if $f \simeq_{\text {calF }} g$ and there is a permulation π such that $s_{1}={ }_{m u l} t_{\pi(1)}, \ldots, s_{n}={ }_{m u l}$ $t_{\pi(n)}$, then $f\left(s_{1}, \ldots, s_{n}\right)={ }_{\text {mul }} g\left(t_{1}, \ldots, t_{n}\right)$.

Lemma $6 s \geq_{r p o} t$ and $t \geq_{r p o} s$ iff $s={ }_{m u l} t$.

Proof:

(Sketch): by induction, using lemma 5.

Lemma $\mathbf{7} \geq_{\text {rpo }}$ is reflexive.
Lemma 8 If t is a strict subterm of s, then $s>_{r p o} t$.

Proof:

(Sketch): use lemmas 4 and 6 .

Lemma $9 \geq_{r p o}$ is transitive.

Proof:

(Sketch): We use an induction on the sum of the sizes of the three terms and rely on lemma 4 for instance.

Lemma $10 \geq_{r p o}$ is a quasi-ordering. If $\geq_{\mathcal{F}}$ is a total ordering, then $\geq_{r p o}$ is a total ordering on $T(\mathcal{F})$.

Proof:

(Sketch). For the first part, we use lemma 10 and lemma 7. For the second part, we reason by contradiction, considering a minimal (w.r.t. size) pair of incomparable terms.

Lemma $11 \geq_{r p o}$ is monotonic (in the sense of definition 11).
Proof:
(Sketch): use the cases 3 and 4 in the definition of $\geq_{r p o}$.

Lemma $12 \geq_{\text {rpo }}$ is stable by substitution.

Proof:

(Sketch): by induction on the sum of the sizes of s, t, we prove $s>_{r p o} t \Rightarrow$ $s \sigma>_{r p o} t \sigma$.

Theorem $4 \geq_{\text {rpo }}$ is a simplification ordering. In particular it is well-founded.

